-
化肥投入量的增加,促进了我国农业的快速发展[1]。但近些年化肥的过量施用,特别是氮肥,对生态环境造成许多负面的影响,例如,地表水富营养化、地下水硝酸盐累积、温室气体排放增加等[2]。农作物秸秆是农业生产过程中产生的重要生物质资源[3],我国主要作物秸秆产量从2003年的38231.1万t增加到2022年的65791.0万t,其中2022年的水稻秸秆产量为20849.0万t,占当年主要作物秸秆量的31.7%[4−5]。国内外的研究表明,秸秆直接还田不仅可以改善土壤结构、提高土壤肥力,而且可减少10%~20%的化肥用量,有效降低了环境污染[6−7]。但是,秸秆直接还田也会带来一些负面效应,如病虫害加重[8]和后茬作物出苗率低[9]等。我国寒地水稻主要分布在东北地区(黑龙江省、吉林省和辽宁省),该区域稻谷的播种面积占全国的17.5%[4]。对于北方寒地水稻来说,冬季低温还会进一步限制土壤中秸秆的有效腐解[10−11]。近年来,由秸秆制成的生物炭在促进作物生长和化肥减量方面表现出一定的潜力。这主要是由于生物炭具有较高的有机碳含量、高比表面积以及高孔隙度等特质[12],可以提高土壤有机碳含量和持水能力,降低土壤养分的淋失[13]。
然而,施用秸秆及生物炭对作物产量方面的影响研究并没有得到一致的结果,且随着施用年限和施用量的增加,表现出不同的变化[14−15]。例如,李录久等[16]通过3年的连续试验发现,3750 kg/hm2小麦秸秆还田下的水稻产量最高,较对照增产9.4%~14.9%,其次是4500 kg/hm2秸秆处理,较对照增产6.2%~10.3%。类似地,在Tao等[17]对黄淮海春玉米产量的研究中发现,50%秸秆还田处理较 100%秸秆处理平均增产817.1 kg/hm2。另外,张学艳等[18]通过水稻(沈农9816)盆栽试验发现,4 t/hm2生物炭处理的水稻籽粒产量比对照高7.2%~8.1%,而40 t/hm2生物炭处理产量比对照低9.3%~10.4%。当利用秸秆或者生物炭替代部分化肥时,粮食作物产量和氮肥利用率的表现也不相同。例如,王嘉豪等[19]的研究表明,当施用2倍量秸秆替代31.9%的氮肥和63.2%的磷肥时,对晋南冬小麦的增产效应要优于半量秸秆和全量还田处理。史登林等[20]的研究认为,当季在黄壤上施用20%生物炭氮(5 t/hm2)与80%化学氮肥可使水稻产量显著提高13.4%,氮肥偏生产力、氮肥农学效率和氮肥表观利用率分别显著提升13.3%、46.3% 和 22.4%。而An等[21]的研究表明,前三年施用1.5 t/hm2生物炭替代化肥时,水稻产量均显著低于农民传统化肥处理,但随着替代年限的增加,水稻产量逐渐高于农民传统化肥处理。
因此,为明确长期秸秆及其生物炭还田替代部分化肥对水稻生长和产量的影响,本试验依托开始于2013年的水稻秸秆生物炭长期定位试验,选取不同量水稻秸秆及其生物炭替代化肥的处理。通过测定水稻主要生育期的生长指标、水稻籽粒产量和产量构成因素,分析连续多年利用秸秆及其生物炭替代化肥后影响水稻产量形成的关键因素,进而探讨并比较不同秸秆还田方式及还田量替代部分化肥对寒地水稻生长、产量和氮肥利用率的影响,为东北寒地水稻秸秆资源科学管理提供理论依据。
-
试验位于辽宁省沈阳市沈阳农业大学后山棕壤肥料长期定位试验科研基地(40°48′N,123°32′E),该区域为温带半湿润大陆性季风气候,年平均降水量736 mm,年平均气温为7.5℃,无霜期148~180天。供试土壤为发育于棕壤上的淹育型水稻土,土壤容重为1.45 g/cm3,pH为6.05,有机质含量为16.2 g/kg,全氮含量为0.90 g/kg,全磷含量为0.62 g/kg,全钾含量为18.1 g/kg,碱解氮含量为86.5 mg/kg,速效磷含量为11.6 mg/kg,速效钾含量为115.0 mg/kg。
-
试验按照等养分原则进行施肥,选取长期定位试验中的5个处理,每个处理3次重复,每个小区面积为2 m2 (1 m×2 m),随机区组设计。具体为:1)单施化肥处理(NPK),仅施氮、磷和钾化肥;2)低量生物炭处理(LB),减量氮磷钾化肥,加施1.5 t/hm2生物炭;3)高量生物炭处理(HB),减量氮磷钾化肥,加施3.0 t/hm2生物炭;4)低量秸秆处理(LS),减量氮磷钾化肥,加施4.5 t/hm2秸秆;5)高量秸秆处理(HS),减量氮磷钾化肥,加施9.0 t/hm2秸秆。在施肥前测定水稻秸秆和生物炭中的氮、磷、钾养分含量,然后根据施用量将其分别计入总的氮、磷、钾施肥量,即处理2)~5)中的生物炭或秸秆带入的氮磷钾养分与施入化肥的氮磷钾养分之和等于处理1)的氮磷钾养分。2021年,各处理具体化肥施用量见表1。本试验中秸秆和生物炭施用量的设置,主要是根据当地秸秆全量还田投入量约为9.0 t/hm2,而4.5 t/hm2为秸秆半量还田的投入量。考虑到等量秸秆制成生物炭的比例一般为3∶1,因此,生物炭处理对应高量和低量的施用量设置为3.0 和1.5 t/hm2。生物炭由辽宁金和福农业科技股份有限公司提供,是以水稻秸秆为原料,在450℃下热裂解6 h制作而成。生物炭的主要养分含量为:C 62.4%、N 0.76%、P 0.37%、K 1.65%。秸秆的主要养分含量为:C 38.8%、N 0.86%、P 0.15%、K 0.87%。氮肥为尿素(含N 46%),磷肥为过磷酸钙(含P2O5 12%),钾肥为氯化钾(含K2O 60%)。将50%氮肥和全部磷、钾肥作基肥,另50%氮肥用作抽穗期追肥。每年将秸秆粉碎至3~4 cm后翻入土壤。生物炭均匀覆盖在土壤表面后,立即翻入土壤,避开大风天气。水稻秧苗于每年5月底移栽,10月底收获。供试水稻品种为‘沈农9816’,每个小区3垄,每垄13穴,每穴3株。每个小区自动蓄水的水量要达到土壤表面6 cm左右,并在收获前12天停止蓄水。
表 1 化学肥料施用量
Table 1. Application amount of chemical fertilizers
处理
TreatmentN
(kg/hm2)P2O5
(kg/hm2)K2O
(kg/hm2)NPK 240 120 120 LB 229 107 90 HB 217 94 60 LS 201 105 73 HS 163 89 25 注:NPK—化肥;LB—部分化肥以1.5 t/hm2生物炭替代;HB—部分化肥以3.0 t/hm2生物炭替代;LS—部分化肥以4.5 t/hm2秸秆替代;HS—部分化肥以9.0 t/hm2秸秆替代。各处理氮磷钾总养分投入量相等。
Note: NPK—Chemical fertilizer; LB—Partial replacement of chemical fertilizer with 1.5 t/hm2 biochar; HB—Partial replacement of chemical fertilizer with 3.0 t/hm2 biochar; LS—Partial replacement of chemical fertilizer with 4.5 t/hm2 straw; HS—Partial replacement of chemical fertilizer with 9.0 t/hm2 straw. All the five treatments have the same total N, P2O5 and K2O input. -
茎蘖数调查:自水稻分蘖开始,每隔10天在各小区选取有代表性的植株3穴,采用人工计数法记录水稻分蘖数(取均值),直至茎蘖数不发生变化为止。
叶绿素含量测定:水稻叶片完全展开后,分别在其主要生育期(分蘖期、拔节期、抽穗期、乳熟期、蜡熟期、成熟期),于每小区随机选取3株水稻上的剑叶,使用手持式叶绿素仪CCM-200 (Opti-Sciences,USA)测定叶片中部,读取CCI (叶绿素含量指数,chlorophyll content index)作为叶片叶绿素含量的参考值。
株高测定:在水稻主要生育期(分蘖期、拔节期、抽穗期、乳熟期、蜡熟期、成熟期),分别于每小区选取长势基本一致的3穴,用卷尺测量株高。
-
在水稻成熟后,各小区全部收获,收割后脱粒称重,用谷物水分测定仪测定籽粒含水率,按照14%含水率折算籽粒产量。在每个小区中,随机选取长势均匀的3穴,风干后进行考种。首先,计算3穴的有效穗数,换算为单位面积有效穗数,其中总粒数5粒以下(含5粒)的为无效穗;其次,选择3穴中有代表性的2个穗(取均值),统计每穗的实粒数和空瘪粒数,根据实粒数和穗粒数计算结实率;最后,在3穴中随机选取籽粒样品1000粒称取千粒重(空瘪粒不计),测3次重复取均值,且重复间误差不得大于0.5 g。氮肥利用率以氮肥偏生产力来表示,计算公式为:氮肥偏生产力(kg/kg)=产量(kg/hm2)/施氮量(kg/hm2)。
-
利用SPSS 19.0对数据进行统计分析,采用方差分析(ANOVA)中的最小显著性法(LSD)对各处理数据进行显著性检验(P<0.05)。利用SigmaPlot 12.5软件绘制水稻分蘖数、叶绿素含量、株高动态变化图和增值图。分蘖数、叶绿素含量和株高增值是指秸秆或生物炭替代部分化肥处理(LB、HB、LS、HS)分别与单施化肥处理(NPK)之间的差值。生长指标、产量构成因素分别与产量之间的相互关系采用Pearson相关性分析(P<0.05)。
-
在替代等养分化肥条件下,水稻秸秆和秸秆生物炭还田量对水稻植株分蘖能力的影响存在差异(图1)。在分蘖初期和分蘖中期,低量生物炭(LB)与低量秸秆处理(LS)之间,高量生物炭(HB)与高量秸秆处理(HS)之间,分蘖数均无显著差异(图1a)。在分蘖末期,LB处理的分蘖数较LS处理高13.9% (P<0.05),HS处理较HB处理高12.6% (P<0.05)。同一有机物料相比,LB处理在分蘖初期、中期和末期的分蘖数比HB处理分别显著增加25.0%、24.4%、46.3% (P<0.05);LS比HS处理分别显著增加34.2%、18.4%、14.0% (P<0.05)。总体上,低量LB、LS处理分蘖数显著高于高量HB、HS处理,整个分蘖期平均提高27.1% (P<0.05)。LB、LS处理水稻分蘖数增值在中期和末期为正值,表现为增加(图1b);而HB、HS处理增值为负值,表现为减少,其中LS处理的增值在分蘖末期显著低于LB处理60.7% (P<0.05)。由此可知,相比单施化肥处理(NPK),低量生物炭或低量秸秆处理能够有效提高水稻分蘖数,高量生物炭或秸秆处理则降低分蘖数,且低量生物炭处理增加分蘖数的效果在末期显著优于低量秸秆处理(P<0.05)。
-
秸秆和生物炭还田替代部分化肥施用影响着水稻各主要生育期的叶绿素含量(图2)。分蘖期LB处理的叶绿素CCI值显著高于LS处理9.9% (P<0.05),而抽穗期、乳熟期、蜡熟期的CCI值分别显著低于LS处理13.5%、9.9%、10.8% (P<0.05) (图2a)。在拔节期和成熟期,LS与LB处理间CCI值均无显著差异,具体来说,从拔节期到成熟期,LS较LB处理CCI值平均增加 11.5%。而HB与HS处理相比,尽管前期HS与HB处理均无显著差异,而成熟期HS处理的CCI值显著高于HB处理(13.3%,P<0.05)。生物炭或秸秆的不同还田量之间相比较,在分蘖期,LB处理的CCI值显著高于HB处理(32.1%,P<0.05),LS处理显著高于HS处理(19.2%,P<0.05),LB、LS处理CCI值平均提高25.7%;而从拔节期到成熟期,无论是LB与HB处理之间还是LS与HS处理之间的叶绿素CCI值均未表现出显著差异,另外,抽穗期与拔节期相比,NPK、LB、HB、LS和HS处理CCI值分别提高76.0% 、77.0% 、59.4% 、78.2%和55.6%。在水稻生长中后期,秸秆和生物炭各处理的叶绿素含量要优于单施化肥处理(图2b),尤其在成熟期,LB、HB、LS和HS处理的叶绿素CCI增值均为正值,其中HB处理的叶绿素CCI增值显著低于HS处理(97.7%,P<0.05)。
-
