• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陕北黄土高原果园覆盖绿肥油菜的品种筛选及其水肥效应

王春丽 强成 王建平 曹晨辉 张智 陈文杰 杨建利

引用本文:
Citation:

陕北黄土高原果园覆盖绿肥油菜的品种筛选及其水肥效应

    作者简介: 王春丽 E-mail: chliwang262@163.com;
    通讯作者: 杨建利, E-mail:sxyczxjly@163.com
  • 基金项目: 陕西省重点研发计划项目 (2023-YBNY-274;2020ZDLNY07-04)。

Variety screening of greening manure rapeseed and the mulching effect on soil moisture conservation and fertility in dryland orchard of Loess Plateau

    Corresponding author: YANG Jian-li, E-mail:sxyczxjly@163.com
  • 摘要:   【目的】   干旱少雨和土壤瘠薄是陕北苹果生产中存在的主要问题。研究不同绿肥油菜品种覆盖还田在缓解果园春季干旱、培肥土壤及提高苹果产量和质量方面的效应,为陕北苹果生产提供理论基础。   【方法】   试验位于陕西省延安市河庄坪镇的山地果园,供试果树品种为红富士(Malus pumila Mill.),树龄2年。首先进行了绿肥油菜品种筛选试验,供试品种包括5个白菜型冬油菜(Brassica campestris L.)品种 (V1~V5)、1个白菜型春油菜(Brassica campestris L.)品种(V6)、4个甘蓝型冬油菜(Brassica napus L.)品种(V7~V10)。油菜于2019年8月初在果园行间套种,10月30日前刈割地上部分,覆盖于邻近果树根区(根周围半径0—115 cm范围),2020年3月测定果树根区0—60 cm深土壤水分含量,发现V9和V10的覆盖保墒效果较好,用于后续的两年定点覆盖试验。2020—2022年定点试验的油菜套种、覆盖方法同品种筛选试验,于覆盖试验第二年油菜生长季节(2021年10月)测定果树行间和根区0—175 cm土层水分含量,2022年3月、5月份测定果树根区0—175 cm土层水分含量,8月份测定0—20 cm土层养分含量,收获期测定苹果产量和质量。   【结果】   1)品种筛选试验,白菜型冬性油菜品种V1、V2、V3和V4覆盖处理对0—60 cm土层水分含量均无显著影响,V5覆盖处理仅显著增加0—20 cm土层水分含量;而白菜型春性品种V6和甘蓝型冬性品种V7、V8、V9和V10覆盖处理显著增加0—20或0—60 cm土层水分含量;品种V6、V9和V10秋季地上生物学产量显著大于品种V1、V2、V3和V5。油菜地上部生物量 (覆草量) 与翌年3月份20—40、40—60 cm土层水分含量显著正相关。2)两年定点试验,在油菜生长季,两个品种V9、V10均显著降低了果树行间0—50 cm土层水分含量,对根区土壤水分无显著影响;2022年3月份根区0—150 cm土层水分含量显著增加17.6%~21.8%,5月份根区0—100 cm土层水分含量显著增加12.5%~21.6%,0—20 cm土层土壤有效磷、速效钾、全氮、有机质含量分别显著增加32.2%~44.9%、95.4%~146.4%、25.2%~25.6%、23.8%~37.7%。单株苹果产量和单果重增加;苹果维生素C含量显著增加,总酸含量显著降低,总糖含量增加。   【结论】   在陕北高原地区,秋季果园套种油菜并在秋末刈割覆盖于果树根区,可显著提高来年春季果树根区0—100 cm土壤水分含量,培肥土壤,增加苹果产量,改善苹果营养品质。覆盖效果取决于油菜地上部生物量。在陕北高原地区,生产上建议选择地上生物学产量较高的白菜型(Brassica campestris L.)春性和甘蓝型(Brassica napus L.)冬性油菜品种进行果园套种及覆盖。
  • 图 1  不同品种油菜秋末覆盖对果树根区翌年3月份土壤水分含量的影响

    Figure 1.  Effects of late autumn mulching with different rapeseed varieties on soil water content in root area of fruit tree in the following March

    图 2  油菜生长季节果树行间和根区土壤水分含量

    Figure 2.  Soil water content in rapeseed planting area and fruit tree root area during rapeseed growing season

    图 3  油菜连续两年覆盖处理下果树根区春季(3、5月份)土壤水分含量

    Figure 3.  Soil water content in fruit tree root area in March and May of the second mulching year

    表 1  果树根区土壤水分含量与油菜地上部生物量的相关系数

    Table 1.  Correlation coefficients between soil water contents around fruit tree root area and the aboveground biomass of rapeseed

    品种
    Variety
    生物量 (kg/hm2)
    Biomass
    相关系数 Correlation coefficient
    C1 × Y C2 × Y C3 × Y
    V1 4901±95.1 e 0.52 0.73* 0.82**
    V2 4400±166.9 f
    V3 4974±64.0 e
    V4 5507±176.2 cd
    V5 3594±259.1 g
    V6 6502±230.9 b
    V7 3878±145.3 g
    V8 5302±260.6 de
    V9 5790±143.6 c
    V10 6973±620.8 a
    注:V1~V5为白菜型冬性油菜品种,V6为白菜型春性油菜品种,V7~V10为甘蓝型冬性油菜品种。Y―10月下旬油菜地上部生物量,C1、C2、C3分别为翌年3月份果树根区0—20、20—40、40—60 cm土层土壤水分含量。同列数据后不同小写字母表示品种间差异达0.05 显著水平。*、**分别表示油菜生物量与土壤水分含量在0.05、0.01水平相关显著。
    Note: V1−V5 are the Brassica campestris L. winter varieties, V6 is the Brassica campestris L. spring variety, and V7−V10 are the Brassica napus L. winter varieties. Y is aboveground biomass of rapeseed variety in late October. C1, C2, and C3 represent water content in 0−20, 20−40 and 40−60 cm soil depth in fruit tree root area in the following March, respectively. The different lowercase letters after data in a column indicate significant difference among rapeseed varieties (P<0.05). * and ** indicate the correlation between rapeseed biomass and soil water content at 0.05 and 0.01 significant levels, respectively.
    下载: 导出CSV

    表 2  连续两年油菜覆盖和清耕处理下果树根区土壤养分含量

    Table 2.  Soil fertility in fruit tree root area under two years’ mulching and clear tillage treatments

