-
木霉菌(Trichoderma spp.)是一类常见的土壤腐生丝状真菌,能够以死亡植物和其它真菌为食,广泛分布于全世界几乎所有环境中,包括农田、森林、山丘、草地和沙漠等陆地生态系统以及淡水和海水等环境[1−2]。在分类上,已鉴定到的木霉属物种数目从50年前的9种增加至目前的400多种[3]。作为植物根际最重要的非共生益生真菌,木霉类似于菌根真菌,与宿主植物根系通过多种互作机制改善根系结构和根际环境,增强植物对生物和非生物胁迫的耐受性,帮助植物抵御病原菌的侵害,促进植物生长[2]。相关研究和专利申请数量近年呈指数级增长[2],木霉属菌株已被广泛用于农业生产并表现出优异的植物促生效果。目前已经证明对农业生产有益的木霉菌主要属于深绿木霉(T. atroviride)、绿色木霉(T. viride)、棘孢木霉(T. asperellum)、类棘孢木霉(T. asperelloides)、哈茨木霉(T. harzianum)、贵州木霉(T. guizhounese)、绿木霉(T. virens)等,其中深绿木霉、哈茨木霉、贵州木霉和绿色木霉具有生防和植物促生功能,被用于生产生物农药和生物肥料[3−4]。木霉菌吸收养分、耐受活性氧,在根上生长的能力,以及与其他植物有益微生物的相容性,使它能够在土壤、根表和根内组织中定殖,有效的根际定殖是根际益生木菌发挥促生功能的重要前提[2]。木霉基因组中丰富的次级代谢产物基因簇也是其能够促进植物生长发育的另一重要因素,目前已经发现的具有新结构骨架的木霉天然活性产物种类较少。本文总结了近年来国内外在木霉根际定殖、促生机制和天然活性物质分离纯化研究中取得的最新进展,并对筛选和系统挖掘植物益生木霉潜在新型活性物质的策略提出展望。
-
木霉通过转变营养习惯和生态角色,进化出寄生(parasitism)、腐生(saprotropism)和互惠共生(mutualism)等多样化的营养方式[2]。在进化过程中重塑自身基因组以提高其适应新栖息地和竞争营养的能力,是由木霉和宿主基因型等因素共同作用实现的。在首次腐生进化过程中,木霉通过基因水平转移获得的多种碳水化合物水解酶编码基因,为其吸收植物根源性营养物质,扩大寄生和腐生宿主范围,与植物根系建立互惠共生关系奠定基础[5] (图1)。
-
植物根源性营养物质(如糖类、氨基酸、酶类等)创造了一个碳源丰富的根际土壤环境,并作为趋化信号吸引土壤微生物向植物根际迁移并在根际大量繁殖,在植物根系和土壤微生物之间建立动态的分子通信,为微生物的根际定殖提供条件[6−8]。木霉复杂的碳水化合物吸收和代谢机制,使其能顺利定殖在各种富含纤维素和其它碳水化合物的环境中。在木霉与植物根系的互作中,大多数木霉能够利用蔗糖为自身提供碳源和能源[9],研究表明,绿色木霉能够分泌蔗糖转化酶(invertase,TvInv),利用植物根际蔗糖进行根际定殖和参与植物防御激活反应[10]。蔗糖还能够作为区分植物凋落物和植物活体根系的信号来调控木霉根际定殖,在蔗糖存在的情况下,绿色木霉能够降低自身水解酶活性避免对宿主产生过度损伤[11−12]。不同木霉菌株蔗糖转化酶的差异可能与菌株的进化策略有关,使得木霉采用不同的代谢策略进行根际定殖[5]。此外,木霉也能够利用水杨酸调控其在植物根际的定殖。木霉到达植物根部后,植物内源水杨酸(一种调控木霉早期定殖的关键植物激素)水平迅速提升,将木霉限制在根表皮和皮层的植外体空间内[13],然后木霉通过分泌一系列植外体效应蛋白和代谢物(如木聚糖酶、赖氨酸蛋白、角蛋白–白蛋白、萜烯三苯和哈茨木霉酸 A)诱导根部活性氧(ROS)爆发[2],而木霉对ROS的耐受性使其能与植物根部建立一种长期的共生关系[14]。此外,结构类物质(如角鲨烯和麦角甾醇)的平衡对于维持真菌细胞膜的稳定性非常重要,能够影响木霉在植物根际的定殖能力,并且在调节植物防御和生物防治中具有关键作用[15]。
-
植物根系表面并非稳定的连续屏障,常出现裂缝或自然开口。木霉可通过损伤、组织扩张或特殊的细胞结构进入植物组织内部并在其中定殖。哈茨木霉是报道最多的内生木霉菌种,加勒比木霉(T. caribbaeum)、拟康宁木霉(T. koningiopsis)、里克菲尔德氏木霉(T. lieckfeldtiae)、稀孢木霉(T. paucisporum)、可可木霉(T. theobromicola)也曾有报道[2]。木霉生命周期中的内生阶段在生态学上具有重要意义,因为一旦植物组织死亡,根内定殖则提供了相对于纯腐生微生物的选择优势[16−17]。木霉在植物根际定殖后能够穿透根表进入植物细胞,诱导植物局部和全身的免疫防御反应。研究表明,在植物免疫系统的防御下,木霉菌丝通常不会到达根系木质部,而是被限制在根皮层中[13, 18]。组织分离实验结果显示,内生木霉具有木质部定殖偏好性[19]。作为腐生真菌,木霉具有复杂的蛋白酶系统,这些真菌蛋白酶对于木霉的内生定殖十分重要[4],已报道的参与木霉内生定殖的蛋白酶包括纤维素酶、木聚糖酶、角蛋白、润涨蛋白、多聚半乳糖醛酸内切酶、疏水蛋白和蔗糖转化酶[9, 20]。水分及营养物质的可用性、氧环境和复杂的植物根系结构也是限制木霉根内有效定殖的重要因素,植物不同部位营养物质组成大不相同,一些组织随着衰老产生的营养物质有利于木霉定殖[16]。对于影响根际益生木霉定殖方式的因素,以及该益生真菌如何逃避植物免疫系统成功定殖等问题仍然缺乏系统的研究。
-
定殖于根际的木霉能够产生超过120种不同类型的次级代谢产物(secondary metabolites,SMs),其中以萜烯、吡喃酮、多酮和非核糖体肽最为常见[2]。目前,木霉菌中一些影响植物根系构型、调节根系养分吸收的信号物质已被鉴定,初步阐明了木霉SMs调控植物生长发育的分子机制[6, 21−27] (图1)。
-