秸秆和生物炭不同替代量影响水稻各主要生育期的株高(图3)。尽管在分蘖期,LB与LS处理间及HB与HS处理间的株高均未表现出显著差异(图3a),但LB处理的株高显著高于HB处理(11.9%,P<0.05),LS处理显著高于HS处理(8.9%,P<0.05),LB、LS处理株高平均提高10.4%,且LB比LS处理高5.9%,表明低量生物炭或低量秸秆替代等养分的化肥,在水稻生长前期可以显著促进其生长。从拔节期到乳熟期,LS处理的株高较LB处理平均增加了3.3% (P<0.05),HS处理较HB处理平均增加4.3% (P<0.05)。在蜡熟期和成熟期,LS处理的株高均显著高于LB、HS处理,平均提高了5.2、4.4个百分点(P<0.05),总体来说,从拔节期到成熟期,LS较LB处理株高平均增加4.0%。在水稻株高增值方面(图3b),拔节期的LB处理显著低于LS处理(84.0%,P<0.05),并且随着水稻生育期的推进,LS、HS处理的株高增值为正值,且蜡熟期与成熟期的HS处理显著低于LS处理,平均降低了87.6% (P<0.05),而LB、HB处理为负值,即相较于单施化肥,利用秸秆替代部分化肥对株高的促进作用要优于生物炭。
-
不同量的生物炭或秸秆替代部分化肥影响寒地水稻产量、产量构成和氮肥偏生产力(表2)。HB处理的有效穗数和结实率均显著低于NPK处理,分别降低16.9%和5.2% (P<0.05),而LB、LS和HS处理的有效穗数、结实率与NPK处理相比,并没有表现出显著差异。LB、HB、LS和HS处理的穗粒数比NPK处理分别显著提高了9.7%、13.2%、7.6%和25.7% (P<0.05)。与NPK处理相比,生物炭和秸秆处理均提高了水稻千粒重,其中LB和LS处理的千粒重显著高于NPK处理,分别提高3.7%和2.7% (P<0.05)。与NPK处理相比,LB、LS和HS处理的籽粒产量分别提高6.5% (P<0.05)、6.2% (P<0.05)和1.1%,而HB处理的产量显著降低(−20.3%,P<0.05),且LB与LS处理间无显著差异。另外,LB、LS和HS处理的氮肥偏生产力较NPK处理分别显著提高了11.7%、26.7%和49.0% (P<0.05),仅HB处理较NPK处理显著降低了11.7% (P<0.05)。
表 2 水稻产量构成及氮肥偏生产力
Table 2. Rice yield components and partial factor productivity of nitrogen fertilizer (PFPN)
处理
Treatment有效穗数
Effective spike number
(×104/hm2)穗粒数
Grain number
per spike结实率
Seed-setting rate
(%)千粒重
1000-grain weight
(g)籽粒产量
Grain yield
(kg/hm2)氮肥偏生产力
PFPN
(kg/kg)NPK 284±33.2 a 144±3.8 c 96.6±0.5 ab 23.53±0.2 c 8812.7±113.1 b 36.7±0.5 d LB 290±25.9 a 158±6.0 b 97.4±1.0 a 24.39±0.5 a 9386.0±655.6 a 41.0±2.9 c HB 236±19.5 b 163±4.3 b 91.6±0.7 c 23.61±0.1 c 7024.9±580.4 c 32.4±2.7 e LS 278±17.0 ab 155±5.0 b 96.1±0.7 ab 24.17±0.2 ab 9355.0±388.3 a 46.5±1.9 b HS 258±19.5 ab 181±5.5 a 95.8±0.6 b 23.76±0.2 bc 8911.9±265.4 b 54.7±1.6 a 注:NPK—化肥;LB—部分化肥以1.5 t/hm2生物炭替代;HB—部分化肥以3.0 t/hm2生物炭替代;LS—部分化肥以4.5 t/hm2秸秆替代;HS—部分化肥以9.0 t/hm2秸秆替代。表中数据为平均值±标准差,同列数据后不同小写字母表示处理间差异显著 (P<0.05)。
Note: NPK—Chemical fertilizer; LB—Partial replacement of chemical fertilizer with 1.5 t/hm2 biochar; HB—Partial replacement of chemical fertilizer with 3.0 t/hm2 biochar; LS—Partial replacement of chemical fertilizer with 4.5 t/hm2 straw; HS—Partial replacement of chemical fertilizer with 9.0 t/hm2 straw. The data are mean ± SD, values followed by different lowercase letters in the same column indicate significant difference among treatments (P<0.05). -
相关性分析结果(表3)显示,不同量生物炭处理的水稻分蘖数与籽粒产量表现出密切的正相关关系(r=0.872**,P<0.01),即分蘖数的增加促进了生物炭处理产量的提高,而叶绿素CCI值、株高与产量之间的关系并不显著。在本研究中,LB处理在分蘖末期的分蘖数显著大于NPK和HB处理,增加的比例分别是25.2%和46.3%。秸秆还田处理中,水稻株高与籽粒产量表现为显著的正相关关系(r=0.688*,P<0.05),而分蘖数、叶绿素CCI值与产量之间并没有表现出显著的关系。在本研究中,在成熟期LS处理的株高显著大于NPK和HS处理,分别增加5.2%和4.7%。总体而言,低量生物炭和低量秸秆处理分别促进了水稻分蘖数和株高,进而提高了水稻籽粒产量。
表 3 生物炭和秸秆处理水稻籽粒产量与生长指标的相关系数
Table 3. The correlation of growth index with grain yield under biochar and straw treatments
处理
Treatment分蘖数
Tillering
number叶绿素含量
Chlorophyll
content株高
Plant
height生物炭 Biochar 0.872** 0.290 0.316 秸秆 Straw 0.498 0.122 0.688* Note: *—P<0.05; **—P<0.01. -
不同量生物炭处理的水稻籽粒结实率(r=0.956**,P<0.01)、有效穗数(r=0.699*,P<0.05)均与产量表现出密切的正相关关系(表4),即结实率和有效穗数的提高促进了生物炭处理产量的提高,而千粒重、穗粒数与产量之间并未表现出显著相关。在本研究中,与NPK、HB处理相比,LB处理结实率分别增加0.8%、6.3%,有效穗数分别增加2.1%、22.9%。秸秆处理中,仅千粒重与产量表现出显著正相关关系(r=0.736*,P<0.05),而有效穗数、穗粒数、结实率与产量之间未表现出显著相关。与NPK、HS处理相比,LS处理的千粒重分别增加2.7%、1.7%。说明低量生物炭处理增加产量的主要原因是提高了水稻有效穗数和结实率,而低量秸秆处理主要是提高了千粒重。
表 4 生物炭和秸秆处理水稻籽粒产量与产量构成的相关系数
Table 4. The correlation of yield components with grain yield under biochar and straw treatments
处理
Treatment有效穗数
Effective spike number
穗粒数
Grain number per spike结实率
Seed-setting rate千粒重
1000-grain weight生物炭 Biochar 0.699* −0.515 0.956** 0.595 秸秆 Straw 0.053 −0.043 0.166 0.736* Note: *—P<0.05; **—P<0.01. -
连续多年施用不同量秸秆及其生物炭替代部分化肥对寒地水稻生长具有明显影响。在本研究中,低量生物炭和低量秸秆替代化肥处理较高量处理更有利于促进水稻有效分蘖,且在分蘖末期,低量生物炭处理的分蘖数显著高于低量秸秆处理(图1a),这与前人研究结果相似。如在郑悦[22]的研究中,生物炭处理的水稻茎数增长情况优于秸秆处理,其中施用低量生物炭(7.5 t/hm2)较高量生物炭(12.0 t/hm2)更有利于有效分蘖数的增加。刘丹等[23]的研究表明,添加5 t/hm2的生物炭能够增加水稻的分蘖数,而当生物炭添加量为10~15 t/hm2时,水稻分蘖数表现出下降趋势。低量生物炭替代化肥处理之所以能够促进水稻分蘖,可能是由于低量生物炭有助于根系的生长,进而提高了水稻分蘖。例如,An等[21]、Feng等[24]和安宁等[25]研究表明,添加低量生物炭后土壤孔隙度显著增加,有利于根系生长,而高量生物炭可能会降低土壤大孔隙度和孔隙的通气导水能力;另一方面,秸秆腐解前期产生的有机酸,会抑制水稻苗期的根系生长以及分蘖能力[26−27]。且随着秸秆还田量的增加,也会固定及消耗更多的氮素,间接影响根系活力[28]。
Mostafa等[29]认为,CCI值与叶片氮素含量有明显的线性相关,CCI值可以反映水稻叶片氮素吸收及土壤供氮能力。植株缺氮会发生叶片变黄、植株矮小等情况[30−31]。本研究显示,在水稻生育中后期(拔节期至成熟期),秸秆和生物炭各处理的叶绿素含量要优于单施化肥处理,尤其在成熟期,LB、HB、LS和HS处理的叶绿素CCI增量均为正值,即利用秸秆及其生物炭替代化肥可使水稻生长后期保持一定的氮素供应(图2b)。秸秆替代部分化肥处理之所以能够满足水稻后期的氮素需求,这可能是由于连续多年施用秸秆后,秸秆本身氮素的活性部分被当季农作物吸收利用,而相对稳定的部分会储存在土壤中,并逐年累积[32−34]。而对于生物炭处理来说,在化肥用量减少的条件下,各生物炭处理水稻叶绿素CCI值与单施化肥处理相比略有增加,并没有表现出显著下降趋势,这可能与生物炭对养分的吸附作用有关。在土壤中连续多年施用生物炭可以有效减少氮素淋失,有助于氮素的供应和保留[35−36]。值得注意的是,在水稻生长中后期,LS和HS处理的叶绿素CCI值均优于NPK、LB和HB处理,且HS处理的叶绿素CCI增值在成熟期显著高于HB处理(图2)。这与隋阳辉等[37]研究结果相似,即在施氮肥条件下,秸秆直接还田处理的水稻叶片SPAD值(叶绿素含量)高于秸秆炭化还田处理。
与其他研究结果不同的是,在本研究中各处理水稻CCI值在拔节期出现了明显下降趋势(图2a),这可能与同期的高温有关。根据前人研究结果[38],高温胁迫使水稻叶片的光合机构受损,导致叶片叶绿素含量与光合速率降低。本研究于水稻抽穗期追肥,且最高气温相对下降,使得抽穗期的叶绿素CCI值较拔节期呈升高趋势,各处理分别提高了76.0% (NPK)、77.0% (LB)、59.4% (HB)、78.2% (LS)、55.6% (HS)。另外,在本研究中,水稻生长中后期LS和HS处理的株高要高于NPK、LB和HB处理(图3),可使水稻叶片更好地接收光能,促进更多生物量形成[39]。这与林智文[40]的研究结果类似,即无论是否配施氮肥,添加秸秆比添加生物炭更有利于增加成熟期的水稻株高,且在不施氮肥条件下达到显著水平。但也有研究表明,在提高水稻株高方面,秸秆炭化还田方式优于秸秆直接还田[41]。对于研究结果的差异,可能主要是水稻品种和土壤类型的不同所导致的,这还需进行更深入的研究论证。与此同时,不同量秸秆替代部分化肥后对水稻株高的影响也不同,具体表现为,在蜡熟期和成熟期LS处理株高增量显著高于HS处理(图3b),即施用低量秸秆替代部分化肥更有助于增加水稻株高。这与韩新忠等[42]的研究结果相似,即25%秸秆还田处理(1.5 t/hm2)的水稻株高分别高于50%、75%和100%秸秆还田处理。因此,在连续多年替代条件下,水稻的生长状态与秸秆和生物炭的施用量密切相关。
-