    处理 Treatment 有效磷
    Available P
    (mg/kg)
    速效钾
    Available K
    (mg/kg)
    碱解氮
    Available N
    (mg/kg)
    全氮
    Total N
    (mg/kg)
    全磷
    Total P
    (mg/kg)
    有机质
    Organic matter
    (g/kg)
    覆盖-V9 Mulching-V9 10.93±1.021 a 252.6±24.85 a 10.51±1.520 a 281.1±18.11 a 621.2±27.77 a 4.73±0.323 a
    清耕-V9 Clear tillage-V9 8.27±0.322 b 102.5±11.23 b 10.92±0.923 a 224.6±22.10 b 569.1±26.92 a 3.82±0.240 b
    覆盖-V10 Mulching-V10 15.07±1.443 a 242.9±27.73 a 14.19±0.950 a 277.1±1.99 a 642.9±20.76 a 5.33±0.620 a
    清耕-V10 Clear tillage-V10 10.40±0.656 b 124.3±21.41 b 8.72±1.072 b 220.6±24.80 b 574.9±27.45 b 3.87±0.493 b
    注:V9、V10代表两个甘蓝型冬性油菜品种。同列数据后不同小写字母表示覆盖与清耕处理间差异显著 (P<0.05)。
    Note: The V9、V10 are two Brassica napus L. winter varieties. Different lowercase letters after data in a column indicate significant difference between mulching and clear tillage (P<0.05).
    下载: 导出CSV

    表 3  油菜覆盖对苹果产量及品质的影响

    Table 3.  Effect of the rapeseed mulching on apple yield and quality

    处理
    Treatment
    单果直径
    Fruit diameter
    (mm)
    单果重
    Single fruit weight
    (g)
    单株产量
    Apple yield
    (kg/tree)
    维生素C
    Vitamin C
    (mg/kg)
    可溶性固形物
    Soluble solid
    (%)
    总酸
    Total acids
    (g/kg)
    总糖
    Total sugar
    (g/kg)
    覆盖-V9
    Mulching-V9
    84.56±2.011 a 241.5±7.851 a 13.79±1.686 a 23.31±0.710 a 14.29±0.873 a 2.93±0.070 b 137.1±4.402 a
    清耕-V9
    Cclear tillage-V9
    83.45±2.006 a 230.6±2.865 a 7.98±0.833 b 21.40±0.516 b 14.53±0.603 a 3.23±0.038 a 133.3±4.723 a
    覆盖-V10
    Mulching-V10
    86.83±0.319 a 240.0±4.466 a 8.84±0.664 a 20.77±0.290 a 13.74±0.234 a 3.03±0.154 b 127.4±2.804 a
    清耕-V10
    Clear tillage-V10
    85.01±0.521 b 228.8±1.61 b 7.51±0.418 b 18.65±0.150 b 13.20±0.971 a 3.70±0.185 a 118.5±4.650 b
    注:V9、V10代表两个甘蓝型冬性油菜品种。同列数据后不同小写字母表示覆盖与清耕处理间差异显著 (P<0.05)。
    Note: The V9、V10 are two Brassica napus L. winter varieties. Different lowercase letters after data in a column indicate significant difference between mulching and clear tillage (P<0.05).
    下载: 导出CSV
  • [1] 薛晓辉, 卢芳, 张兴昌. 陕北黄土高原土壤有机质分布研究[J]. 西北农林科技大学学报(自然科学版), 2005, 33(6):  69−74. Xue X H, Lu F, Zhang X C. Distribution of soil organic matters on Loess Plateau of Northern Shaanxi[J]. Journal of Northwest A&F University (Natural Science Edition), 2005, 33(6):  69−74.

    Xue X H, Lu F, Zhang X C. Distribution of soil organic matters on Loess Plateau of Northern Shaanxi[J]. Journal of Northwest A&F University (Natural Science Edition), 2005, 33(6):  69−74.
    [2] 王延平, 韩明玉, 张林森, 等. 洛川苹果园土壤水分变化特征[J]. 应用生态学报, 2012, 23(3): 731−738. Wang Y P, Han M Y, Zhang L S, et al. Variation characteristics of soil moisture in apple orchards of Luochuan County, Shaanxi Province of Northwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(3): 731−738. doi:  10.13287/j.1001-9332.2012.0098

    Wang Y P, Han M Y, Zhang L S, et al. Variation characteristics of soil moisture in apple orchards of Luochuan County, Shaanxi Province of Northwest China[J]. Chinese Journal of Applied Ecology, 2012, 23( 3): 731738. doi:  10.13287/j.1001-9332.2012.0098
    [3] 李青华, 张静, 王力, 王延平. 黄土丘陵沟壑区山地苹果林土壤干化及养分变异特征[J]. 土壤学报, 2018, 55(2): 503−513. Li Q H, Zhang J, Wang L, Wang Y P. Desiccation and nutrient status of the soil in apple orchards in hilly-gully region of the Loess Plateau[J]. Acta Pedologica Sinica, 2018, 55(2): 503−513.

    Li Q H, Zhang J, Wang L, Wang Y P. Desiccation and nutrient status of the soil in apple orchards in hilly-gully region of the Loess Plateau[J]. Acta Pedologica Sinica, 2018, 55( 2): 503513.
    [4] 牛俊杰, 马树苗, 赵景波, 周旗. 陕西省延川县孙家塬经济林土壤水分和水分平衡[J]. 水土保持通报, 2014, 34(4): 33−38. Niu J J, Ma S M, Zhao J B, Zhou Q. Soil water content and water balance of economic trees at Sunjiayuan in Yanchuan County of Shaanxi Province[J]. Bulletin of Soil and Water Conservation, 2014, 34(4): 33−38. doi:  10.13961/j.cnki.stbctb.2014.04.021

    Niu J J, Ma S M, Zhao J B, Zhou Q. Soil water content and water balance of economic trees at Sunjiayuan in Yanchuan County of Shaanxi Province[J]. Bulletin of Soil and Water Conservation, 2014, 34( 4): 3338. doi:  10.13961/j.cnki.stbctb.2014.04.021
    [5] Li B B, Wang Y Q, Hill R L, Li Z. Effects of apple orchards converted from farmlands on soil water balance in the deep loess deposits based on HYDRUS-1D model[J]. Agriculture, Ecosystems & Environment, 2019, 285: 106645.
    [6] Li S Y, Li Y, Lin H X, et al. Effects of different mulching technologies on evapotranspiration and summer maize growth[J]. Agricultural Water Management, 2018, 201: 309−318. doi:  10.1016/j.agwat.2017.10.025
    [7] Thidar M, Gong D Z, Mei X R, et al. Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China[J]. Agricultural Water Management, 2020, 241: 106340. doi:  10.1016/j.agwat.2020.106340
    [8] Wang X X, Cheng Z L, Cheng X, Wang Q J. Effects of surface mulching on the growth and water consumption of maize[J]. Agriculture, 2022, 12(11): 1868. doi:  10.3390/agriculture12111868
    [9] Kader M A, Singha A, Begum M A, et al. Mulching as water-saving technique in dryland agriculture: Review article[J]. Bulletin of the National Research Centre, 2019, 43: 147. doi:  10.1186/s42269-019-0186-7
    [10] Zhou T, Jiao K, Qin S, Lyu D. The impact of cover crop shoot decomposition on soil microorganisms in an apple orchard in northeast China[J]. Saudi Journal of Biological Sciences, 2019, 26: 1936−1942. doi:  10.1016/j.sjbs.2019.07.004
    [11] 傅廷栋, 梁华东, 周广生. 油菜绿肥在现代农业中的优势及发展建议[J]. 中国农技推广, 2012, 28(8): 37−39. Fu T D, Liang H D, Zhou G S. Advantages and development suggestions on rapeseed green manure in modern agriculture[J]. China Agricultural Technology Extension, 2012, 28(8): 37−39.