植物根系结构(root system architecture, RSA)在养分和水分吸收、土壤锚固和根际微生物互作中扮演着不可或缺的角色[28−29]。RSA的形成是一个复杂过程,受到多种生物和非生物因素的影响,如植物激素、光照、水分、盐碱和营养胁迫[30−32]。木霉基因组中含有植物激素合成相关基因,调控生长素、细胞分裂素、赤霉素、脱落酸、水杨酸和乙烯等的合成和分泌,参与激活植物内源生长素的转运和信号转导,促进植物根系发育[21]。然而,植物根际木霉分泌的生长素过量积累会引起根际酸化,并通过生长素依赖的途径反向抑制植物根系生长[33]。除上述激素外,目前鉴定的具有调控根系发育功能的木霉活性物质(表1)有koninginins、6-pentyl-α-pyrone (6PP)、trichocaranes A-D、trichokonin VI、harzianopyridone、cyclonerodiol、harzianolide、harzianic acid [22]。6PP能够调控拟南芥(Arabidopsis thaliana)生长素转运蛋白和信号通路基因的表达,干扰植物内源生长素通路和乙烯响应调节子EIN2,诱导植物侧根形成[23]。长枝木霉(T. longibrachiatum)胞外分泌的康宁霉素trichokonin VI能够改变根系结构,调节生长素局部生物合成和极性运输过程[47]。贵州木霉胞外分泌物cedrene和TgSWO均能促进拟南芥侧根发育[24, 34−48]。目前研究结果显示,木霉主要通过分泌信号物质调控植物内源生长素途径来促进植物根系发育,生长素转运或信号传递相关基因的突变(axu1、big、 eir1、 axr1)能够降低木霉对植物生长和根系发育的促进效果[10, 36, 49]。
表 1 具有促生功能的木霉及其次级代谢物种类
Table 1. List of Trichoderma and its secondary metabolites for their roles in plant growth
木霉种类
Trichoderma species次级代谢产物
Secondary metabolite植物类型
Plant types特征
Features参考文献References 贵州木霉NJAU4742
T. guizhouense
NJAU4742吲哚-3-乙酸(生长素)、
雪松烯、润涨蛋白
Indole-3-acetic acid (IAA), cedrene, TgSWO黄瓜、拟南芥
Cucumber,
A. thaliana增加侧根数目和主根长度
Increasing LR numbers and PR length[24, 36, 51] 深绿木霉
T. atroviride乙烯 Ethylene (ET) 拟南芥
A. thaliana增加侧根数目和根毛数目;
降低主根长度
Increasing LR and root hair numbers; decreasing PR length[37] 深绿木霉、绿色木霉、
哈茨木霉、康宁木霉
T. atroviride, T. virens,
T. harzianum, T. koningii6-戊烷基-2H-吡喃酮
6-Pentyl-2H- pyran-2-one (6-PP)拟南芥、大豆
A. thaliana,
soybean增加侧根数目和根毛数目;
降低主根长度
Increasing LR and root hair numbers; decreasing PR length[23] 哈茨木霉
T. harzianum哈茨木霉酸
Harzianic acid油菜、大豆
Brassica napus,
soybean增加主根长度和矿物质获取
Increasing PR length; mineral acquisition[52, 53] 哈茨木霉T-22
T. harzianum T-22— 大麦
Barley增加总根长
Increasing total root length[54] 康宁木霉
T. koningii康宁霉素A
Koninginin A小麦
Wheat促进植物生长和根系构型发育
Promoting plant growth and root morphogenesis[55] 钩状木霉
T. hamatum FB10— 绿豆
Green gram增加植物高度和干重
Increasing plant height and dry weight[56] 蜡素木霉
T. cerinum蜡酸内酯、哈茨酮内酯
Cerinolactone, harzianolide番茄
Tomato促进番茄幼苗生长
Stimulating the growth of tomato seedlings[57] 副里氏木霉
T. parareesei— 番茄
Tomato促进番茄幼苗侧根发育
Increasing tomato seedling LR development[58] 木霉属
Trichoderma spp.粪生素、粪生素B、
铁菌素、糖酸、富马酸
Coprogen, coprogen B, ferricrocin, gluconic acid, fumaric acid豆子,番茄,
茄子,草莓
Bean, tomato,
eggplant, strawberrie通过螯合作用和土壤酸化获取矿物质
Mineral acquisition through chelation and acidification of soil[59] 木霉属
Trichoderma spp.乳酸、富马酸、抗坏血酸、葡萄糖酸、植酸、柠檬酸、苹果酸
Latic acid, fumaric acid, ascorbic acid, gluconic acid, phytic acid, citric acid, D-malic acid大豆
Soybean溶磷
Phosphorus-solubilizing[25] 深绿木霉
T. atroviride— 拟南芥
A. thaliana通过调控蔗糖转运和代谢促进生长
Improving growth by modulating sucrose transport and metabolism[60] 棘孢木霉T-34、
哈茨木霉T-78
T. asperellum T-34,
T. harzianum T-78— 拟南芥、番茄