施用秸秆及其生物炭后,水稻产量的变化与生物炭或秸秆的施用量、施用年份密切相关。有些研究认为,水稻籽粒产量随着秸秆和生物炭施用量的增加而增加。如,胡瑶等[43]研究表明,与秸秆不还田处理相比,不同量秸秆直接还田处理水稻籽粒分别增加6.7% (1.5 t/hm2)、19.5% (3.0 t/hm2)、28.2% (4.5 t/hm2)。张爱平等[44]研究表明,水稻籽粒产量随生物炭添加量(4.5~9.0 t/hm2)的增加而增高,增产率为15.3%~44.9%。但有些研究也认为,随生物炭和秸秆施用量的增加,作物产量并没有随之增加,有时还会表现出下降趋势,如Asai等[45]研究表明,添加4 t/hm2生物炭的水稻产量在0.5~3.2 t/hm2,添加8 t/hm2生物炭的水稻产量在0.8~3.3 t/hm2间,而生物炭施用量达16 t/hm2时,产量不再增加且降低(0.7~2.7 t/hm2)。Zhang等[46]连续4年的试验表明,在低量(4.5 t/hm2)、中量(9.0 t/hm2)和高量(13.5 t/hm2)秸秆还田条件下,作物产量平均增幅分别为10.6%、22.8%和22.5%。另外,一些研究认为,施用生物炭与秸秆对水稻产量的影响也存在差异。如Liu等[47]研究表明,尽管施用生物炭(10.5 t/hm2)和秸秆(10.7 t/hm2)均可增加水稻籽粒产量,但是生物炭处理的增产效应优于秸秆处理(1.7%~8.5%)。同样,Nan等[48]的4 年水稻田间试验表明,相较于不施生物炭或秸秆处理,生物炭处理(2.8 t/hm2)和秸秆处理(8.0 t/hm2)分别平均增产10.7%和9.6%。然而,在Nan等[49]的研究中,施用秸秆的增产效应要优于生物炭,即连续3年将8.0 t/hm2秸秆施入土壤,水稻产量分别提高10.4%、4.6%和15.4%,施用2.8 t/hm2生物炭分别增产8.0%、1.6%和7.3%。与此同时,随着秸秆和生物炭施用年限的增加,作物产量也表现出年际间的不同变化。如Wang等[50]的长期(>10 年)秸秆直接还田试验结果显示,农作物产量平均提高 6.5% (10~14 年)、6.8% (15~19 年)、6.9% (20~24 年)和 8.3% (25~30 年)。在Zhang等[51]水稻与小麦轮作的6 年田间试验中,生物炭处理(20 t/hm2、40 t/hm2)增加籽粒产量10%~16%,且4 年后呈现出显著增长趋势。
在本研究中,连续多年化肥减量配施秸秆及其生物炭后,与单施化肥处理相比,低量生物炭和低量秸秆均能显著增加水稻产量,高量生物炭处理产量显著低于单施化肥处理(P<0.05),而高量秸秆处理的水稻产量与单施化肥处理较为接近(表2)。结合相关分析结果可知,低量生物炭处理增加产量主要是由于水稻分蘖数、有效穗数和结实率的提高,而高量生物炭处理减产的主要原因是降低了水稻分蘖数、有效穗数和结实率(表3,表4)。施用高量生物炭之所以会降低水稻产量,可能主要是因为施用高量生物炭进一步增加了土壤碳氮比,降低氮素的有效性。同时,大量的生物炭颗粒会占据更多的大孔隙,降低稻田土壤孔隙的连通性,进而限制水稻根系的生长和氮素的有效供应[25, 35−36]。然而,化肥减量条件下,施用低量生物炭能使稻田土壤养分供应更为适宜[21],进而减少无效分蘖对养分的消耗,提高有效分蘖数,起到保蘖成穗的作用[52]。在何大卫等[52]的研究中,添加适量生物炭显著增加了水稻的有效分蘖数与成穗率,提高了总颖花数,进而达到高产。另外,株高和千粒重的增加是低量秸秆处理提高产量的主要原因,这主要是由于秸秆本身丰富的氮素可调节土壤养分的供应[53],促进根系生长。增加秸秆还田量后,在翻耕时秸秆所占的体积相应增加,从而使腐解率降低和氮素固定增加[26−27]。庄睿花等[54]的研究显示,由于秸秆腐解率的提高能够使土壤总氮量增加,因此施用秸秆可通过提高水稻千粒重,即穗粒的饱满度,进而提高籽粒产量。而且,Zhao等[55]、Chen等[56]和刘浩等[57]认为,在秸秆配施化肥条件下,株高在一定范围内(95~105 cm)有利于水稻叶片更多地利用光能,降低水稻倒伏风险,因此适当的株高与生物产量为线性相关[58]。在本研究中,除HB处理外,LB、LS和HS处理的氮肥偏生产力均高于NPK处理11.7%、26.7%和49.0% (P<0.05)。这与解文孝等[59]和姜佰文等[60]的研究结果相似,即在棕壤土中施入6.3 t/hm2秸秆,水稻氮肥偏生产力提高了7.9%;黑土中施入2.5和5.0 t/hm2生物炭提高了玉米氮肥偏生产力,平均增幅分别为5.1%和9.6%。因此,连续多年施用低量秸秆或者低量生物炭可作为寒地水稻增产增效的有效措施,尽管高量秸秆替代部分化肥较单施化肥处理的产量增幅并不明显,但是氮肥利用率明显提高。
-
连续多年施用低量秸秆或低量生物炭替代等养分量的化肥,可以促进寒地水稻分蘖和生长,提高籽粒产量和氮肥偏生产力。连续高量秸秆替代等养分量化肥的增产潜力有限,但可以较大幅度提高氮肥偏生产力,而高量生物炭替代等养分量化肥有降低产量的风险。
长期水稻秸秆及生物炭还田替代等养分量化肥对寒地水稻产量和氮肥利用率的影响
Effects of continuous replacing equal amount of chemical fertilizer nutrients with rice straw and straw biochar on rice yield and nitrogen use efficiency in cold region
-
摘要:
【目的】 秸秆还田是改善土壤质量、提高作物生产力和减少化肥用量的重要措施之一。探讨水稻秸秆或秸秆生物炭替代部分化肥对寒地水稻生长、产量和氮肥利用率的影响,为寒地水稻秸秆资源优化管理提供理论依据。 【方法】 位于沈阳农业大学的水稻秸秆生物炭长期定位试验始于2013年,在等氮磷钾施用量下,设置5个处理:单施氮磷钾化肥处理(NPK)及低量生物炭(1.5 t/hm2,LB)、高量生物炭(3.0 t/hm2,HB)、低量秸秆(4.5 t/hm2,LS)、高量秸秆(9.0 t/hm2,HS)分别替代等养分量化肥处理。调查水稻主要生育期的生长动态指标(茎蘖数、叶绿素含量和株高),测定籽粒产量及其构成因素(有效穗数、穗粒数、结实率和千粒重),并计算水稻氮肥偏生产力。 【结果】 低量LB和LS处理的水稻分蘖数显著高于对应的高量HB和HS处理,整个分蘖期平均提高27.1%,且在分蘖末期,LB处理的分蘖数显著高于LS处理(13.9%)。在水稻分蘖期,低量LB和LS处理的叶绿素含量(CCI值)、株高显著高于对应的高量HB和HS处理,CCI值和株高分别平均提高25.7%和10.4%,且LB处理CCI值和株高均高于LS处理,分别提高了9.9%和5.9%。然而,从拔节期到成熟期,LS处理的CCI值和株高均高于LB处理,分别平均增加11.5%和4.0%。LB和LS处理的水稻籽粒产量分别较NPK处理显著提高了6.5%和6.2%,HS处理产量与NPK处理无显著差异,HB处理较NPK处理显著降低了20.3%。LB、LS和HS处理的氮肥偏生产力分别显著高于NPK处理11.7%、26.7%和49.0%,而HB处理显著低于NPK处理11.7%。相关性分析结果表明,与NPK处理相比,LB处理产量增加主要是由于提高了水稻分蘖数(25.2%)、有效穗数(2.1%)和结实率(0.8%),LS处理则主要是由于提高了株高(5.2%)和千粒重(2.7%)。 【结论】 连续多年施用低量秸秆或低量生物炭替代等量养分的化肥,可以促进寒地水稻分蘖和生长,提高籽粒产量和氮肥偏生产力。连续高量秸秆替代等养分量化肥的增产潜力有限,但可以较大幅度地提高氮肥偏生产力,而高量生物炭替代等养分量化肥存在降低产量的风险。 Abstract:【Objectives】 Straw returning is one of the important measures to improve soil quality, crop productivity and reduce chemical fertilizer input simultaneously. We studied the growth, yield of rice and nitrogen fertilizer use efficiency when replacing partial fertilizer with rice straw and straw biochar in the long run, to provide scientific support for the optimal management of rice straw resources. 【Methods】 The long-term field experiment, located in Shenyang Agricultural University, was established in 2013. The five treatments were: merely chemical NPK fertilizer (NPK), and replacing equal amount of chemical fertilizer nutrients with 1.5 t/hm2 rice straw biochar (low-input rate, LB), 3.0 t/hm2 rice straw biochar (high-input rate, HB), 4.5 t/hm2 rice straw (low-input rate, LS), and 9.0 t/hm2 rice straw (high-input rate, HS). The tiller number, chlorophyll content, plant height, grain yield and yield components of rice were investigated. The partial factor productivity of nitrogen fertilizer (PFPN) were calculated. 【Results】 Compared with the high rate treatment, LB and LS treatment increased the total tiller number by 27.1% on average. And LB increased the tiller number by 13.9% than LS treatment at the end of tillering stage (P<0.05). At the tillering stage, the chlorophyll content (CCI) and plant height of LB and LS treatment were significantly higher than those of HB and HS, with increases of 25.7% and 10.4%, respectively. The CCI and plant height in LB treatment were 9.9% and 5.9% higher than in LS treatment at tillering stage, however, the CCI and plant height in LS treatment were 11.5% and 4.0% higher than in LB treatment from the jointing to ripening stage. Compared with NPK treatment, LB and LS significantly increased grain yield by 6.5% and 6.2%, HS had similar grain yield, while HB significantly decreased grain yield by 20.3%. As a result, LB, LS and HS significantly improved PFPN by 11.7%, 26.7% and 49.0%, while HB decreased PFPN by 11.7%. According to the correlation analysis, the contribution to yield increase in LB treatment was contributed by tiller number (25.2%), effective spike number (2.1%), and seed-setting rate (0.8%); that in LS treatment was by plant height (5.2%), and 1000-grain weight (2.7%). 【Conclusions】 Continuous straw or biochar replacement of chemical fertilizer at low rate could stimulate the tillering and growth of rice plants, increase rice yield and the partial factor productivity of nitrogen fertilizer. Replacing chemical fertilizer with high rate of straw could maintain rice yield and enhance the partial factor productivity of nitrogen fertilizer greatly, while high rate of biochar will bring about yield decline risk in the long run. -