    Fu T D, Liang H D, Zhou G S. Advantages and development suggestions on rapeseed green manure in modern agriculture[J]. China Agricultural Technology Extension, 2012, 28( 8): 3739.
    [12] 白岗栓, 郑锁林, 邹超煜, 杜社妮. 陇东旱塬果园生草对土壤水分及苹果树生长的影响[J]. 草地学报, 2018, 26(1): 173−183. Bai G S, Zheng S L, Zou C Y, Du S N. Influence of interplant herbage on soil moisture and apple tree growth in Dry Plateau of Eastern Gansu[J]. Acta Agrestia Sinica, 2018, 26(1): 173−183.

    Bai G S, Zheng S L, Zou C Y, Du S N. Influence of interplant herbage on soil moisture and apple tree growth in Dry Plateau of Eastern Gansu[J]. Acta Agrestia Sinica, 2018, 26( 1): 173183.
    [13] 张达斌, 姚鹏伟, 李婧, 等. 豆科绿肥及施氮量对旱地麦田土壤主要肥力性状的影响[J]. 生态学报, 2013, 33(7): 2272−2281. Zhang D B, Yao P W, Li J, et al. Effects of two years' incorporation of leguminous green manure on soil properties of a wheat field in dryland conditions[J]. Acta Ecologica Sinica, 2013, 33(7): 2272−2281. doi:  10.5846/stxb201112261981

    Zhang D B, Yao P W, Li J, et al. Effects of two years' incorporation of leguminous green manure on soil properties of a wheat field in dryland conditions[J]. Acta Ecologica Sinica, 2013, 33( 7): 22722281. doi:  10.5846/stxb201112261981
    [14] 李富翠, 赵护兵, 王朝辉, 等. 渭北旱地夏闲期秸秆还田和种植绿肥对土壤水分、养分和冬小麦产量的影响[J]. 农业环境科学学报, 2011, 30(9): 1861−1871. Li F C, Zhao H B, Wang Z H, et al. Effects of straw mulching and planting green manure on soil water, nutrient and winter wheat yield on Weibei plateau, China[J]. Journal of Agro-Environment Science, 2011, 30(9): 1861−1871.

    Li F C, Zhao H B, Wang Z H, et al. Effects of straw mulching and planting green manure on soil water, nutrient and winter wheat yield on Weibei plateau, China[J]. Journal of Agro-Environment Science, 2011, 30( 9): 18611871.
    [15] 李婧, 张达斌, 王峥, 等. 施肥和绿肥翻压方式对旱地冬小麦生长及土壤水分利用的影响[J]. 干旱地区农业研究, 2012, 30(3): 136−142. Li J, Zhang D B, Wang Z, et al. Effect of fertilizer and green manure incorporation methods on the growth and water use efficiency of winter wheat[J]. Agricultural Research in the Arid Areas, 2012, 30(3): 136−142. doi:  10.3969/j.issn.1000-7601.2012.03.024

    Li J, Zhang D B, Wang Z, et al. Effect of fertilizer and green manure incorporation methods on the growth and water use efficiency of winter wheat[J]. Agricultural Research in the Arid Areas, 2012, 30( 3): 136142. doi:  10.3969/j.issn.1000-7601.2012.03.024
    [16] Iqbal R, Raza M A S, Valipour M, et al. Potential agricultural and environmental benefits of mulches: A review[J]. Bulletin of the National Research Centre, 2020, 44: 75. doi:  10.1186/s42269-020-00290-3
    [17] 赵刚, 樊廷录, 李尚中, 等. 黄土旱塬区苹果园土壤水分动态[J]. 应用生态学报, 2015, 26(4): 1199−1204. Zhao G, Fan T L, Li S Z, et al. Soil moisture dynamics of apple orchard in Loess Plateau dryland[J]. Chinese Journal of Applied Ecology, 2015, 26(4): 1199−1204. doi:  10.13287/j.1001-9332.2015.0033

    Zhao G, Fan T L, Li S Z, et al. Soil moisture dynamics of apple orchard in Loess Plateau dryland[J]. Chinese Journal of Applied Ecology, 2015, 26( 4): 11991204. doi:  10.13287/j.1001-9332.2015.0033
    [18] 王延平, 韩明玉, 张林森, 等. 陕西黄土高原苹果园土壤水分分异特征[J]. 林业科学, 2013, 49(7): 16−25. Wang Y P, Han M Y, Zhang L S, et al. Spatial characteristics of soil moisture of apple orchards in the Loess Plateau of Shaanxi Province[J]. Scientia Silvae Sinicae, 2013, 49(7): 16−25. doi:  10.11707/j.1001-7488.20130703

    Wang Y P, Han M Y, Zhang L S, et al. Spatial characteristics of soil moisture of apple orchards in the Loess Plateau of Shaanxi Province[J]. Scientia Silvae Sinicae, 2013, 49( 7): 1625. doi:  10.11707/j.1001-7488.20130703
    [19] Suo G D, Xie Y S, Zhang Y, Luo H. Long-term effects of different surface mulching techniques on soil water and fruit yield in an apple orchard on the Loess Plateau of China[J]. Scientia Horticulturae, 2019, 246: 643−651. doi:  10.1016/j.scienta.2018.11.028
    [20] Liu Y, Gao M S, Wu W, et al. The effects of conservation tillage practices on the soil water-holding capacity of a non-irrigated apple orchard in the Loess Plateau, China[J]. Soil & Tillage Research, 2013, 130: 7−12.
    [21] 郭学军, 韩张雄, 马锋旺. 不同覆盖方式对苹果园土壤状况及果树生长与果实的影响[J]. 西北农林科技大学学报(自然科学版), 2013, 41(9): 112−118. Guo X J, Han Z X, Ma F W. Effect of different mulching treatments on changes of soil properties, growth of fruit tree, and yield and quality of fruit[J]. Journal of Northwest A& F University (Natural Science Edition), 2013, 41(9): 112−118. doi:  10.13207/j.cnki.jnwafu.2013.09.029

    Guo X J, Han Z X, Ma F W. Effect of different mulching treatments on changes of soil properties, growth of fruit tree, and yield and quality of fruit[J]. Journal of Northwest A& F University (Natural Science Edition), 2013, 41( 9): 112118. doi:  10.13207/j.cnki.jnwafu.2013.09.029
    [22] Wang B, Niu J Z, Berndtsson R, et al. Efficient organic mulch thickness for soil and water conservation in urban areas[J]. Scientific Reports, 2021, 11: 6259. doi:  10.1038/s41598-021-85343-x
    [23] 刘国顺, 罗贞宝, 王岩, 等. 绿肥翻压对烟田土壤理化性状及土壤微生物量的影响[J]. 水土保持学报, 2006, 20(1): 95−98. Liu G S, Luo Z B, Wang Y, et al. Effects of green manure application on soil properties and soil microbial biomass in tobacco field[J]. Journal of Soil and Water Conservation, 2006, 20(1): 95−98. doi:  10.13870/j.cnki.stbcxb.2006.01.023