A. thaliana,
Solanum lycopersicum刺激根系对铁的转运
Stimulating iron uptake in roots[61] 注:“—”代表未获得木霉胞外次级代谢产物纯品。
Note: “—” represents no pure extracellular secondary metabolites of Trichoderma were obtained. LR—Lateral root; RR—Primary root.挥发性有机物(volatile organic compounds,VOCs)在植物−微生物互作中发挥着重要的信号作用,除上述物质外,木霉还能够释放多种VOCs与植物互作并参与诱导侧根起始[22, 50−52]。深绿木霉能够产生至少25种VOCs,包括醇、酮、烷烃、呋喃、吡喃酮、单萜和倍半萜类物质,气态乙烯被认为能够作为信号分子在真菌−植物互作中发挥核心作用[50, 53]。非接触情况下,绿色木霉能够释放VOCs提高拟南芥生物量,其中以倍半萜烯类(sesquiterpenes,SQTs)含量最高[54]。
-
在土壤–根系界面,养分元素经历了复杂的溶解、吸收、转运的动态过程,这种过程受根际微生物活动的影响[55−57]。植物益生菌能够通过刺激根系生长、促进营养元素迁移和活化根际养分等,帮助大多数植物改善其矿质营养吸收[58−61]。土壤养分的吸收利用需要从根际转移到根表,对于丝状真菌定殖的根系而言,养分能够通过丝状真菌菌丝从根际土壤转移至根表。木霉释放的有机酸(如柠檬酸、草酸、酒石酸等,表1)能够溶解含钾矿物释放钾离子,提高植物根际钾元素的有效性[4]。选用能够溶解不同磷酸盐的木霉菌可以提高植物根际磷的有效性,增强植物根系对磷养分的吸收,从而促进植物生长[25]。铁是微生物繁殖和植物生长的必需营养元素之一,但植物可利用性Fe3+在有氧条件下会与氧气反应形成不溶性的铁氢氧化物,降低土壤中铁的有效性[6]。木霉能够产生铁载体(coprogen、coprogen B、fusarinine C、ferricrocin、harzianic acid)螯合土壤铁氢氧化物中的铁离子,为植物提供铁营养[12−13]。在缺铁条件下,木霉能够分泌多种类型的铁载体,铁载体的多样性是非核糖体肽合成酶(NRPS)活性修饰的结果,而非NRPS编码基因差异所致[27]。目前,木霉SMs促进植物根际养分利用的研究主要集中在溶磷、铁和解钾方面,关于木霉SMs调控植物养分吸收速率和植物胞内养分转运功能分子机制的研究鲜有报道。
-
木霉的基因组中包含不同糖基水解酶、次级代谢物、抗生素、具有杀虫特性的凝集素、具有生物修复潜力的转运蛋白等的合成基因簇,它们在植物生长、病原菌防控和土壤调理中起着重要作用[62−63]。尽管如此,目前分离鉴定得到的木霉新活性SMs种类和数量依然非常少,新结构、高活性木霉次级代谢产物的获得,需要行之有效的高通量筛选手段,生物活性导向型筛选和基因组挖掘筛选是目前常用的两种方法。近年来,一些新开发的分析工具和改进的微生物培养方法也为木霉SMs挖掘提供了新的技术手段[64]。
-
传统的生物活性导向分离策略主要包括发酵粗提物生产、生物活性检测和化学性质表征3个阶段。发酵基质中溶质的溶解性取决于溶剂与溶质的极性,了解目标化合物的极性对选择萃取溶剂十分重要。有机溶剂萃取法具有简单、实用、高性能、低成本和低设备要求等优点,但存在致毒性、溶剂消耗大和潜在环境污染等缺点。此外,还需考虑提取方法、溶剂毒性、待提取化合物的稳定性以及成本等因素[65]。生物活性导向分离天然产物的通用策略如下:1)使用反相高效液相色谱法(reverse-phase HPLC)分析有机溶剂二氯甲烷或乙酸乙酯萃取粗提物;2)使用自动馏分收集器将各分离馏分收集到96孔板中;3)对所有馏分进行生物活性测试确定有效馏分(可根据实际操作过程、粗提物复杂程度、目标活性物质稳定程度等进行多次分离纯化),用半制备高效液相色谱法(semi-prep-HPLC)对有效馏分进行色谱分离,对所有馏分进行生物活性测试以确认活性部分,获得具有生物活性的纯物质;4)将活性馏分注入超高效液相色谱四极飞行时间质谱(UHPLC-qTOF-MS),利用MS/MS数据和数据库确认活性部分的身份;5)利用UV、IR、MS和NMR等技术获得活性化合物的光谱数据进行结构解析并获得生物学数据[66]。传统的生物活性的分离过程耗时耗力,存在较大的局限性,例如当木霉离开其自然栖息地在实验室培养时,其基因组中一些生物合成基因簇(biosynthetic gene clusters, BGCs)会选择性沉默不表达;一些BGCs合成的SMs在本源菌中产量较低;一些已知的SMs在筛选过程中会重复出现等[67]。因此,单纯使用生物活性导向型筛选方法获得结构新颖的木霉SMs的概率越来越低。
-
基因组挖掘是以基因簇序列和生物合成途径为导向的天然产物发掘新策略,它直接将天然产物结构与合成途径关联,进行生物合成和组合生物合成研究,有助于微生物天然产物化学研究逐渐克服随机性、盲目性和偶然性[68]。合成生物学技术、生物信息学分析工具(如anti-SMASH和SMURF)能够为木霉代谢产物BGCs是否合成具有新化学支架的物质提供线索[64]。方法如下:1)对于基因组中明确的BGCs,在本源菌中将其敲除,通过HPLC-MS手段比较分析突变株和野生株的次级代谢谱,确定可能是目标BGCs合成化合物的差异峰;2)对于在本源菌中不表达或表达量较低的BGCs,需要通过遗传操作将其激活进而发现其编码的天然产物;3)对于基因组中未知的BGCs,其产物结构或理化性质无法预测,可通过沉默未知BGCs中负责产物合成的必需基因,结合突变株和野生株代谢产物的HPLC-MS平行检测,发现未知BGCs所编码的代谢产物[69]。刘天罡等将自动化高通量操作平台(auto-HTP工作站)引入天然产物挖掘领域,发现了丝状真菌萜类物质的巨大生产能力,实现了丝状真菌萜类BGCs的批量挖掘和相关次级代谢产物的高效合成[67],该技术有效解决了丝状真菌SMs研究领域的“三低”(研究通量低、产物集中度低和物质产量低)技术难题,显著提升了新产物的发掘效率[54]。
