-
磷是植物必需大量元素,亦是不可再生资源[1−3]。植物生长发育所需磷素90%以上来源于土壤磷库[4−5],因此土壤中磷含量与供给直接影响植物生长和农业生产[6]。土壤中磷包括无机磷和有机磷,其中无机磷主要为铁、铝、钙结合的磷酸盐[4, 7],不仅溶解度低、易被土壤固相吸附[8],且经微生物作用后可转化为有机磷,导致溶解性和生物可利用性降低[9],植物全可直接利用的正磷酸盐只占土壤总磷的约1%[10]。有机磷是土壤磷的重要组成部分,占比20%~80%[2],经矿化分解可转化为易被植物吸收利用的无机磷,是植物生长所需磷素的重要来源[11−12]。土壤中有机磷主要以植酸(肌醇六磷酸,C6H18O24P6;myo-inositol hexakisphosphate,IP6)及其盐类形式存在,土壤中植酸占有机磷的50%~80%[13−14],是植物磷素的潜在储备库。然而,植酸由于强吸附和难溶解性,难以被植物直接吸收利用。虽然植酸可被专一性酶—植酸酶(myo-inositol hexakisphate phosphohydrolase)矿化水解,经脱磷酸化过程释放无机磷供植物吸收,但水解反应发生的前提是植酸以有效态形式进入土壤溶液[13]。
为提高土壤中植酸的生物有效性,植物和微生物可分泌有机酸对根际土壤进行酸化、解吸附或络合植酸盐中的金属离子进而溶解植酸盐[15−17],使植酸以有效态形式进入土壤溶液,促进植酸与植酸酶的接触和反应,从而水解植酸释放磷,提高土壤植酸磷的利用效率[9, 15]。土壤中有机酸来源于植物根系和微生物分泌物,亦可在土壤动植物残体等有机质降解、转化过程中产生[12, 18−20]。为进一步探明土壤中植酸与有机酸的相互作用,本文在总结土壤植酸和有机酸的来源、种类与含量的基础上,重点阐述有机酸对土壤植酸活化作用的影响因素、作用机制及其潜在应用。综述内容为提高土壤内源磷—植酸的生物有效性和利用率提供理论依据和技术参考,对保障农业生产、降低外源磷肥施用及降低磷污染风险具有一定的现实意义。
-
植酸作为含磷天然有机化合物,广泛存在于种子和根茎中,以种子中含量最高[21]。豆科植物的种子、谷物的麸皮和胚芽(如米糠、油菜籽等)中植酸含量较高,主要以钙镁复盐形式存在[22],禾本科植物特别是水稻(Oryza sativa)和玉米(Zea mays)中植酸磷含量可达总磷的75%~80%[23−24],占有机磷的90%~100%[14, 25−27]。
土壤中植酸主要来源于动植物残体分解[4]和土壤中微生物转化[28]。此外,单胃动物如猪、鸡等消化系统中缺乏植酸酶,进食富含植酸的谷物饲料后,植酸不能被消化分解,进而随粪便进入土壤[29−30],故单胃动物粪便亦是土壤植酸的重要来源,特别是大量、频繁施用农家肥的农田土壤[4, 25, 31]。
土壤有机磷是土壤磷的重要组成部分,约占土壤全磷的20%~80%[32],包括肌醇磷酸、磷脂类、核酸类、磷蛋白、微生物磷和卵磷脂等磷脂化合物[12, 14]。其中,肌醇磷酸及其盐的含量最高,约占有机磷的50%[13]。肌醇磷酸的羟基被磷酸基团取代形成6种肌醇磷酸酯(IP1-6),其中肌醇六磷酸(IP6)含量最高,占比约83%。在肌醇六磷酸的4个立体异构体(myo-、neo-、scyllo-、D-chiro-IP6)中,植酸(myo-IP6)含量最高,占比约56%~90%[33−34]。例如,智利某区土壤植酸含量为674 mg/kg,占有机磷的42%~67%[35]。
-