    Liu G S, Luo Z B, Wang Y, et al. Effects of green manure application on soil properties and soil microbial biomass in tobacco field[J]. Journal of Soil and Water Conservation, 2006, 20( 1): 9598. doi:  10.13870/j.cnki.stbcxb.2006.01.023
    [24] 刘国顺, 李正, 敬海霞, 等. 连年翻压绿肥对植烟土壤微生物量及酶活性的影响[J]. 植物营养与肥料学报, 2010, 16(6): 1472−1478. Liu G S, Li Z, Jing H X, et al. Effects of consecutive turnover of green manures on soil microbial biomass and enzyme activity[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(6): 1472−1478. doi:  10.11674/zwyf.2010.0624

    Liu G S, Li Z, Jing H X, et al. Effects of consecutive turnover of green manures on soil microbial biomass and enzyme activity[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16( 6): 14721478. doi:  10.11674/zwyf.2010.0624
    [25] Zhang R, Huang Q, Yan T, et al. Effects of intercropping mulch on the content and composition of soil dissolved organic matter in apple orchard on the Loess Plateau[J]. Journal of Environmental Management, 2019, 250: 109531. doi:  10.1016/j.jenvman.2019.109531
    [26] De Torres M A R-R, Carbonell-Bojollo R M, Moreno-García M, et al. Soil organic matter and nutrient improvement through cover crops in a Mediterranean olive orchard[J]. Soil & Tillage Research, 2021, 210: 104977.
    [27] 赵慧娟. 油菜作为绿肥的栽培技术与田间肥效试验研究[D]. 湖北武汉: 华中科技大学博士学位论文, 2014. Zhao H J. Cultivation technique and effect on soil fertilizer of oilseed rape as green manure[D]. Wuhan, Hubei: PhD Dissertation of Huazhong University of Science and Technology, 2014.

    Zhao H J. Cultivation technique and effect on soil fertilizer of oilseed rape as green manure[D]. Wuhan, Hubei: PhD Dissertation of Huazhong University of Science and Technology, 2014.
    [28] 奚柏龙, 党军政, 马哲. 冬油菜翻压量对烟田土壤性状及烤烟品质的影响[J]. 现代农业科技, 2013, (3): 14−16. Xi B L, Dang J Z, Ma Z. Effects of different burying amount of winter rape on soil-related traits and tobacco quality[J]. Modern Agricultural Science and Technology, 2013, (3): 14−16. doi:  10.3969/j.issn.1007-5739.2013.03.004

    Xi B L, Dang J Z, Ma Z. Effects of different burying amount of winter rape on soil-related traits and tobacco quality[J]. Modern Agricultural Science and Technology, 2013, ( 3): 1416. doi:  10.3969/j.issn.1007-5739.2013.03.004
    [29] Shen J Y, Zhao D D, Han H F, et al. Effects of straw mulching on water consumption characteristics and yield of different types of summer maize plants[J]. Plant Soil and Environment, 2012, 58(4): 161−166. doi:  10.17221/404/2011-PSE
    [30] Han J, Jia Z K, Han Q F, Zhang J. Application of mulching materials of rainfall harvesting system for improving soil water and corn growth in northwest of China[J]. Journal of Integrative Agriculture, 2013, 12: 1712−1721. doi:  10.1016/S2095-3119(13)60342-1
    [31] Zhu L, Liu J L, Luo S S, et al. Soil mulching can mitigate soil water deficiency impacts on rainfed maize production in semiarid environments[J]. Journal of Integrative Agriculture, 2015, 14: 58−66. doi:  10.1016/S2095-3119(14)60845-5
    [32] Manojlović M, Čabilovski R, Nikolić L, et al. Ground cover management and farmyard manure effects on soil nitrogen dynamics, productivity and economics of organically grown lettuce (Lactuca sativa L. subsp. secalina)[J]. Journal of Integrative Agriculture, 2017, 16: 947−958. doi:  10.1016/S2095-3119(16)61565-4
    [33] 赵刚, 樊廷录, 李尚中, 等. 黄土旱塬集雨保墒措施对苹果发育和土壤水分变化的影响[J]. 农业工程学报, 2016, 32(1): 155−160. Zhao G, Fan T L, Li S Z, et al. Effects of rain-harvesting and moisture-conserving measures on apple tree growth and development and soil water moisture in arid areas of loess plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(1): 155−160. doi:  10.11975/j.issn.1002-6819.2016.01.021

    Zhao G, Fan T L, Li S Z, et al. Effects of rain-harvesting and moisture-conserving measures on apple tree growth and development and soil water moisture in arid areas of loess plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32( 1): 155160. doi:  10.11975/j.issn.1002-6819.2016.01.021
    [34] 王健, 孟秦倩, 吴发启. 黄土高原丘陵沟壑区水资源高效利用技术试验研究[J]. 水资源与水工程学报, 2004, 15(4): 35−38. Wang J, Meng Q Q, Wu F Q. High-efficient utilizing technology of water resources at hill gully area of Loess Plateau[J]. Journal of Water Resources & Water Engineering, 2004, 15(4): 35−38. doi:  10.3969/j.issn.1672-643X.2004.04.008