表 1 化学肥料施用量
Table 1. Application amount of chemical fertilizers
处理
TreatmentN
(kg/hm2)P2O5
(kg/hm2)K2O
(kg/hm2)NPK 240 120 120 LB 229 107 90 HB 217 94 60 LS 201 105 73 HS 163 89 25 注:NPK—化肥;LB—部分化肥以1.5 t/hm2生物炭替代;HB—部分化肥以3.0 t/hm2生物炭替代;LS—部分化肥以4.5 t/hm2秸秆替代;HS—部分化肥以9.0 t/hm2秸秆替代。各处理氮磷钾总养分投入量相等。
Note: NPK—Chemical fertilizer; LB—Partial replacement of chemical fertilizer with 1.5 t/hm2 biochar; HB—Partial replacement of chemical fertilizer with 3.0 t/hm2 biochar; LS—Partial replacement of chemical fertilizer with 4.5 t/hm2 straw; HS—Partial replacement of chemical fertilizer with 9.0 t/hm2 straw. All the five treatments have the same total N, P2O5 and K2O input.表 2 水稻产量构成及氮肥偏生产力
Table 2. Rice yield components and partial factor productivity of nitrogen fertilizer (PFPN)
处理
Treatment有效穗数
Effective spike number
(×104/hm2)穗粒数
Grain number
per spike结实率
Seed-setting rate
(%)千粒重
1000-grain weight
(g)籽粒产量
Grain yield
(kg/hm2)氮肥偏生产力
PFPN
(kg/kg)NPK 284±33.2 a 144±3.8 c 96.6±0.5 ab 23.53±0.2 c 8812.7±113.1 b 36.7±0.5 d LB 290±25.9 a 158±6.0 b 97.4±1.0 a 24.39±0.5 a 9386.0±655.6 a 41.0±2.9 c HB 236±19.5 b 163±4.3 b 91.6±0.7 c 23.61±0.1 c 7024.9±580.4 c 32.4±2.7 e LS 278±17.0 ab 155±5.0 b 96.1±0.7 ab 24.17±0.2 ab 9355.0±388.3 a 46.5±1.9 b HS 258±19.5 ab 181±5.5 a 95.8±0.6 b 23.76±0.2 bc 8911.9±265.4 b 54.7±1.6 a 注:NPK—化肥;LB—部分化肥以1.5 t/hm2生物炭替代;HB—部分化肥以3.0 t/hm2生物炭替代;LS—部分化肥以4.5 t/hm2秸秆替代;HS—部分化肥以9.0 t/hm2秸秆替代。表中数据为平均值±标准差,同列数据后不同小写字母表示处理间差异显著 (P<0.05)。
Note: NPK—Chemical fertilizer; LB—Partial replacement of chemical fertilizer with 1.5 t/hm2 biochar; HB—Partial replacement of chemical fertilizer with 3.0 t/hm2 biochar; LS—Partial replacement of chemical fertilizer with 4.5 t/hm2 straw; HS—Partial replacement of chemical fertilizer with 9.0 t/hm2 straw. The data are mean ± SD, values followed by different lowercase letters in the same column indicate significant difference among treatments (P<0.05).表 3 生物炭和秸秆处理水稻籽粒产量与生长指标的相关系数
Table 3. The correlation of growth index with grain yield under biochar and straw treatments
处理
Treatment分蘖数
Tillering
number叶绿素含量
Chlorophyll
content株高
Plant
height生物炭 Biochar 0.872** 0.290 0.316 秸秆 Straw 0.498 0.122 0.688* Note: *—P<0.05; **—P<0.01. 表 4 生物炭和秸秆处理水稻籽粒产量与产量构成的相关系数
Table 4. The correlation of yield components with grain yield under biochar and straw treatments
处理
Treatment有效穗数
Effective spike number
穗粒数
Grain number per spike结实率
Seed-setting rate千粒重
1000-grain weight生物炭 Biochar 0.699* −0.515 0.956** 0.595 秸秆 Straw 0.053 −0.043 0.166 0.736* Note: *—P<0.05; **—P<0.01. -
[1] 仇焕广, 栾昊, 李瑾, 汪阳洁. 风险规避对农户化肥过量施用行为的影响[J]. 中国农村经济, 2014, (3): 85−96. Qiu H G, Luan H, Li J, Wang Y J. Effect of risk avoidance on the excessive application of chemical fertilizer in farmers[J]. Chinese Rural Economy, 2014, (3): 85−96. Qiu H G, Luan H, Li J, Wang Y J . Effect of risk avoidance on the excessive application of chemical fertilizer in farmers[J]. Chinese Rural Economy,2014 , (3 ):85 −96 .[2] Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Science, 2009, 106(9): 3041−3046. doi: 10.1073/pnas.0813417106 [3] 宋大利, 侯胜鹏, 王秀斌, 等. 中国秸秆养分资源数量及替代化肥潜力[J]. 植物营养与肥料学报, 2018, 24(1): 1−21. Song D L, Hou S P, Wang X B, et al. Nutrient resource quantity of crop straw and its potential of substituting[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 1−21. Song D L, Hou S P, Wang X B, et al . Nutrient resource quantity of crop straw and its potential of substituting[J]. Journal of Plant Nutrition and Fertilizers,2018 ,24 (1 ):1 −21 .[4] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2022. National Bureau of Statistics of China. China statistical yearbook[M]. Beijing: China Statistical Press, 2022. National Bureau of Statistics of China. China statistical yearbook[M]. Beijing: China Statistical Press, 2022. [5] 朱建春, 李荣华, 杨香云, 等. 近30年来中国农作物秸秆资源量的时空分布[J]. 西北农林科技大学学报(自然科学版), 2012, 40(4): 139−145. Zhu J C, Li R H, Yang X Y, et al. Spatial and temporal distribution of crop straw resources in 30 years in China[J]. Journal of Northwest A&F University: Natural Science Edition, 2012, 40(4): 139−145. Zhu J C, Li R H, Yang X Y, et al . Spatial and temporal distribution of crop straw resources in 30 years in China[J]. Journal of Northwest A&F University: Natural Science Edition,2012 ,40 (4 ):139 −145 .[6] 李明德, 吴海勇, 聂军, 石生伟. 稻草及其循环利用后的有机废弃物还田效用研究[J]. 中国农业科学, 2010, 43(17): 3572−3579. Li M D, Wu H Y, Nie J, Shi S W. Utilities of straw and wastes of straw recycling returning on rice planting[J]. Scientia Agricultura Sinica, 2010, 43(17): 3572−3579. doi: 10.3864/j.issn.0578-1752.2010.17.011 Li M D, Wu H Y, Nie J, Shi S W . Utilities of straw and wastes of straw recycling returning on rice planting[J]. Scientia Agricultura Sinica,2010 ,43 (17 ):3572 −3579 . doi: 10.3864/j.issn.0578-1752.2010.17.011[7] Yin H J, Zhao W Q, Li T, et al. Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2695−2702. doi: 10.1016/j.rser.2017.06.076 [8] 章力干, 石心怡, 王玉宝, 等. 秸秆还田对中国主要粮食作物病害影响的Meta分析[J]. 农业工程学报, 2022, 38(21): 93−100. Zhang L G, Shi X Y, Wang Y B, et al. Meta-analysis for the impacts of straw return on the diseases of major grain crops in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(21): 93−100. Zhang L G, Shi X Y, Wang Y B, et al . Meta-analysis for the impacts of straw return on the diseases of major grain crops in China[J]. Transactions of the Chinese Society of Agricultural Engineering,2022 ,38 (21 ):93 −100 .[9] 靳海洋, 蒋向, 杨习文, 贺德先. 作物秸秆直接还田思考与秸秆多途径利用商榷[J]. 中国农学通报, 2016, 32(9): 142−147. Jin H Y, Jiang X, Yang X W, He D X. Exploration of returning crop straw to the field directly and discussion on multi-way utilization of straws[J]. Chinese Agricultural Science Bulletin, 2016, 32(9): 142−147. doi: 10.11924/j.issn.1000-6850.casb15080073 Jin H Y, Jiang X, Yang X W, He D X . Exploration of returning crop straw to the field directly and discussion on multi-way utilization of straws[J]. Chinese Agricultural Science Bulletin,2016 ,32 (9 ):142 −147 . doi: 10.11924/j.issn.1000-6850.casb15080073[10] 卞景阳, 刘琳帅, 孙兴荣, 等. 施氮对寒地粳稻还田秸秆腐解及养分释放的影响[J]. 黑龙江八一农垦大学学报, 2019, 31(5): 22−28. Bian J Y, Liu L S, Sun X R, et al. Effect of nitrogen application on straw decomposition and nutrient release of japonica rice in cold region[J]. Journal of Heilongjiang Bayi Agricultural University, 2019, 31(5): 22−28. Bian J Y, Liu L S, Sun X R, et al . Effect of nitrogen application on straw decomposition and nutrient release of japonica rice in cold region[J]. Journal of Heilongjiang Bayi Agricultural University,2019 ,31 (5 ):22 −28 .[11] 方志超, 刘玉涛, 丁为民, 等. 微生物菌喷施对集沟还田稻麦秸秆的影响[J]. 农业工程学报, 2015, 31(23): 187−194. Fang Z C, Liu Y T, Ding W M, et al. Effect of microbial spraying on wheat and rice straw returning to ditch[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(23): 187−194. Fang Z C, Liu Y T, Ding W M, et al . Effect of microbial spraying on wheat and rice straw returning to ditch[J]. Transactions of the Chinese Society of Agricultural Engineering,2015 ,31 (23 ):187 −194 .[12] Xu G, Lv Y C, Sun J N, et al. Recent advances in biochar applications in agricultural soils: Benefits and environmental implications[J]. Clean-Soil Air Water, 2012, 40(10): 1093−1098. doi: 10.1002/clen.201100738 [13] Ding Y, Liu Y G, Liu S B, et al. Biochar to improve soil fertility: A review[J]. Agronomy for Sustainable Development, 2016, 36(2): 1−18. [14] 顾克军, 张传辉, 顾东祥, 等. 短期不同秸秆还田与耕作方式对土壤养分与稻麦周年产量的影响[J]. 西南农业学报, 2017, 30(6): 1408−1413. Gu K J, Zhang C H, Gu D X, et al. Effects of different straw returning and tillage methods on annual yield and soil nutrients under rice-wheat rotation system in short-term[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(6): 1408−1413. doi: 10.16213/j.cnki.scjas.2017.6.029 Gu K J, Zhang C H, Gu D X, et al . Effects of different straw returning and tillage methods on annual yield and soil nutrients under rice-wheat rotation system in short-term[J]. Southwest China Journal of Agricultural Sciences,2017 ,30 (6 ):1408 −1413 . doi: 10.16213/j.cnki.scjas.2017.6.029[15] Jin Z W, Chen C, Chen X M, et al. The crucial factors of soil fertility and rapeseed yield: A five year field trial with biochar addition in upland red soil, China[J]. Science of the Total Environment, 2019, 649: 1467−1480. doi: 10.1016/j.scitotenv.2018.08.412 [16] 李录久, 吴萍萍, 王家嘉, 等. 不同秸秆还田量对水稻产量和土壤肥力的影响[J]. 安徽农业科学, 2020, 48(10): 43−45. Li L J, Wu P P, Wang J J, et al. Effect of different rate of straw returned to field on rice yield and soil phi-chemical properties[J]. Anhui Agriculture Sciences, 2020, 48(10): 43−45. doi: 10.3969/j.issn.0517-6611.2020.10.012 Li L J, Wu P P, Wang J J, et al . Effect of different rate of straw returned to field on rice yield and soil phi-chemical properties[J]. Anhui Agriculture Sciences,2020 ,48 (10 ):43 −45 . doi: 10.3969/j.issn.0517-6611.2020.10.012[17] Tao Z Q, Li C F, Li J J, et al. Tillage and straw mulching impacts on grain yield and water use efficiency of spring maize in Northern Huang–Huai–Hai Valley[J]. The Crop Journal, 2015, 3(5): 445−450. doi: 10.1016/j.cj.2015.08.001 [18] 张学艳, 曹莹, 孟军, 等. 生物炭对镉胁迫下水稻生长及光合产量的影响[J]. 江苏农业科学, 2016, 44(5): 97−101. Zhang X Y, Cao Y, Meng J, et al. Effects of biochar on growth and photosynthesis yield of rice under stress of cadmium[J]. Jiangsu Agriculture Sciences, 2016, 44(5): 97−101. Zhang X Y, Cao Y, Meng J, et al . Effects of biochar on growth and photosynthesis yield of rice under stress of cadmium[J]. Jiangsu Agriculture Sciences,2016 ,44 (5 ):97 −101 .[19] 王嘉豪, 李廷亮, 黄璐, 宋红梅. 秸秆还田替代化肥对黄土旱塬小麦产量及水肥利用的影响[J]. 水土保持学报, 2022, 36(3): 236−243, 251. Wang J H, Li T L, Huang L, Song H M. Effects of straw returning instead of fertilizer on wheat yield and water and fertilizer utilization in loess dryland[J]. Journal of Soil and Water Conservation, 2022, 36(3): 236−243, 251. Wang J H, Li T L, Huang L, Song H M . Effects of straw returning instead of fertilizer on wheat yield and water and fertilizer utilization in loess dryland[J]. Journal of Soil and Water Conservation,2022 ,36 (3 ):236 −243, 251 .