-
全球气候变化、农业高度集约化、植物病害以及化学肥料过量施用对土壤、空气和水资源的污染,对农业生态系统和人类健康造成了极大的危害。以木霉为代表的相关农用微生物制剂,可以减少化学品的投入,促进农业的绿色和可持续发展[70]。木霉生物制剂除了包含活菌的生物制品,还包含来源于木霉的天然活性化合物(如6PP、铁载体、木霉源植物激素)制品,均可用以作物增产增收[71]。木霉天然活性化合物的研究、选择和使用,对于研发新一代生物肥料、降低化肥的施用以及实现农业绿色和可持续发展具有重要意义。
植物根系作为吸收水分和养分的主要器官,其发育受到复杂的生物和非生物因素调控。木霉作为植物根际含量丰富的益生真菌,阐明木霉促进植物根系发育、养分利用的相关信号物质和遗传基础,有助于合理使用益生木霉进行农业生产。尽管近年来对木霉–植物互作促生的理论和应用研究均取得了长足进步,但木霉在农业绿色生产中的潜力仍未被充分挖掘,对木霉与植物根系互作的信号基础、功能、机制等均缺乏深入系统的研究,对木霉诱导植物根系发育和养分高效利用机理方面的研究并不全面,木霉活性SMs分离纯化等进展缓慢,限制了木霉−植物互作增效潜力的发挥。未来在益生木霉−植物根系互作研究中应重点围绕以下几个方向:
1)可以结合合成生物学技术,通过多模块基因序列分析,预测并分析其编码的化合物结构,指导生物合成基因簇编码天然产物的定向分离和纯化。
2)调控基因的研究和应用,还应当充分借鉴转录组学、蛋白质组学、表观遗传学等生命科学研究的最新成果,进一步开发质谱技术、微量核磁技术等分析手段,在新型天然化合物发掘上的应用潜力。
3)系统阐明木霉天然活性产物调控根系发育的分子途径,不仅仅局限于经典生长素途径。
4)根据不同作物对养分需求的差异性,探索综合利用木霉不同天然活性产物组合调控根系养分高效吸收的技术体系。筛选出调控水稻、玉米和小麦等粮食作物根系发育,增强根系对不同外界环境变化适应性的新型木霉天然次级代谢产物。
植物益生木霉−根系互作机制及其信号物质筛选策略
Mechanism of beneficial Trichoderma-root interaction and the screening strategy for signals
-
摘要: 木霉作为典型的植物益生真菌已被广泛用于农业绿色生产,并表现出良好的应用前景,它们能够通过产生信号物质与植物根系互作,包括在植物根表和根内定殖、调控植物根系发育、促进养分吸收利用等。木霉基因组中含有大量天然活性物质生物合成基因簇,产生丰富的胞外次级代谢产物,在木霉与植物根系建立互惠关系、稳定促生中发挥了至关重要的作用。目前常用的筛选策略主要是生物活性导向策略和基因组挖掘策略,筛选到的木霉次级代谢产物主要包括植物激素类物质和小分子化合物,物质种类单一,化学结构和调控机制缺乏新颖性,且互作植物主要为模式植物拟南芥,这些因素共同限制了木霉–植物根系互作研究的基础理论突破及其在农业生产中的实际应用。因此将木霉新型天然活性产物的筛选研究与绿色农业发展相结合,符合我国“少投入、多产出、保护环境”的发展模式,是我国实现绿色农业可持续发展的重要机遇和挑战。Abstract: Trichoderma is a genus of filamentous fungi that are of interest to agriculture production and show good application prospects. Trichoderma interact with roots through signals, including colonization on the roots or as an endophyte of plants, regulating roots growth and plasticity, and promoting water and nutrients absorption. Trichoderma genomes contain a large number of biosynthetic gene clusters (BGCs) of natural active substances, which play a crucial role during Trichoderma-root interactions. Bioactivity-guided and genome mining isolation are the generally used methods to screen secondary metabolites (SMs) of Trichoderma, which usually are plant hormones and small molecule compounds. However, the screened SMs lack novelty in structures and encouraging researchs, and most known interactions are with model plantArabidopsis, limiting the basic theoretical breakthroughs in Trichoderma-root and application in agricultural production. It is urgent to incorporate theoretical breakthroughs of the screening study of new natural active products of Trichoderma into green agricultural development, which would be very important opportunities and challenges to achieve the sustainable agriculture in China.