植酸分子因其肌醇环上含有12个可解离质子和6个磷酸基团而具酸性和强络合能力,导致其易被土壤矿物、有机质吸附或与钙、镁、铁、铝等金属离子形成难溶性或不溶性络合物,亦可与蛋白类物质形成配合物而在土壤中大量积累[25, 36]。植酸在中性或碱性土壤中常以钙、镁复盐形式存在[12, 15],在酸性土壤中则以铁、铝植酸盐形式存在[12]。此外,土壤对植酸的吸附显著高于无机磷和其他有机磷[37]。Shang等[38]研究发现,成土矿物表面对植酸的吸附率是无机磷的1.6倍(1983 vs. 1235 mg/kg),且矿物对植酸的等温吸附常数(K)表现为三水铝石(11.3)>高岭石(4.0)>针铁矿(2.5)>蒙脱石(2.0)。De Groot等[39]发现,铁铝氧化物通过表面羟基与植酸中的磷酸基团发生置换[40−42],进而对植酸产生强吸附作用[4, 39],其中针铁矿和三水铝石对植酸的饱和吸附量分别可达1818和294 mg/kg[39],且吸附率随铁铝氧化物含量的升高而升高[43]。
关于植酸盐络合物稳定性的研究前期已有大量报道,但目前尚无统一定论。例如,冯屏等[44]认为土壤中植酸与金属离子形成络合物的稳定性顺序为Co2+(logK=15.27)>Ni2+(logK=14.92)>Cu2+(logK=10.91)>Ca2+(logK=10.87)>Mg2+(logK=10.53),Bretti等[45]认为Co2+>Mn2+~Fe2+>Ag+,而Cigala等[46]则认为Cu2+>Ni2+>Co2+>Fe2+>Mn2+。另外,在水溶液中矿物对植酸盐的溶解效率表现为:磷铝石(logKsp=−21.0)>红磷铁矿(logKsp=−26.0)[47]。不同类型土壤中植酸的存在形式及生物有效性存在差异。酸性土壤中植酸被铁/铝氧化物表面吸附,以植酸铁盐或植酸铝盐形式存在[48−49]。土壤pH为4.5时,植酸被伊利石和高岭石强烈吸附,吸附量达0.39 μmol/m2[4]。在吸附过程中,植酸分子中的2个磷酸基团与硅酸盐结合,剩余的4个磷酸基团可增加矿物表面负电荷。在碱性土壤中,植酸通常被黏土矿物、碳酸钙和有机质吸附[4, 50],其中,蛭石、蒙脱石对植酸的吸附较强,吸附量分别达8.8和10.0 mg/g[51],Ca−P是碱性土壤中植酸磷被吸附固定后的主要存在形式[52]。
-
土壤中植酸的移动性和生物有效性受土壤矿物/金属氧化物类型、吸附方式和土壤性质等因素的影响。植酸被吸附的程度与土壤矿物或金属氧化物类型密切相关。黏土矿物如方解石[53]、伊利石、高岭石、蒙脱石[54]、针铁矿[55−56]、赤铁矿[57]等对植酸的吸附存在差异,其活性铁铝氧化物含量越高、羟基等结合位点越多则吸附作用越强[53−57],如勃姆石(γ−AlOOH)、蒙脱石{(Na,Ca)0.33(Al,Mg)2[Si4O10](OH)2·nH2O}、三水铝石[Al(OH)3,Al2O3占比65.4%]对植酸的吸附量(pH=4时)分别为12、7、1 mg/g。矿物的晶体结构、比表面积亦影响植酸的吸附量。通常情况下,铁铝氧化物结晶度越低,则表面吸附容量越高[58−61]。弱晶质矿物由于其结晶度较低而比晶质矿物对植酸的吸附能力更强[62]。此外,弱晶质水铁矿对植酸的表面吸附方式随植酸浓度升高而由络合转化为表面沉淀,使植酸的生物有效性进一步降低[63]。矿物对植酸的饱和吸附容量与矿物比表面积呈正相关,勃姆石和赤铁矿的比表面积分别为114.6和32.6 m2/g,其饱和吸附容量分别为65.3和19.9 μmol/g[64],植酸除通过表面络合作用在土壤矿物表面形成植酸盐络合物[65],亦可通过铁/铝离子的桥键作用被有机质吸附固定[66],因此,吸附量亦与金属氧化物中铁铝含量有关。
土壤中植酸的生物有效性还受土壤吸附方式(配体交换、桥键作用、表面沉淀等)的影响。研究发现,植酸在无定形氢氧化铝(AAH)表面的吸附量较高,该强吸附可归因于吸附方式由表面络合转化为表面沉淀[64]。该过程中,植酸首先通过配体交换(表面水基和羟基)吸附在AAH表面,形成内圈络合物,随后诱导AAH溶解产生Al3+,进一步与植酸的磷酸基团络合形成三元络合物,并逐渐转化为表面沉淀[64]。这种表面络合−沉淀反应强烈影响土壤对植酸的吸附作用及其赋存形态和环境行为,最终影响其移动性和生物有效性[64]。此外,不同粒径铁铝氧化物对植酸的吸附方式差异导致其吸附能力差异。例如,5 nm γ–Al2O3对植酸的表面吸附密度(1.32 μmol/m2)高于35 nm和70 nm γ–Al2O3( 分别为0.97和0.89 μmol/m2),原因是植酸在较小粒径γ–Al2O3表面的吸附除形成内圈络合物外,亦生成了植酸–Al表面沉淀[64]。