    Wang J, Meng Q Q, Wu F Q. High-efficient utilizing technology of water resources at hill gully area of Loess Plateau[J]. Journal of Water Resources & Water Engineering, 2004, 15( 4): 3538. doi:  10.3969/j.issn.1672-643X.2004.04.008
    [35] Wang Y J, Liu L, Wang Y, et al. Effects of soil water stress on fruit yield, quality and their relationship with sugar metabolism in ‘Gala’ apple[J]. Scientia Horticulturae, 2019, 258: 108753. doi:  10.1016/j.scienta.2019.108753
    [36] Li F, Zhang G H, Chen J, et al. Straw mulching for enhanced water use efficiency and economic returns from soybean fields in the Loess Plateau China[J]. Scientific Reports, 2022, 12: 17111. doi:  10.1038/s41598-022-21141-3
  • [1] 王梦樊吉艳芝刘娉妤郭艳杰张丽娟 . 果园土壤氮损失监测方法研究进展. 植物营养与肥料学报, 2023, 29(3): 553-572. doi: 10.11674/zwyf.2022437
    [2] 王欢付威胡锦昇樊军郝明德 . 渭北旱塬管理措施对冬小麦地土壤剖面物理性状的影响. 植物营养与肥料学报, 2019, 25(7): 1097-1106. doi: 10.11674/zwyf.18301
    [3] 蔡艳郝明德 , . 轮作模式与周期对黄土高原旱地小麦产量、养分吸收和土壤肥力的影响. 植物营养与肥料学报, 2015, 21(4): 864-872. doi: 10.11674/zwyf.2015.0405
    [4] . 黄土塬面果园土壤养分特征及演变. 植物营养与肥料学报, 2010, 16(5): 1170-1175. doi: 10.11674/zwyf.2010.0518
    [5] 韩清芳周芳贾珺贾志宽*聂俊峰 . 施肥对不同品种苜蓿生产力及土壤肥力的影响. 植物营养与肥料学报, 2009, 15(6): 1413-1418. doi: 10.11674/zwyf.2009.0624
    [6] 卢树昌陈清张福锁贾文竹 . 河北省果园氮素投入特点及其土壤氮素负荷分析. 植物营养与肥料学报, 2008, 14(5): 858-865. doi: 10.11674/zwyf.2008.0507
    [7] 杨雨林郭胜利马玉红车升国孙文艺 . 黄土高原沟壑区不同年限苹果园土壤碳氮磷变化特征 . 植物营养与肥料学报, 2008, 14(4): 685-691. doi: 10.11674/zwyf.2008.0411
    [8] 陈磊郝明德张少民樊虎玲 . 黄土高原旱地长期施肥对小麦养分吸收和土壤肥力的影响. 植物营养与肥料学报, 2007, 13(2): 262-266. doi: 10.11674/zwyf.2007.0213
    [9] 汪洪金继运周卫 . 不同土壤水分供应与施锌对玉米水分代谢的影响. 植物营养与肥料学报, 2004, 10(4): 367-373. doi: 10.11674/zwyf.2004.0406
    [10] 江泽普韦广泼谭宏伟 . 广西红壤果园土壤肥力演化与评价. 植物营养与肥料学报, 2004, 10(3): 312-318. doi: 10.11674/zwyf.2004.0318
  • 加载中
图(3)表(3)
计量
  • 文章访问数:  438
  • HTML全文浏览量:  274
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-13
  • 网络出版日期:  2023-11-20
  • 刊出日期:  2023-10-25

陕北黄土高原果园覆盖绿肥油菜的品种筛选及其水肥效应

    作者简介:王春丽 E-mail: chliwang262@163.com
    通讯作者: 杨建利, sxyczxjly@163.com
  • 1. 陕西省杂交油菜研究中心,陕西杨陵 712100
  • 2. 宝塔区果业技术推广和营销服务中心,陕西延安 716000
  • 3. 西北农林科技大学资源环境学院,陕西杨陵 712100
  • 基金项目: 陕西省重点研发计划项目 (2023-YBNY-274;2020ZDLNY07-04)。
  • 摘要:    【目的】   干旱少雨和土壤瘠薄是陕北苹果生产中存在的主要问题。研究不同绿肥油菜品种覆盖还田在缓解果园春季干旱、培肥土壤及提高苹果产量和质量方面的效应,为陕北苹果生产提供理论基础。   【方法】   试验位于陕西省延安市河庄坪镇的山地果园,供试果树品种为红富士(Malus pumila Mill.),树龄2年。首先进行了绿肥油菜品种筛选试验,供试品种包括5个白菜型冬油菜(Brassica campestris L.)品种 (V1~V5)、1个白菜型春油菜(Brassica campestris L.)品种(V6)、4个甘蓝型冬油菜(Brassica napus L.)品种(V7~V10)。油菜于2019年8月初在果园行间套种,10月30日前刈割地上部分,覆盖于邻近果树根区(根周围半径0—115 cm范围),2020年3月测定果树根区0—60 cm深土壤水分含量,发现V9和V10的覆盖保墒效果较好,用于后续的两年定点覆盖试验。2020—2022年定点试验的油菜套种、覆盖方法同品种筛选试验,于覆盖试验第二年油菜生长季节(2021年10月)测定果树行间和根区0—175 cm土层水分含量,2022年3月、5月份测定果树根区0—175 cm土层水分含量,8月份测定0—20 cm土层养分含量,收获期测定苹果产量和质量。   【结果】   1)品种筛选试验,白菜型冬性油菜品种V1、V2、V3和V4覆盖处理对0—60 cm土层水分含量均无显著影响,V5覆盖处理仅显著增加0—20 cm土层水分含量;而白菜型春性品种V6和甘蓝型冬性品种V7、V8、V9和V10覆盖处理显著增加0—20或0—60 cm土层水分含量;品种V6、V9和V10秋季地上生物学产量显著大于品种V1、V2、V3和V5。油菜地上部生物量 (覆草量) 与翌年3月份20—40、40—60 cm土层水分含量显著正相关。2)两年定点试验,在油菜生长季,两个品种V9、V10均显著降低了果树行间0—50 cm土层水分含量,对根区土壤水分无显著影响;2022年3月份根区0—150 cm土层水分含量显著增加17.6%~21.8%,5月份根区0—100 cm土层水分含量显著增加12.5%~21.6%,0—20 cm土层土壤有效磷、速效钾、全氮、有机质含量分别显著增加32.2%~44.9%、95.4%~146.4%、25.2%~25.6%、23.8%~37.7%。单株苹果产量和单果重增加;苹果维生素C含量显著增加,总酸含量显著降低,总糖含量增加。   【结论】   在陕北高原地区,秋季果园套种油菜并在秋末刈割覆盖于果树根区,可显著提高来年春季果树根区0—100 cm土壤水分含量,培肥土壤,增加苹果产量,改善苹果营养品质。覆盖效果取决于油菜地上部生物量。在陕北高原地区,生产上建议选择地上生物学产量较高的白菜型(Brassica campestris L.)春性和甘蓝型(Brassica napus L.)冬性油菜品种进行果园套种及覆盖。

    English Abstract

    • 陕北高原地区土地资源丰富,光照充足、昼夜温差大,属于干旱半干旱大陆性季风气候,具有北方旱寒区典型的气候特点。干旱、寒冷,冬季极端温度可达−20℃ 以下,年降水量500 mm左右, 降雨量少且年度分布不均,冬春干旱而秋季多雨。当地土壤类型主要是黄绵土,土层深厚,土壤中的矿质养分含量低,耕地土壤有机质含量不足1%,土壤板结、通气透水性能较低,土壤肥力和质量均较差[1]