-
表 1 具有促生功能的木霉及其次级代谢物种类
Table 1. List of Trichoderma and its secondary metabolites for their roles in plant growth
木霉种类
Trichoderma species次级代谢产物
Secondary metabolite植物类型
Plant types特征
Features参考文献References 贵州木霉NJAU4742
T. guizhouense
NJAU4742吲哚-3-乙酸(生长素)、
雪松烯、润涨蛋白
Indole-3-acetic acid (IAA), cedrene, TgSWO黄瓜、拟南芥
Cucumber,
A. thaliana增加侧根数目和主根长度
Increasing LR numbers and PR length[24, 36, 51] 深绿木霉
T. atroviride乙烯 Ethylene (ET) 拟南芥
A. thaliana增加侧根数目和根毛数目;
降低主根长度
Increasing LR and root hair numbers; decreasing PR length[37] 深绿木霉、绿色木霉、
哈茨木霉、康宁木霉
T. atroviride, T. virens,
T. harzianum, T. koningii6-戊烷基-2H-吡喃酮
6-Pentyl-2H- pyran-2-one (6-PP)拟南芥、大豆
A. thaliana,
soybean增加侧根数目和根毛数目;
降低主根长度
Increasing LR and root hair numbers; decreasing PR length[23] 哈茨木霉
T. harzianum哈茨木霉酸
Harzianic acid油菜、大豆
Brassica napus,
soybean增加主根长度和矿物质获取
Increasing PR length; mineral acquisition[52, 53] 哈茨木霉T-22
T. harzianum T-22— 大麦
Barley增加总根长
Increasing total root length[54] 康宁木霉
T. koningii康宁霉素A
Koninginin A小麦
Wheat促进植物生长和根系构型发育
Promoting plant growth and root morphogenesis[55] 钩状木霉
T. hamatum FB10— 绿豆
Green gram增加植物高度和干重
Increasing plant height and dry weight[56] 蜡素木霉
T. cerinum蜡酸内酯、哈茨酮内酯
Cerinolactone, harzianolide番茄
Tomato促进番茄幼苗生长
Stimulating the growth of tomato seedlings[57] 副里氏木霉
T. parareesei— 番茄
Tomato促进番茄幼苗侧根发育
Increasing tomato seedling LR development[58] 木霉属
Trichoderma spp.粪生素、粪生素B、
铁菌素、糖酸、富马酸
Coprogen, coprogen B, ferricrocin, gluconic acid, fumaric acid豆子,番茄,
茄子,草莓
Bean, tomato,
eggplant, strawberrie通过螯合作用和土壤酸化获取矿物质
Mineral acquisition through chelation and acidification of soil[59] 木霉属
Trichoderma spp.乳酸、富马酸、抗坏血酸、葡萄糖酸、植酸、柠檬酸、苹果酸
Latic acid, fumaric acid, ascorbic acid, gluconic acid, phytic acid, citric acid, D-malic acid大豆
Soybean溶磷
Phosphorus-solubilizing[25] 深绿木霉
T. atroviride— 拟南芥
A. thaliana通过调控蔗糖转运和代谢促进生长
Improving growth by modulating sucrose transport and metabolism[60] 棘孢木霉T-34、
哈茨木霉T-78
T. asperellum T-34,
T. harzianum T-78— 拟南芥、番茄
A. thaliana,
Solanum lycopersicum刺激根系对铁的转运
Stimulating iron uptake in roots[61] 注:“—”代表未获得木霉胞外次级代谢产物纯品。
Note: “—” represents no pure extracellular secondary metabolites of Trichoderma were obtained. LR—Lateral root; RR—Primary root. -
[1] Wang Y F, Zhang S J, Song X F, Yao L S. Cellulose chain binding free energy drives the processive move of cellulases on the cellulose surface[J]. Biotechnology and Bioengineering, 2016, 113(9): 1873−1880. doi: 10.1002/bit.25970 [2] Woo S L, Hermosa R, Lorito M, Monte E. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture[J]. Nature Reviews Microbiology, 2023, 21: 312−326. doi: 10.1038/s41579-022-00819-5 [3] Cai F, Druzhinina I S. In honor of John Bissett: Authoritative guidelines on molecular identification of Trichoderma[J]. Fungal Diversity, 2021, 107(1): 1−69. doi: 10.1007/s13225-020-00464-4 [4] Harman G E. Overview of mechanisms and uses of Trichoderma spp[J]. Phytopathology, 2006, 96(2): 190−194. doi: 10.1094/PHYTO-96-0190 [5] Druzhinina I S, Chenthamara K, Zhang J, et al. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts[J]. PLoS Genetics, 2018, l4(4): 1−33. [6] Pii Y, Mimmo T, Tomasi N, et al. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review[J]. Biology and Fertility of Soils, 2015, 51(4): 403–415. [7] Massalha H, Korenblum E, Tholl D, Aharoni A. Small molecules below-ground: The role of specialized metabolites in the rhizosphere[J]. The Plant Journal, 2017, 90(4): 788−807. doi: 10.1111/tpj.13543 [8] Rolfe S A, Griffiths J, Ton J. Crying out for help with root exudates : Adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes[J]. Current Opinion in Microbiology, 2019, 49: 73−82. doi: 10.1016/j.mib.2019.10.003 [9] Mendoza-Mendoza A, Zaid R, Lawry R, et al. Molecular dialogues between Trichoderma and roots: Role of the fungal secretome[J]. Fungal Biology Reviews, 2018, 32(2): 62−85. doi: 10.1016/j.fbr.2017.12.001 [10] Contreras-Cornejo H A, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis[J]. Plant Physiology, 2009, 149(3): 1579−1592. doi: 10.1104/pp.108.130369 [11] Bezrutczyk M, Yang J, Eom J S, et al. Sugar flux and signaling in plant-microbe interactions[J]. The Plant Journal, 2018, 93(4): 675−685. doi: 10.1111/tpj.13775 [12] Wang K D, Borrego E J, Kenerley C M, Kolomiets M V. Oxylipins other than jasmonic acid are xylem-resident signals regulating systemic resistance induced by Trichoderma virens in maize[J]. The Plant Cell, 2020, 32: 166−185. doi: 10.1105/tpc.19.00487 [13] Alonso-Ramírez A, Poveda J, Martín I, et al. Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots[J]. Molecular Plant Pathology, 2014, 15(8): 823−831. doi: 10.1111/mpp.12141 [14] Lorito M, Woo S L, Harman G E, Monte E. Translational research on Trichoderma: from’omics to the field[J]. Annual Review of Phytopathology, 2010, 48: 395−417. doi: 10.1146/annurev-phyto-073009-114314 [15] Malmierca M G, McCormick S P, Cardoza R E, et al. Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression[J]. Molecular Plant-Microbe Interaction, 2015, 28(11): 1181−1197. doi: 10.1094/MPMI-06-15-0127-R [16] Almario J, Jeena G, Wunder J, et al. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(44): 9403−9412. [17] Pieterse M J, Zamioudis C, Berendsen R, et al. Induced systemic resistance by beneficial microbes[J]. Annual Review of Phytopathology, 2014, 52: 347−375. doi: 10.1146/annurev-phyto-082712-102340 [18] Sharma V, Salwan R, Sharma P N, Gulati A. Integrated translatome and proteome: Approach for accurate portraying of widespread multifunctional aspects of Trichoderma[J]. Frontiers in Microbiology, 2017, 8: 1−13. [19] Carro-Huerga G, Compant S, Gorfer M, et al. Colonization of vitis vinifera L. by the endophyte Trichoderma sp. strain T154: Biocontrol activity against Phaeoacremonium minimum[J]. Frontiers in Plant Science, 2020, 11: 1−15. doi: 10.3389/fpls.2020.00001 [20] Morán-Diez M E, Carrero-Carron I, Rubio M B, et al. Transcriptomic analysis of Trichoderma atroviride overgrowing plant-wilting verticillium dahliae reveals the role of a new M14 metallocarboxypeptidase CPA1 in biocontrol[J]. Frontiers in Microbiology, 2019, 10: 1−12. doi: 10.3389/fmicb.2019.00001 [21] Jaroszuk-ściseł J, Tyśkiewicz R, Nowak A, et al. Phytohormones (Auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTKZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia[J]. International Journal of Molecular Science, 2019, 20(19): 1−35. [22] Vinale F, Sivasithamparam K. Beneficial effects of Trichoderma secondary metabolites on crops[J]. Phytotherapy Research, 2020, 34(11): 2835−2842. doi: 10.1002/ptr.6728 [23] Garnica-Vergara A, Barrera-Ortiz S, Munoz-Parra E, et al. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning[J]. New Phytologist, 2016, 209(4): 1496−1512. doi: 10.1111/nph.13725 [24] Li Y C, Shao J H, Fu Y S, et al. The volatile cedrene from Trichoderma guizhouense modulates Arabidopsis root development through auxin transport and signalling[J]. Plant Cell and Environment, 2022, 45(3): 969−984. doi: 10.1111/pce.14230 [25] Bononi L, Chiaramonte J B, Pansa C C, et al. Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth[J]. Scientific Reports, 2020, 10(1): 1−13. doi: 10.1038/s41598-019-56847-4 [26] Mukherjee P K, Hurley J F, Taylor J T, et al. Ferricrocin, the intracellular siderophore of Trichoderma virens, is involved in growth, conidiation, gliotoxin biosynthesis and induction of systemic resistance in maize[J]. Biochemical and Biophysical Research Communications, 2018, 505(2): 606−611. doi: 10.1016/j.bbrc.2018.09.170 [27] Lehner S M, Atanasova L, Neumann N K N, et al. Isotope-assisted screening for iron-containing metabolites reveals a high degree of diversity among known and unknown siderophores produced by Trichoderma spp[J]. Applied and Environmental Microbiology, 2013, 79(1): 18−31. doi: 10.1128/AEM.02339-12 [28] Overvoorde P, Fukaki H, Beeckman T. Auxin control of root development[J]. Cold Spring Harbor Perspectives in Biology, 2010, 2(6): 1−17. [29] Sasse J, Martinoia E, Northen T. Feed your friends: Do plant exudates shape the root microbiome?[J]. Trends in Plant Science, 2018, 23(1): 25–41. [30] McCleery W T, Mohd-Radzman N A, Grieneisen V A. Root branching plasticity: Collective decision-making results from local and global signalling[J]. Current Opinion in Cell Biology, 2017, 44: 51−58. doi: 10.1016/j.ceb.2017.03.001 [31] 丁兆军, 白洋. 根系发育和微生物组研究现状及未来发展趋势[J]. 