此外,土壤中植酸盐的生物有效性与其自身的稳定性密切相关。植酸盐稳定性的影响因素包括土壤pH、温度和有机质含量等[4, 67]。土壤pH及温度影响黏土矿物对植酸盐的吸附。通常,酸性土壤的吸附量随pH升高而降低。一方面,酸性土壤中正电荷数随pH升高而减少[1,12],导致静电斥力增强,从而对磷酸根的吸附降低。此外,当pH较高时,土壤中磷的释放以离子交换为主,OH离子可取代植酸盐,使吸附降低。例如,pH从3提高至10时,针铁矿对植酸的吸附量降低47%[56];pH由3提高至5时,赤铁矿对植酸的饱和吸附浓度由0.95 μmol/m2降至0.67 μmol/m2,pH=10时降至0.38 μmol/m2[58]。Chen等[68]研究亦发现,pH从5提高至8.5后,水铁矿对植酸的吸附量降低25%~61%。若pH恒定,温度变化亦导致植酸吸附量的改变。pH=6时,温度由4℃升至55℃,三水铝石对植酸的吸附量由0.47 μmol/m2提高至0.52 μmol/m2;pH=10时,吸附量则随着温度的升高(4℃ vs. 55℃)而降低(0.41 vs. 0.35 μmol/m2)[69]。这是由于较高pH时吸附以外圈络合吸附方式为主,而在较低pH时,内圈络合和表面沉淀占主导地位,同时热力学参数表明内圈络合物的形成为吸热过程,而外圈络合物则相反[69]。李修臣[25]研究发现,当温度在一定范围内(5℃~25℃)变动时,3种土壤(红壤、褐土和灰潮土)对植酸的吸附率均随温度升高呈线性升高,并在25℃达到峰值;而温度过高(>25℃)时,吸附率则随温度升高而降低。此外,温度亦在一定程度上影响植酸的络合能力[70]和铁铝氧化物对植酸的吸附速率。刘西德等[71]研究表明,植酸的络合作用受温度影响较大,一定范围内(20℃~60℃)温度越高则络合能力越强。同时,加热时间对络合作用亦有一定影响。同一温度下,加热时间越长,络合反应进行越充分,则植酸盐产物的稳定性越高,生物可利用性越低。此外,植酸的生物有效性随土壤有机质含量升高而降低。例如,McKercher等[50]研究发现,有机质含量为10%的Melfort土壤对植酸的吸附量(2.5 mg/g)远高于有机质含量4.5%的Sceptre土壤(0.9 mg/g),即Melfort土壤植酸的生物有效性低于Sceptre土壤。
-
土壤对植酸盐具有极强亲和力,导致土壤中的植酸盐难以直接被植酸酶分解,不利于植酸盐分解产生磷和肌醇供植物吸收利用[72]。有机酸和酚酸可通过解吸或溶解植酸盐提高其生物有效性和可利用性,其中,有机酸是主要贡献因子[73−74]。
-
土壤有机酸主要来源于植物根系和微生物分泌物,或产生于土壤动植物残体等有机质的降解、转化过程[12, 20−22]。植物和微生物经长期进化产生了一系列的适应机制提高对土壤磷的获取能力[39, 75−77]。植物根系和微生物通过分泌有机酸促进自身对土壤植酸磷等化合物的活化利用[16,78,79],常见有机酸包括甲酸、乙酸、草酸、乳酸、酒石酸、琥珀酸、苹果酸和柠檬酸等[78-80]。植物和微生物分泌有机酸的种类和数量因其种类、遗传特性和环境条件而异,一些植物分泌有机酸的种类见表1[81−92]。例如,无芒隐子草(Cleistogenes songorica)可分泌油酸、邻苯二甲酸和棕榈酸;冷蒿(Artemisia frigida Willd)分泌邻苯二甲酸;银灰旋花(Convolvulus ammannii)根系可分泌油酸、邻苯二甲酸、棕榈酸和琥珀酸[86]。辐射松(Pinus radiata)在石灰性土壤中分泌柠檬酸、草酸及马来酸[89]。水稻根系主要分泌酒石酸等,小麦(Triticum aestivum)根系主要分泌草酸、乙酸和丙酸等[82−83]。