      陕北半干旱地区是世界公认的苹果最优适生区,苹果品质优良、种植面积巨大,仅陕北苹果种植面积已超过20万hm2。陕北果园苹果旺盛生长季土壤相对含水量大多小于60%,季节性干旱严重,0—60 cm土层贮水量与降水量的变化一致;果树根区0—200 cm土层水分普遍亏欠[2]。陕北地区20年以上果园降雨向深层土壤的下渗接近于零,不同树龄的果园2.0—4.0 m土层以下均出现严重或强烈干化;干土层切断了深层水分与上层的联系,形成了土壤−植物−大气的异常土壤水分循环模式[35]。研究发现,地膜(包括黑膜和透明膜)覆盖、秸秆覆盖、砂石覆盖均显著降低土壤水分蒸发,提高土壤蓄水量和水分利用效率,显著促进作物根系生长,提高作物产量[67]。进一步的研究还发现,砂石覆盖和地膜覆盖显著提高土壤温度,而秸秆覆盖可有效降低土壤温度,抵御夏季高温对作物的伤害,并可增加土壤孔隙度,增加土壤有机质含量,促进土壤细菌的繁殖和代谢,建立良性的土壤生态系统[810]。显然,黄土高原苹果产量及品质主要受限于当年降雨和土壤肥力,而采取适宜的覆盖措施可有效抑制土壤蒸发,增加雨水下渗和土壤水储量,控制和减缓深层土壤干燥,培肥土壤,提高苹果产量和品质。

      油菜是一年生养地作物,具有较强的适应性和抗逆性,耐寒、耐旱,对土壤肥力要求不高,坡地、低洼地都可很好地生长。油菜春、夏、秋3季都可播种,生长迅速,地上生物量大,地下根系较浅,不会像多年生牧草那样在土壤中形成密集厚实的根系层,避免和果树争水争肥。油菜植株中植物所需营养元素含量丰富,油菜干草含氮量(N)可达到2.52%,含磷量(P2O5) 1.53%[11],近年来油菜作为绿肥和养地作物被广泛种植。本研究针对黄土高原果园春季干旱缺水、土壤瘠薄以及其恶劣的生态环境,利用当地秋季多雨的气候特点,选择宜作绿肥的油菜品种于夏末秋初套种于苹果园行间,秋末割倒油菜地上部分覆盖于果树根区,抑制土壤蒸发,“秋水春用”以缓解春季土壤干旱,培肥土壤,提高苹果产量和质量。

      • 试验地位于陕西省延安市宝塔区河庄坪镇余家沟村(36°11′~37°09′N,109°21′~110°03′E),海拔1100 m;年平均降雨量500 mm左右,雨量集中在7—10月份,冬春干旱。年均气温9.4℃,无霜期170~186天。土壤类型为黄绵土,土质疏松,土层深厚,土壤容重 1.28 g/cm3,田间持水量为20%;土壤瘠薄,有机质含量0.3%左右。试验地位于丘陵沟壑区台田上地势平坦的山地果园内,苹果主栽品种为雨养红富士 (Malus pumila Mill.),八棱海棠作砧木,种植密度为5 m×4 m,树龄2年。

        绿肥油菜品种筛选试验(2019年8月—2020年4月): 选择不同类型油菜品种,即天油10号 (V1)、延油2号 (V2)、天油7号 (V3)、陇油8号 (V4)、09鉴8 (V5)、浩油11 (V6)、2002 (V7)、春陕2B (V8)、1721-1B (V9)、秦优7号 (V10)。其中V1~V5为白菜型 (Brassica campestris L.) 冬性油菜品种,V6为白菜型 (Brassica campestris L.) 春性油菜品种,V7~V10为甘蓝型 (Brassica napus L.) 冬性油菜品种。油菜播种行距果树主杆1.15 m,油菜行距0.30 m,株距0.10 m, 种植密度约33万株/hm2。2019年8月1日—8月10日趁雨播种,8月17日前后齐苗。统一耕作,统一施肥管理,全程无灌溉,记载各油菜品种生长情况。10月30日前割倒油菜地上部分并苫盖于邻近果树根区之上,以行间未套种油菜、果树根盘未覆盖的清耕(CK)作为对照。每个油菜品种重复3个小区,每次重复内各油菜品种随机排列,小区面积100m2 (5.0 m×20.0 m)。

        2年定点覆盖试验 (2020年8月—2022年10月),2020、2021年秋季分别将甘蓝型油菜品种V9、V10套种于果树行间,秋末割倒地上部分,分别苫盖于邻近果树根区,即处理:覆盖-V9、覆盖-V10;分别以清耕空白作为对照,即清耕-V9、清耕-V10。每个处理设3个重复。播种时间、覆盖时间、覆盖方法、小区面积、田间管理同上。

      • 油菜还田前每小区选取生长均匀有代表性的区域,用0.8 m×1.0 m取样框取样,刈割油菜地上部分,60℃烘干 (105℃杀青30 min) 称重,换算为地上生物学产量,3次重复。

      • 品种筛选试验翌年3月 (2020年3月)、定点覆盖试验第2年油菜生长旺盛期 (2021年10月中旬)、翌年 (2022年) 3和5月份中下旬,用土钻分层取0—20、20—40、40—60 cm土层的土壤、或者取0—25、25—50、50—75、75—100、100—125、125—150、150—175 cm土层的土壤,装入铝盒,105℃烘干、称重,测量土壤水分含量,3次重复。

      • 定点覆盖试验进行两年后(2022年10月),每小区选择3株果树,称重每株果树苹果产量,以平均值计为单株苹果产量;单果重采用称重法,单果直径采用游标卡尺测量,每小区10次重复,计算平均值。

        采用高效液相色谱法(GB5009.86—2016)测定苹果维生素C含量,采用酸碱滴定指示剂法 (GB/T12456—2008) 测定总酸含量,采用3、5-二硝基水杨酸比色法(NY/T2742—2015)测定可溶性总糖含量,采用折射仪法 (NY/T2637—2014) 测定可溶性固形物含量。

      • 定点覆盖试验进行2年后 (2022年8月),采集耕层0—20 cm的土壤,测定土壤养分含量。采用硫酸消解—凯氏定氮法测定土壤全氮含量,采用硫酸高氯酸消解—钼锑抗比色法测定土壤全磷含量,采用碳酸氢钠浸提—钼锑抗比色法测定土壤有效磷含量,采用醋酸铵浸提—火焰光度计法测定土壤速效钾含量,采用碱解扩散法测定碱解氮含量,采用重铬酸钾外加热法测定有机质含量。

      • 试验数据处理及图表制作采用Excel 2010和DPS V7.55分析软件。采用相关分析法计算相关系数,方差分析采用Duncan新复极差法。

      • 果树根区覆盖油菜后的翌年3月,与清耕(CK)对照相比,白菜型春性品种V6、甘蓝型品种V9、V10的覆盖处理显著增加0—20、20—40、40—60 cm土层土壤水分含量 (P<0.05);甘蓝型品种V7、V8处理显著增加0—20 cm土壤水分含量 (P<0.05);白菜型冬性品种V1、V2、V3、V4处理0—20、20—40、40—60 cm土层的土壤水分含量与对照相比无显著变化,V5处理仅使0—20 cm土壤水分含量显著增加 (图1)。显然,与对照相比,白菜型冬性品种覆盖保墒效果不显著,白菜型春性品种和甘蓝型冬性品种覆盖可显著增加翌年3月份0—60或0—20 cm土壤水分含量。

        图  1  不同品种油菜秋末覆盖对果树根区翌年3月份土壤水分含量的影响

        Figure 1.  Effects of late autumn mulching with different rapeseed varieties on soil water content in root area of fruit tree in the following March