[20] 史登林, 王小利, 刘安凯, 等. 生物炭氮替代部分化肥氮对黄壤水稻的生物效应[J]. 中国土壤与肥料, 2021, (2): 199−205. Shi D L, Wang X L, Liu A K, et al. Biological effect of biochar nitrogen replacing partial fertilizer nitrogen on rice in yellow soil[J]. Soil and Fertilizer Sciences in China, 2021, (2): 199−205. Shi D L, Wang X L, Liu A K, et al . Biological effect of biochar nitrogen replacing partial fertilizer nitrogen on rice in yellow soil[J]. Soil and Fertilizer Sciences in China,2021 , (2 ):199 −205 .[21] An N, Zhang L, Liu Y X, et al. Biochar application with reduced chemical fertilizers improves soil pore structure and rice productivity[J]. Chemosphere, 2022, 298: 134304. doi: 10.1016/j.chemosphere.2022.134304 [22] 郑悦. 生物炭与秸秆还田对盐碱地水稻土壤理化形状及产量的影响[D]. 黑龙江大庆: 黑龙江八一农垦大学硕士学位论文, 2015. Zheng Y. Effects of biochar and straw returning on physical and chemical characteristics and yield of rice soil in saline-alkali land[D]. Daqing, Heilongjiang: MS Thesis of Heilongjiang Bayi Agricultural University, 2015. Zheng Y. Effects of biochar and straw returning on physical and chemical characteristics and yield of rice soil in saline-alkali land[D]. Daqing, Heilongjiang: MS Thesis of Heilongjiang Bayi Agricultural University, 2015. [23] 刘丹, 王嘉宇, 冯章丽, 等. 生物炭对寒地早粳稻生长的影响[J]. 中国种业, 2020, (11): 89−92. Liu D, Wang J Y, Feng Z L, et al. Effect of biochar on growth of early japonica rice in cold region[J]. China Seed Industry, 2020, (11): 89−92. Liu D, Wang J Y, Feng Z L, et al . Effect of biochar on growth of early japonica rice in cold region[J]. China Seed Industry,2020 , (11 ):89 −92 .[24] Feng X, Xia X, Chen S T, et al. Amendment of crop residue in different forms shifted micro-pore system structure and potential functionality of macroaggregates while changed their mass proportion and carbon storage of paddy topsoil[J]. Geoderma, 2022, 409: 115643. doi: 10.1016/j.geoderma.2021.115643 [25] 安宁, 李冬, 李娜, 等. 长期不同量秸秆炭化还田下水稻土孔隙结构特征[J]. 植物营养与肥料学报, 2020, 26(12): 2150−2157. An N, Li D, Li N, et al. Characterization of soil pore structure of paddy soils under different long-term rice straw biochar incorporation[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2150−2157. An N, Li D, Li N, et al . Characterization of soil pore structure of paddy soils under different long-term rice straw biochar incorporation[J]. Journal of Plant Nutrition and Fertilizers,2020 ,26 (12 ):2150 −2157 .[26] 王红妮, 王学春, 黄晶, 等. 秸秆还田对土壤还原性和水稻根系生长及产量的影响[J]. 农业工程学报, 2017, 33(20): 116−126. Wang H N, Wang X C, Huang J, et al. Effect of straw incorporated into soil on reducibility in soil and root system and yield of rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 116−126. Wang H N, Wang X C, Huang J, et al . Effect of straw incorporated into soil on reducibility in soil and root system and yield of rice[J]. Transactions of the Chinese Society of Agricultural Engineering,2017 ,33 (20 ):116 −126 .[27] 何艳, 严田蓉, 郭长春, 等. 秸秆还田与栽插方式对水稻根系生长及产量的影响[J]. 农业工程学报, 2019, 35(7): 105−114. He Y, Yan T R, Guo C C, et al. Effect of methods of straw returning and planting on root growth and rice yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(7): 105−114. He Y, Yan T R, Guo C C, et al . Effect of methods of straw returning and planting on root growth and rice yield[J]. Transactions of the Chinese Society of Agricultural Engineering,2019 ,35 (7 ):105 −114 .[28] 韦叶娜, 王学春, 赵祥, 等. 油菜秸秆还田对水稻根系及分蘖生长的影响[J]. 云南大学学报(自然科学版), 2018, 40(3): 609−618. Wei Y N, Wang X C, Zhao X, et al. Effects of oilseed rape straw returning on the growth of rice root and tillers[J]. Journal of Yunnan University (Natural Sciences Edition), 2018, 40(3): 609−618. Wei Y N, Wang X C, Zhao X, et al . Effects of oilseed rape straw returning on the growth of rice root and tillers[J]. Journal of Yunnan University (Natural Sciences Edition),2018 ,40 (3 ):609 −618 .[29] Mostafa C, Kazem A, Abbas Y, et al. Estimate of leaf chlorophyll and nitrogen content in Asian pear (Pyrus serotina Rehd.) by CCM–200[J]. Notulae Scientia Biologicae, 2011, 3(1): 91−94. doi: 10.15835/nsb315623 [30] Ferreira V S, Pinto R F, Sant' Anna C. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus[J]. Journal of Applied Microbiology, 2016, 120(3): 661−670. doi: 10.1111/jam.13007 [31] 黄小辉, 吴焦焦, 王玉书, 等. 不同供氮水平的核桃幼苗生长及叶绿素荧光特性[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 119−126. Huang X H, Wu J J, Wang Y S, et al. Growth and chlorophyll fluorescence characteristics of walnut (Juglans regia) seedling under different nitrogen supply levels[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(2): 119−126. Huang X H, Wu J J, Wang Y S, et al . Growth and chlorophyll fluorescence characteristics of walnut (Juglans regia) seedling under different nitrogen supply levels [J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2022 ,46 (2 ):119 −126 .[32] 董林林, 王海侯, 陆长婴, 等. 秸秆还田量和类型对土壤氮及氮组分构成的影响[J]. 应用生态学报, 2019, 30(4): 1143−1150. Dong L L, Wang H H, Lu C Y, et al. Effects of straw returning amount and type on soil nitrogen and its composition[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1143−1150. Dong L L, Wang H H, Lu C Y, et al . Effects of straw returning amount and type on soil nitrogen and its composition[J]. Chinese Journal of Applied Ecology,2019 ,30 (4 ):1143 −1150 .