同一植物在不同营养条件下分泌的有机酸种类及含量亦存在差异。如白羽扇豆(Lupinus albus)缺磷时排根区分泌的柠檬酸含量是磷充足时的1.9倍[85]。此外,根系不同部位的功能及作用亦影响分泌有机酸的种类[79]。研究发现,土壤缺磷时白羽扇豆根系分泌的苹果酸主要源于根尖5 mm的非根毛区,而柠檬酸主要源于逆境形成的簇状排根区[79]。耕作方式亦对植物分泌有机酸产生影响。与单作相比,间作使续断菊(Sonchus asper)根系分泌物中草酸、柠檬酸、乙酸、苹果酸和乳酸含量提高29.3%~260%,使琥珀酸含量降低58.5%~76.4%,且这种改变在土培(有机酸总量增加9.7%~43.3%)与水培条件(有机酸总量增加22.6%~103%)下亦存在差异[87]。镉胁迫下,长白落叶松(Larix olgensis)幼苗根系分泌的有机酸含量和种类均增加,且在一定胁迫程度和胁迫时长内,有机酸总量随胁迫程度提高而增加至最大值后又逐渐降低[88] (表1)。黄建凤等[79]研究发现,植物根系分泌的有机酸含量与其所处的土壤条件密切相关,如缺铁土壤中,大豆(Glycine max)、花生(Arachis hypogaea)等作物根系分泌的柠檬酸含量可达正常状态下的5~10倍[93]。
表 1 部分植物根系分泌物中的有机酸种类与含量
Table 1. Organic acid species and concentrations in some plants root exudates
植物
Plant土壤及处理方式
Soil and treatment method有机酸种类
Organic acids分泌部位
Secretion site有机酸含量或占比
Organic acid content or proportion参考文献
Reference鹰嘴豆
Cicer arietinum黏性土 Cohesive soil 苹果酸 Malic acid 根际 Rhizosphere 170 μmol/g [81] 柠檬酸 Citric acid 35.0 μmol/g 小麦
Triticum aestivumKyle 小麦 Kyle wheat
黏性土 Cohesive soil乙酸 Acetic acid 根际 Rhizosphere 40.0 nmol/g [82] 丙酸 Propionic acid 513 nmol/g 苹果酸 Malic acid 39.8 nmol/g 草酸 Oxalic acid 43.2 nmol/g Arcola 小麦 Arcola wheat
黏性土 Cohesive soil乙酸 Acetic acid 6.8 nmol/g 丙酸 Propionic acid 203 nmol/g 苹果酸 Malic acid 14.1 nmol/g 草酸 Oxalic acid 42.3 nmol/g 小麦
Triticum aestivum石英砂培养基,Hoagland-Arnon
完全营养液处理30天
Quartz sand medium, grow 30 d
in Hoagland Arnon solution草酸 Oxalic acid 根系 Roots 0.25 mg/(g·h) (68.9%) [83] 酒石酸 Tartaric acid 柠檬酸 Citric acid 辐射松
Pinus radiata– 草酸 Oxalic acid 根系 Roots – [84] 马来酸 Maleic acid 柠檬酸 Citric acid 白羽扇豆
Lupinus albus缺磷处理28天
P deficiency treatment for 28 d富马酸 Fumaric acid 排根区
Proteoid roots1.5×10–5 mg/(cm·h) [85] 苹果酸 Malic acid 2.0×10–4 mg/(cm·h) 柠檬酸 Citric acid 2.8×10–4 mg/(cm·h) 富马酸 Fumaric acid 非排根区