      • 表1所示,参试油菜品种秋季地上生物学产量表现为:V10>V6>V9>V4>V8>V3>V1>V2>V7>V5,白菜型春性品种V6和甘蓝型冬性品种V9、V10的地上生物学产量显著大于白菜型冬性品种V1、V2、V3和V5。秋末以油菜地上部分覆盖果树根区,翌年3月果树根区20—40 cm土层土壤水分含量与油菜地上生物学产量显著正相关 (P<0.05),40—60 cm土壤水分含量与油菜地上部分生物学产量极显著正相关 (P<0.01)。即油菜覆盖处理下,秋季油菜地上生物学产量(即覆草量)与翌年3月20—60 cm土层土壤水分含量显著正相关。

        表 1  果树根区土壤水分含量与油菜地上部生物量的相关系数

        Table 1.  Correlation coefficients between soil water contents around fruit tree root area and the aboveground biomass of rapeseed

        品种
        Variety
        生物量 (kg/hm2)
        Biomass
        相关系数 Correlation coefficient
        C1 × Y C2 × Y C3 × Y
        V1 4901±95.1 e 0.52 0.73* 0.82**
        V2 4400±166.9 f
        V3 4974±64.0 e
        V4 5507±176.2 cd
        V5 3594±259.1 g
        V6 6502±230.9 b
        V7 3878±145.3 g
        V8 5302±260.6 de
        V9 5790±143.6 c
        V10 6973±620.8 a
        注:V1~V5为白菜型冬性油菜品种,V6为白菜型春性油菜品种,V7~V10为甘蓝型冬性油菜品种。Y―10月下旬油菜地上部生物量,C1、C2、C3分别为翌年3月份果树根区0—20、20—40、40—60 cm土层土壤水分含量。同列数据后不同小写字母表示品种间差异达0.05 显著水平。*、**分别表示油菜生物量与土壤水分含量在0.05、0.01水平相关显著。
        Note: V1−V5 are the Brassica campestris L. winter varieties, V6 is the Brassica campestris L. spring variety, and V7−V10 are the Brassica napus L. winter varieties. Y is aboveground biomass of rapeseed variety in late October. C1, C2, and C3 represent water content in 0−20, 20−40 and 40−60 cm soil depth in fruit tree root area in the following March, respectively. The different lowercase letters after data in a column indicate significant difference among rapeseed varieties (P<0.05). * and ** indicate the correlation between rapeseed biomass and soil water content at 0.05 and 0.01 significant levels, respectively.
      • 两年定点覆盖试验中,油菜品种V9、V10生长季(2021年10月)果树行间0—25、25—50 cm土层土壤水分含量显著低于清耕对照,而50 cm以下(不包含50 cm)各土层土壤水分含量无显著差异 (图2A、2B);果树根区各土层土壤水分含量与清耕对照相比均无显著差异 (图2C、2D)。虽然油菜生长季节 (秋季) 显著降低了果树行间0—50 cm土层土壤水分含量,但对邻近果树根区土壤水分含量无显著影响。

        图  2  油菜生长季节果树行间和根区土壤水分含量

        Figure 2.  Soil water content in rapeseed planting area and fruit tree root area during rapeseed growing season

      • 图3可知,在覆盖试验实施2年后,3月份V9覆盖处理 0—150 cm各土层土壤水分含量比清耕对照显著增加了16.6%~30.0%,平均增加了21.8%,V10覆盖处理各层土壤水分含量增加了4.8%~25.9%,平均增加了17.6% (P<0.05)。5月份V9 覆盖处理0—125 cm各土层土壤水分含量比清耕对照显著增加了8.2%~17.9%,平均增加了12.5%,V10处理0—100 cm各土层土壤水分含量显著增加了7.2%~39.9%,平均增加了21.6% (P<0.05)。总之,两个油菜品种V9、V10地上部分秋末刈割后覆盖在果树根区,显著增加了来年果树根区3月份0—150 cm、5月份0—100 cm土层的土壤水分含量。

        图  3  油菜连续两年覆盖处理下果树根区春季(3、5月份)土壤水分含量

        Figure 3.  Soil water content in fruit tree root area in March and May of the second mulching year

      • 与清耕对照相比 (表2),V9、V10连续2年秋末覆盖果树根区处理土壤有效磷含量分别显著增加32.2%、44.9% (P<0.05),速效钾含量分别显著增加146.4%、95.4% (P<0.05),全氮含量分别显著增加25.2%、25.6% (P<0.05),有机质含量分别显著增加23.8%、37.7% (P<0.05)。V10覆盖处理显著增加土壤全磷含量11.8% (P<0.05),碱解氮含量显著增加62.7% (P<0.05)。连续2年油菜覆盖处理显著增加耕层土壤有效磷、速效钾、全氮和有机质含量,土壤全磷含量呈现增加趋势。

        表 2  连续两年油菜覆盖和清耕处理下果树根区土壤养分含量

        Table 2.  Soil fertility in fruit tree root area under two years’ mulching and clear tillage treatments

        处理 Treatment 有效磷
        Available P
        (mg/kg)
        速效钾
        Available K
        (mg/kg)
        碱解氮
        Available N
        (mg/kg)
        全氮
        Total N
        (mg/kg)
        全磷
        Total P
        (mg/kg)
        有机质
        Organic matter
        (g/kg)
        覆盖-V9 Mulching-V9 10.93±1.021 a 252.6±24.85 a 10.51±1.520 a 281.1±18.11 a 621.2±27.77 a 4.73±0.323 a
        清耕-V9 Clear tillage-V9 8.27±0.322 b 102.5±11.23 b 10.92±0.923 a 224.6±22.10 b 569.1±26.92 a 3.82±0.240 b
        覆盖-V10 Mulching-V10 15.07±1.443 a 242.9±27.73 a 14.19±0.950 a 277.1±1.99 a 642.9±20.76 a 5.33±0.620 a
        清耕-V10 Clear tillage-V10 10.40±0.656 b 124.3±21.41 b 8.72±1.072 b 220.6±24.80 b 574.9±27.45 b 3.87±0.493 b
        注:V9、V10代表两个甘蓝型冬性油菜品种。同列数据后不同小写字母表示覆盖与清耕处理间差异显著 (P<0.05)。
        Note: The V9、V10 are two Brassica napus L. winter varieties. Different lowercase letters after data in a column indicate significant difference between mulching and clear tillage (P<0.05).
      • 与清耕对照相比,V9连续2年覆盖处理对单果直径和单果重及总糖含量的增加幅度不显著,但苹果产量显著增加了5.81 kg/株,V10连续覆盖显著提高了单果直径、单果重和单株产量及总糖含量 (P<0.05)。V9、V10覆盖处理均显著降低果实总酸含量,增加维生素C含量,对可溶性固形物含量的影响不显著 (表3)。总之,甘蓝型冬性油菜秋末覆盖果树根区可显著增加苹果产量,改善果实品质。