中国科学:生命科学, 2021, 51(10): 1447−1456. Ding Z J, Bai Y. The current and future studies on plant root development and root microbiota[J]. Scientia Sinica Vitae, 2021, 51(10): 1447−1456. doi: 10.1360/SSV-2021-0179 Ding Z J, Bai Y . The current and future studies on plant root development and root microbiota[J]. Scientia Sinica Vitae,2021 ,51 (10 ):1447 −1456 . doi: 10.1360/SSV-2021-0179[32] Möller B K, Xuan W, Beeckman T. Dynamic control of lateral root positioning[J]. Current Opinion in Plant Biology, 2017, 35: 1−7. doi: 10.1016/j.pbi.2016.09.001 [33] Pelagio-Flores R, Esparza-Reynoso S, Garnica-Vergara A, et al. Trichoderma-induced acidification is an early trigger for changes in Arabidopsis root growth and determines fungal phytostimulation[J]. Frontiers in Plant Science, 2017, 8: 1–13. [34] Meng X H, Miao Y Z, Liu Q M, et al. TgSWO from Trichoderma guizhouense NJAU4742 promotes growth in cucumber plants by modifying the root morphology and the cell wall architecture[J]. Microbial Cell Factories, 2019, 18(1): 1−15. doi: 10.1186/s12934-018-1049-x [35] Liu Q M, Tang S Y, Meng X H, et al. Proteomic analysis demonstrates a molecular dialog between Trichoderma guizhouense NJAU 4742 and cucumber (Cucumis sativus L.) roots: Role in promoting plant growth[J]. Molecular Plant-Microbe Interactions, 2021, 34(6): 631−644. doi: 10.1094/MPMI-08-20-0240-R [36] Contreras-Cornejo H A, Lopez-Bucio J S, Mendez-Bravo A, et al. Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride[J]. Molecular Plant-Microbe Interactions, 2015, 28(6): 701−710. doi: 10.1094/MPMI-01-15-0005-R [37] Vinale F, Nigro M, Sivasithamparam K, et al. Harzianic acid: A novel siderophore from Trichoderma harzianum[J]. FEMS Microbiology Letters, 2013, 347(2): 123−129. [38] Vinale F, Flematti G, Sivasithamparam K, et al. Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum[J]. Journal of Natural Products, 2009, 72(11): 2032−2035. doi: 10.1021/np900548p [39] Gupta S, Smith P M C, Boughton B A, et al. Inoculation of barley with Trichoderma harzianum T-22 modifies lipids and metabolites to improve salt tolerance[J]. Journal of Experimental Botany, 2021, 72(20): 7229−7246. doi: 10.1093/jxb/erab335 [40] Cutler H, Himmelsbach D, Arrendale R, et al. Koninginin A: A novel plant regulator from Trichoderma koningii[J]. Agricultural and Biological Chemistry, 1989, 53(10): 2605−2611. [41] Baazeem A, Almanea A, Manikandan P, et al. In vitro antibacterial, antifungal, nematocidal and growth promoting activities of Trichoderma hamatum FB10 and its secondary metabolites[J]. Journal of Fungi, 2021, 7(5): 1−13. [42] Vinale F, Girona I, Nigro M, et al. Cerinolactone, a hydroxy-lactone derivative from Trichoderma cerinum[J]. Journal of Natural Products, 2012, 75(1): 103−106. doi: 10.1021/np200577t [43] Belén Rubio M, Quijada N M, Perez E, et al. Identifying beneficial qualities of Trichoderma parareesei for plants[J]. Applied and Environmental Microbiology, 2014, 80(6): 1864−1873. doi: 10.1128/AEM.03375-13 [44] Anke H, Kinn J, Bergquist K, Sterner O. Production of siderophores by strains of the genus Trichoderma–Isolation and characterization of the new lipophilic coprogen derivative, palmitoylcoprogen[J]. Biology of Metals, 1991, 4(3): 176−180. doi: 10.1007/BF01141311 [45] Esparza-Reynoso S, Ruiz-Herrera L F, Pelagio-Flores R, et al. Trichoderma atroviride-emitted volatiles improve growth of Arabidopsis seedlings through modulation of sucrose transport and metabolism[J]. Plant Cell and Environment, 2021, 44(6): 1961–1976. [46] Martínez-Medina A, Van Wees S C M, Pieterse C M J. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum[J]. Plant Cell and Environment, 2017, 40: 2691−2705. doi: 10.1111/pce.13016 [47] Shi W L, Chen X L, Wang L X, et al. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp[J]. Journal of Experimental Botany, 2016, 67(8): 2191−2205. doi: 10.1093/jxb/erw023 [48] Ramakrishna P, Duarte P R, Rance G A, et al. EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(17): 8597−8602. [49] Li Y C, Chen Y, Fu Y S, et al. Signal communication during microbial modulation of root system architecture[J]. Journal of Experimental Botany, 2023, erad263. [50] Lee S, Melanie Y, Behringer G, et al. Volatile organic compounds emitted by Trichoderma species mediate plant growth[J]. Fungal Biology and Biotechnology, 2016, 3: 1−14. doi: 10.1186/s40694-016-0019-5 [51] Contreras-Cornejo H A, Macías-Rodríguez L, Herrera-Estrella A, López-Bucio J. The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission[J]. Plant and Soil, 2014, 379: 261−274. doi: 10.1007/s11104-014-2069-x [52] Moisan K, Raaijmakers J M, Dicke M, et al. Volatiles from soil-borne fungi affect directional growth of roots[J]. Plant Cell and Environment, 2021, 44: 339−345. doi: 10.1111/pce.13890 [53] Estrada-Rivera M, Rebolledo-Prudencio G, Perez-Robles D A, et al. Trichoderma histone deacetylase HDA-2 modulates multiple responses in Arabidopsis[J]. Plant Physiology, 2019, 179(4): 1343–1361. [54] Ditengou F A, Muller A, Rosenkranz M, et al. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture[J]. Nature Communication, 2015, 6: 6279. doi: 10.1038/ncomms7279 [55] Forde B G. Nitrogen signalling pathways shaping root system architecture: An update[J]. Current Opinion in Plant Biology, 2014, 21: 30−36. doi: 10.1016/j.pbi.2014.06.004 [56] Motte H, Vanneste S, Beeckman T. Molecular and environmental regulation of root development[J]. Annual Review of Plant Biology, 2019, 70: 465−488. doi: 10.1146/annurev-arplant-050718-100423 [57] Chen Z C, Ma J F. Improving nitrogen use efficiency in rice through enhancing root nitrate uptake mediated by a nitrate transporter, NRT1.1B[J]. Journal of Genetics and Genomics, 2015, 42(9): 463−465. doi: 10.1016/j.jgg.2015.08.003 [58] Lu T, Ke M, Lavoie M, et al. Rhizosphere microorganisms can influence the timing of plant flowering[J]. Microbiome, 2018, 6: 231. doi: 10.1186/s40168-018-0615-0 [59] Jacoby R, Peukert M, Succurro A, et al. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions[J]. Frontiers in Plant Science, 2017, 8: 1−19. [60] Zhang J Y, Liu Y X, Zhang N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019, 37(6): 676–684. [61] 储成才, 王毅, 王二涛. 植物氮磷钾养分高效利用研究现状与展望[J]. 中国科学:生命科学, 2021, 51(10): 1415−1423. Chu C C, Wang Y, Wang E T. Improving the utilization efficiency of nitrogen, phosphorus and potassium: Current situation and future perspectives[J]. Scientia Sinica Vitae, 2021, 51(10): 1415−1423. doi: 10.1360/SSV-2021-0163 Chu C C, Wang Y, Wang E T . Improving the utilization efficiency of nitrogen, phosphorus and potassium: Current situation and future perspectives[J]. Scientia Sinica Vitae,2021 ,51 (10 ):1415 −1423 . doi: 10.1360/SSV-2021-0163[62] Druzhinina I S, Seidl-Seiboth V, Herrera-Estrella A, et al. Trichoderma: The genomics of opportunistic success[J]. Nature Reviews Microbiology, 2011, 9(10): 749–759. [63] Mukherjee P K, Horwitz B A, Herrera-Estrella A, et al. Trichoderma research in the genome era[J]. Annual Review of Phytopathology, 2013, 51: 105–129. [64] Atanasov A G, Zotchev S B, Dirsch V M, et al. Natural products in drug discovery: Advances and opportunities[J]. Nature Reviews Drug Discovery, 2021, 20(3): 200−216. doi: 10.1038/s41573-020-00114-z [65] 豪富华, 王玉兰. 代谢组学在微生物研究中的应用[C]. 邓子新, 喻子牛. 微生物基因组学及合成生物学进展[M]. 北京: 科学出版社, 2014. Hao F H, Wang Y L. The application of metabolomics to the study of microorganisms[C]//Deng Z X, Yu Z N. Advances in microbial genomics and synthetic biology. Beijing: Science Press, 2014. Hao F H, Wang Y L. The application of metabolomics to the study of microorganisms[C]//Deng Z X, Yu Z N. Advances in microbial genomics and synthetic biology. Beijing: Science Press, 2014. [66] Ferreira M C, Carvalho C R, Bahia M, et al. Plant-associated fungi: Methods for taxonomy, diversity, and bioactive secondary metabolite bioprospecting[C]. Carvalhais L C, Dennis P G. The plant microbiome: Methods and protocols[M]. New York: Humana Press, 2021. [67] Yuan Y J, Cheng S, Bian G K, et al. Efficient exploration of terpenoid biosynthetic gene clusters in filamentous fungi[J]. Nature Catalysis, 2022, 5(4): 277−287. doi: 10.1038/s41929-022-00762-x [68] 潘海学, 袁华, 唐功利. 基因组学与合成生物学对天然产物药物发现与创新的启示[C]. 邓子新, 喻子牛. 微生物基因组学及合成生物学进展[M]. 北京: 科学出版社, 2014. Pan H T, Yuan H, Tang G L. Implications of genomics and synthetic biology for natural product drug discovery and innovation[C]//Deng Z X, Yu Z N. Advances in microbial genomics and synthetic biology. Beijing: Science Press, 2014. 29–44. Pan H T, Yuan H, Tang G L. Implications of genomics and synthetic biology for natural product drug discovery and innovation[C]//Deng Z X, Yu Z N. Advances in microbial genomics and synthetic biology. Beijing: Science Press, 2014. 29–44. [69] 王浩鑫, 刘超, 沈月毛. 基因组挖掘驱动的新颖天然产物发现[C]. 邓子新, 喻子牛. 微生物基因组学及合成生物学进展[M]. 北京: 科学出版社, 2014. Wang H X, Liu C, Shen Y M. Discovery of novel natural products driven by genome mining[C]. Deng Z X, Yu Z N. Advances in microbial genomics and synthetic biology[M]. Beijing: Science Press, 2014. Wang H X, Liu C, Shen Y M. Discovery of novel natural products driven by genome mining[C]. Deng Z X, Yu Z N. Advances in microbial genomics and synthetic biology[M]. Beijing: Science Press, 2014. [70] Woo S L, Pepe O. Microbial consortia: Promising probiotics as plant biostimulants for sustainable agriculture[J]. Frontiers in Plant Science, 2018, 9: 7−12. doi: 10.3389/fpls.2018.00007 [71] Woo S L, Ruocco M, Vinale F, et al. Trichoderma-based products and their widespread use in agriculture[J]. The Open Mycology Journal, 2014, 8: 71–126. -