[33] Liu S W, Wang M J, Yin M, et al. Fifteen years of crop rotation combined with straw management alters the nitrogen supply capacity of upland-paddy soil[J]. Soil & Tillage Research, 2022, 215: 105219. [34] Pan F F, Yu W T, Ma Q, et al. Influence of 15N-labeled ammonium sulfate and straw on nitrogen retention and supply in different fertility soils[J]. Biology and Fertility of Soils, 2017, 53(3): 303−313. doi: 10.1007/s00374-017-1177-1 [35] 宋婷婷, 赖欣, 王知文, 等. 不同原料生物炭对铵态氮的吸附性能研究[J]. 农业环境科学学报, 2018, 37(3): 576−584. Song T T, Lai X, Wang Z W, et al. Adsorption of ammonium nitrogen by biochars produced from different biomasses[J]. Journal of Agro-Environment Science, 2018, 37(3): 576−584. Song T T, Lai X, Wang Z W, et al . Adsorption of ammonium nitrogen by biochars produced from different biomasses[J]. Journal of Agro-Environment Science,2018 ,37 (3 ):576 −584 .[36] Lehmann J. Biochar (black carbon) stability and stabilization in soil[C]. International Union of Soil Sciences. Soil science: Confronting new realities in the 21st Century. Bangkok: 7th World Congress of Soil Science, 2002. [37] 隋阳辉, 高继平, 刘彩虹, 等. 东北冷凉地区秸秆还田方式对水稻光合、干物质积累及氮素吸收的影响[J]. 作物杂志, 2018, (5): 137−143. Sui Y H, Gao J P, Liu C H, et al. Effects of straw incorporation modes on rice photosynthesis, dry matter accumulation and nitrogen uptake in cool region of northeast China[J]. Crops, 2018, (5): 137−143. Sui Y H, Gao J P, Liu C H, et al . Effects of straw incorporation modes on rice photosynthesis, dry matter accumulation and nitrogen uptake in cool region of northeast China[J]. Crops,2018 , (5 ):137 −143 .[38] 杨卫丽, 黄福灯, 曹珍珍, 等. 高温胁迫对水稻光合PSII系统伤害及其与叶绿体D1蛋白间关系[J]. 作物学报, 2013, 39(6): 1060−1068. Yang W L, Huang F D, Cao Z Z,et al. Effects of high temperature stress on PSII function and its relation to D1 protein in chloroplast thylakoid in rice flag leaves[J]. Acta Agronomica Sinica, 2013, 39(6): 1060−1068. doi: 10.3724/SP.J.1006.2013.01060 Yang W L, Huang F D, Cao Z Z, et al . Effects of high temperature stress on PSII function and its relation to D1 protein in chloroplast thylakoid in rice flag leaves[J]. Acta Agronomica Sinica,2013 ,39 (6 ):1060 −1068 . doi: 10.3724/SP.J.1006.2013.01060[39] Mitchell P L, Sheehy J E. Supercharging rice photosynthesis to increase yield[J]. New Phytologist, 2006, 171(4): 688−693. doi: 10.1111/j.1469-8137.2006.01855.x [40] 林智文. 秸秆与生物炭还田对热带土壤—水稻系统氮素有效性的影响[D]. 黑龙江大庆: 黑龙江八一农垦大学硕士学位论文, 2022. Lin Z W. Effects of straw and biochar returning on nitrogen effectiveness in a tropical soil–rice systems[D]. Daqing, Heilongjiang: MS Thesis of Heilongjiang Bayi Agricultural University, 2022. Lin Z W. Effects of straw and biochar returning on nitrogen effectiveness in a tropical soil–rice systems[D]. Daqing, Heilongjiang: MS Thesis of Heilongjiang Bayi Agricultural University, 2022. [41] 张璐, 董达, 平帆, 等. 逐年全量秸秆炭化还田对水稻产量和土壤养分的影响[J]. 农业环境科学学报, 2018, 37(10): 2319−2326. Zhang L, Dong D, Ping F, et al. The effects of successive whole-dose biochar application on rice yield and soil nutrient concentrations[J]. Journal of Agro-Environment Science, 2018, 37(10): 2319−2326. Zhang L, Dong D, Ping F, et al . The effects of successive whole-dose biochar application on rice yield and soil nutrient concentrations[J]. Journal of Agro-Environment Science,2018 ,37 (10 ):2319 −2326 .[42] 韩新忠, 朱利群, 杨敏芳, 等. 不同小麦秸秆还田量对水稻生长、土壤微生物生物量及酶活性的影响[J]. 农业环境科学学报, 2012, 31(11): 2192−2199. Han X Z, Zhu L Q, Yang M F, et al. Effects of different amount of wheat straw returning on rice growth, soil microbial biomass and enzyme activity[J]. Journal of Agro-Environment Science, 2012, 31(11): 2192−2199. Han X Z, Zhu L Q, Yang M F, et al . Effects of different amount of wheat straw returning on rice growth, soil microbial biomass and enzyme activity[J]. Journal of Agro-Environment Science,2012 ,31 (11 ):2192 −2199 .[43] 胡瑶, 王学春, 王红妮, 等. 油菜秸秆覆盖还田及磷肥调控对水稻生长及产量的影响[J]. 东北师大学报(自然科学版), 2018, 50(3): 114−123. Hu Y, Wang X C, Wang H N, et al. Effects of oil seed rape straw mulching and phosphorus fertilizer on the growth and yield of rice[J]. Journal of Northeast Normal University (Natural Science Edition), 2018, 50(3): 114−123. Hu Y, Wang X C, Wang H N, et al . Effects of oil seed rape straw mulching and phosphorus fertilizer on the growth and yield of rice[J]. Journal of Northeast Normal University (Natural Science Edition),2018 ,50 (3 ):114 −123 .[44] 张爱平, 刘汝亮, 高霁, 等. 生物炭对宁夏引黄灌区水稻产量及氮素利用率的影响[J]. 植物营养与肥料学报, 2015, 21(5): 1352−1360. Zhang A P, Liu R L, Gao J, et al. Effects of biochar on rice yield and nitrogen use efficiency in the Ningxia Yellow River irrigation region[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(5): 1352−1360. Zhang A P, Liu R L, Gao J, et al . Effects of biochar on rice yield and nitrogen use efficiency in the Ningxia Yellow River irrigation region[J]. Journal of Plant Nutrition and Fertilizers,2015 ,21 (5 ):1352 −1360 .[45] Asai H, Samson B K, Stephan H M, et al. Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield[J]. Field Crops Research, 2009, 111(1): 81−84. [46] Zhang P, Chen X L, Wei T, et al. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China[J]. Soil & Tillage Research, 2016, 160: 65−72. [47] Liu Y X, Lu H H, Yang S M, Wang Y F. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons[J]. Field Crops Research, 2016, 191: 161−167. doi: 10.1016/j.fcr.2016.03.003 [48] Nan Q, Wang C, Wang H, et al. Biochar drives microbially-mediated rice production by increasing soil carbon[J]. Journal of Hazardous Materials, 2020, 387: 121680. doi: 10.1016/j.jhazmat.2019.121680 [49] Nan Q, Wang C, Yi Q Q, et al. Biochar amendment pyrolysed with rice straw increases rice production and mitigates methane emission over successive three years[J]. Waste Management, 2020, 118: 1−8. doi: 10.1016/j.wasman.2020.08.013 [50] Wang J H, Wang X J, Xu M G, et al. Crop yield and soil organic matter after long–term straw return to soil in China[J]. Nutrient Cycling in Agroecosystems, 2015, 102: 371−381. doi: 10.1007/s10705-015-9710-9 [51] Zhang Q Q, Song Y F, Wu Z, et al. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice–wheat rotation[J]. Journal of Cleaner Production, 2020, 242: 118435. doi: 10.1016/j.jclepro.2019.118435 [52] 何大卫, 赵艳泽, 高继平, 等. 生物炭和氮肥配施对粳稻产量形成、氮肥当季效应及其后效的影响[J]. 植物营养与肥料学报, 2021, 27(12): 2114−2124. He D W, Zhao Y Z, Gao J P, et al. Effects of biochar application combined with nitrogen fertilizer on yield formation of japonica rice and the immediate and residual effects of nitrogen[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2114−2124. doi: 10.11674/zwyf.2021244 He D W, Zhao Y Z, Gao J P, et al . Effects of biochar application combined with nitrogen fertilizer on yield formation of japonica rice and the immediate and residual effects of nitrogen[J]. Journal of Plant Nutrition and Fertilizers,2021 ,27 (12 ):2114 −2124 . doi: 10.11674/zwyf.2021244[53] 张俊莹, 赵立琴, 吴金花, 等. 秸秆还田条件下氮肥减施对稻田土壤养分及酶活性和产量的影响[J]. 黑龙江八一农垦大学学报, 2021, 33(5): 30−35. Zhang J Y, Zhao L Q, Wu J H, et al. Effect of nitrogen application reduction of rice on soil fertility, enzyme activity and yield under continuous straw returning to field[J]. Journal of Heilongjiang Bayi Agricultural University, 2021, 33(5): 30−35. Zhang J Y, Zhao L Q, Wu J H, et al . Effect of nitrogen application reduction of rice on soil fertility, enzyme activity and yield under continuous straw returning to field[J]. Journal of Heilongjiang Bayi Agricultural University,2021 ,33 (5 ):30 −35 .[54] 庄睿花, 朱媛媛, 王玉宝, 等. 秸秆配伍腐秆剂还田的最适氮肥运筹方案研究[J]. 安徽农业大学学报, 2021, 48(1): 89−94. Zhuang R H, Zhu Y Y, Wang Y B, et al. Study on the optimal amount of nitrogen fertilizer under straw returning with decomposing microorganism inoculum[J]. Journal of Anhui Agricultural University, 2021, 48(1): 89−94. Zhuang R H, Zhu Y Y, Wang Y B, et al . Study on the optimal amount of nitrogen fertilizer under straw returning with decomposing microorganism inoculum[J]. Journal of Anhui Agricultural University,2021 ,48 (1 ):89 −94 .[55] Zhao Q L, Xin C Y, Liu Q H, et al. Effects of continuous straw return and fertilization on rice lodging resistance[J]. Chilean Journal of Agricultural Research, 2022, 82(1): 146−156. doi: 10.4067/S0718-58392022000100146 [56] Chen W F, Xu Z J, Zhang W Z, et al. Creation of new plant type and breeding rice for super high yield[J]. Acta Agronomica Sinica, 2001, 27(5): 665–672, 681–682. [57] 刘浩, 王芙臣, 于玮淇, 等. 不同秸秆还田模式对冷凉区玉米生长发育及产量的影响[J/OL]. 分子植物育种, [2022–05–05]. https://kns.cnki.net/kcms/detail/46.1068.s.20220429.1514.022.html. Liu H, Wang F C, Yu W Q, et al. Effects of different straw returning modes on maize growth and yield in cold area[J]. Molecular Plant Breeding, [2022–05–05]. https://kns.cnki.net/kcms/detail/46.1068.s.20220429.1514.022.html. Liu H, Wang F C, Yu W Q, et al. Effects of different straw returning modes on maize growth and yield in cold area[J]. Molecular Plant Breeding, [2022–05–05]. https://kns.cnki.net/kcms/detail/46.1068.s.20220429.1514.022.html. [58] 曾勇军, 石庆华, 潘晓华, 李木英. 水稻理想株型的研究进展[J]. 中国稻米, 2006, (1): 10−13. Zeng Y J, Shi Q H, Pan X H, Li M Y. Advance of research on the ideal plant type of rice[J]. China Rice, 2006, (1): 10−13. Zeng Y J, Shi Q H, Pan X H, Li M Y . Advance of research on the ideal plant type of rice[J]. China Rice,2006 , (1 ):10 −13 .[59] 解文孝, 李建国, 刘军, 等. 不同土壤背景下秸秆还田量对水稻产量构成及氮吸收利用的影响[J]. 中国土壤与肥料, 2021, (2): 248−255. Xie W X, Li J G, Liu J, et al. Effects of straw returning amounts on rice yield components and N uptake of different soil background[J]. Soil and Fertilizer Sciences in China, 2021, (2): 248−255. doi: 10.11838/sfsc.1673-6257.20051 Xie W X, Li J G, Liu J, et al . Effects of straw returning amounts on rice yield components and N uptake of different soil background[J]. Soil and Fertilizer Sciences in China,2021 , (2 ):248 −255 . doi: 10.11838/sfsc.1673-6257.20051[60] 姜佰文, 许欣桐, 张迪, 等. 减量施肥条件下生物炭与耕作方式对玉米氮吸收及产量的影响[J]. 东北农业大学学报, 2019, 50(10): 23−31. Jiang B W, Xu X T, Zhang D, et al. Effect of biochar and tillage on nitrogen absorption and yield of maize under reduced fertilizer[J]. Journal of Northeast Agricultural University, 2019, 50(10): 23−31. doi: 10.3969/j.issn.1005-9369.2019.10.003 Jiang B W, Xu X T, Zhang D, et al . Effect of biochar and tillage on nitrogen absorption and yield of maize under reduced fertilizer[J]. Journal of Northeast Agricultural University,2019 ,50 (10 ):23 −31 . doi: 10.3969/j.issn.1005-9369.2019.10.003 -