        表 3  油菜覆盖对苹果产量及品质的影响

        Table 3.  Effect of the rapeseed mulching on apple yield and quality

        处理
        Treatment
        单果直径
        Fruit diameter
        (mm)
        单果重
        Single fruit weight
        (g)
        单株产量
        Apple yield
        (kg/tree)
        维生素C
        Vitamin C
        (mg/kg)
        可溶性固形物
        Soluble solid
        (%)
        总酸
        Total acids
        (g/kg)
        总糖
        Total sugar
        (g/kg)
        覆盖-V9
        Mulching-V9
        84.56±2.011 a 241.5±7.851 a 13.79±1.686 a 23.31±0.710 a 14.29±0.873 a 2.93±0.070 b 137.1±4.402 a
        清耕-V9
        Cclear tillage-V9
        83.45±2.006 a 230.6±2.865 a 7.98±0.833 b 21.40±0.516 b 14.53±0.603 a 3.23±0.038 a 133.3±4.723 a
        覆盖-V10
        Mulching-V10
        86.83±0.319 a 240.0±4.466 a 8.84±0.664 a 20.77±0.290 a 13.74±0.234 a 3.03±0.154 b 127.4±2.804 a
        清耕-V10
        Clear tillage-V10
        85.01±0.521 b 228.8±1.61 b 7.51±0.418 b 18.65±0.150 b 13.20±0.971 a 3.70±0.185 a 118.5±4.650 b
        注:V9、V10代表两个甘蓝型冬性油菜品种。同列数据后不同小写字母表示覆盖与清耕处理间差异显著 (P<0.05)。
        Note: The V9、V10 are two Brassica napus L. winter varieties. Different lowercase letters after data in a column indicate significant difference between mulching and clear tillage (P<0.05).
      • 一般来讲,绿肥种植期间不同程度地降低土壤水分含量[1216]。黄土高原沟壑区土壤水分的蓄积主要发生在7月至10月中旬,3—6月份季节性干旱明显[17],干旱季节当地果园土壤水分亏缺度高达18.5%~47.5%[18]。因而该地区果园常通过地面覆盖来保持土壤墒情,增加土壤水分含量,覆盖材料包括了麦草、稻草帘、玉米秸秆、砾石、黑膜、白膜、生草等[1921]。然而,这些覆盖物对果树生长和结果有不同程度的不利影响,如果树行间种植玉米等高秆作物会造成果树遮光,麦秸、稻秸等在黄土高原地区较短缺,地膜覆盖后不利于果树施肥、灌水等耕作,增加环境污染,且薄膜覆盖还会加重夏季高温对树根生长的影响;秸秆覆盖不仅显著增加了土壤水分贮存,且可调节耕层土壤温度[19]。但较厚的地面秸秆覆盖在一定程度上会减少降雨向土壤中的渗透[22]。本研究结合黄土沟壑区秋季多雨的气候特点,夏末秋初在果树行间套种生物量较大的白菜型春性和甘蓝型冬性油菜品种,秋末刈割覆盖于果树根区,显著增加了翌年3月份果树根区0—60或0—20 cm土壤水分含量,且土壤水分含量与油菜地上部分生物学产量显著正相关。本研究还发现,由于黄土高原地区雨热同季,秋季雨量较多,果树行间套种甘蓝型冬性油菜,其盛长期降雨较多,因而油菜生长主要消耗0—50 cm土壤水分,对50 cm以下土层土壤水分及邻近果树根区土壤水分无显著的竞争性消耗;秋末用此油菜覆盖果树根区,连续进行2年后,春季0—150 cm (3月)和0—100 cm (5月)土壤水分含量显著增加,实现“秋水春用”。

        许多研究证实,秸秆覆盖和绿肥还田可有效增加土壤有机质、全氮、碱解氮、速效磷含量,降低土壤容重和pH,促进土壤微生物的代谢和土壤细菌的繁殖,土壤脲酶、酸性磷酸酶、蔗糖酶、过氧化氢酶等活性显著提高[10, 2326]。油菜植株养分含量丰富,水分含量高,易腐解,其腐烂过程中产生的有机酸可以调整土壤pH,促进土壤中难溶性养分的释放,将油菜作绿肥翻压,可显著增加土壤有机质及土壤N、P、K等的含量,增加土壤毛管孔隙度,抑制病原菌,显著提高早稻及后茬稻产量[11, 2728]。本研究连续两年以油菜绿肥秋末覆盖果树根区,显著增加了耕层土壤有效磷、速效钾、全氮和有机质含量。

        采用地面覆盖技术,增加土壤贮水量,可显著增加农作物产量[2932]。干旱缺水和土壤瘠薄严重影响黄土高原苹果的产量和品质,改善果园土壤水分状况、缓解深层土壤干燥化,可显著提高单果重、苹果产量及优果率[6, 3334]。苹果一般在9、10月份进入成熟期,对水分、养分需求较少,在果实生长后期适当控水能提高酸转化酶活性,增加苹果可溶性糖含量及可溶性物质总量,降低滴定酸含量,改善品质且不会影响单果重量[35]。这也解释了为什么本研究通过秋季果园套种和覆盖油菜,不仅改善了土壤的水肥条件,而且提高了苹果的产量和品质。

        有研究结果显示,在黄土高原半干旱地区种植、覆盖黄豆秸秆,相对于聚乙烯薄膜覆盖和不覆盖增加净收入,且避免了薄膜覆盖带来的环境污染[36]。半干旱地区果园很容易滋生多年生杂草并形成致密的根系层,特别在雨热同季(5—10月份)杂草生长更加茂盛,与果树争肥争水;因此常规栽培条件下,每年需要多次清除果园杂草,增加栽培成本。显然,本研究在高温高湿季节(7—10月份)在陕北果园套种和覆盖一年生油菜绿肥,不仅显著提高苹果产量和品质,还可有效清除和抑制杂草生长,节省成本,增加收入,减少环境污染,当然,这有待进一步深入研究。

      • 地上生物学产量较大的白菜型春性和甘蓝型冬性油菜秋季套种于果园不会与果树争水,秋末油菜覆盖果树根区可显著增加翌年3月份土壤水分含量,且20—60 cm土层土壤水分含量与油菜地上生物学产量(覆草量)显著正相关。甘蓝型冬油菜秋季覆盖果树根区连续实施两年后,分别显著增加翌年3、5月份0—150、0—100 cm土壤水分含量,显著增加耕层土壤有效磷、速效钾、全氮及有机质含量;显著提高苹果产量,果品总酸含量显著降低,维生素C含量显著增加,总糖含量增加。总之,地上生物学产量较高的白菜型(Brassica campestris L.)春性和甘蓝型(Brassica napus L.)冬性油菜适宜于黄土高原果园秋季套种和覆盖,油菜覆盖能有效保墒蓄水,培肥土壤,提高苹果产量,改善苹果营养品质。

    参考文献 (36)

    目录

      /

      返回文章
      返回