Non proteoid roots1.0×10–5 mg/(cm·h) 苹果酸 Malic acid 2.9×10–4 mg/(cm·h) 乙酸 Acetic acid 1.5×10–4 mg/(cm·h) 供磷处理28天
P treatment for 28 d富马酸 Fumaric acid 排根区
Proteoid roots1.5×10–5 mg/(cm·h) 苹果酸 Malic acid 1.8×10–4 mg/(cm·h) 柠檬酸 Citric acid 1.5×10–4 mg/(cm·h) 富马酸 Fumaric acid 非排根区
Non proteoid roots1.1×10–5 mg/(cm·h) 苹果酸 Malic acid 2.2×10–4 mg/(cm·h) 乙酸 Acetic acid 1.8×10–4 mg/(cm·h) 无芒隐子草
Cleistogenes songorica四子王旗基地淡栗钙土
Light chestnut soil in Siziwangqi
base (pH 8.4~8.8)油酸 Oleic acid 根系 Roots 0.06% [86] 棕榈酸 Palmitic acid 0.62% 邻苯二甲酸 Phthalic acid 0.004% 冷蒿
Artemisia frigida邻苯二甲酸 Phthalic acid 0.001% 棕榈酸 Palmitic acid 0.67% 银灰旋花
Convolvulus ammannii油酸 Oleic acid 0.07% 琥珀酸 Succinic acid – 邻苯二甲酸 Phthalic acid 0.007% 续断菊
Sonchus asper云南会泽红壤
Red soil in Huize, Yunnan
(pH 5.5)乙酸 Acetic acid 根际
Rhizosphere1.7 mg/plant [87] 草酸 Oxalic acid 0.95 mg/plant 苹果酸 Malic acid 0.8 mg/plant 柠檬酸 Citric acid 2.7 mg/plant 长白落叶松
Larix olgensis典型暗棕壤
Typical dark brown soil
(pH 5.32)苹果酸 Malic acid 根系 Roots 38.2 μg/kg [88] 草酸 Oxalic acid 368 μg/kg 琥珀酸 Succinic acid 93.8 μg/kg 柠檬酸 Citric acid 195 μg/kg 1 mg/kg Cd胁迫10天
1 mg/kg Cd stress for 10 d苹果酸 Malic acid 72.9 μg/kg 草酸 Oxalic acid 471 μg/kg 琥珀酸 Succinic acid 54.3 μg/kg 柠檬酸 Citric acid 291 μg/kg 没食子酸 Gallic acid 2.55 μg/kg 4 mg/kg Cd胁迫处理10天
4 mg/kg Cd stress for 10 d苹果酸 Malic acid 96.1 μg/kg 草酸 Oxalic acid 494 μg/kg 琥珀酸 Succinic acid 109 μg/kg 柠檬酸 Citric acid 473 μg/kg 没食子酸 Gallic acid 2.48 μg/kg 8 mg/kg Cd胁迫处理10天
8 mg/kg Cd stress for 10 d苹果酸 Malic acid 51.3 μg/kg 草酸 Oxalic acid 550 μg/kg 琥珀酸 Succinic acid 59.3 μg/kg 柠檬酸 Citric acid 427 μg/kg 紫苜蓿
Medicago sativa无菌全营养液处理24天
Sterile nutrient solution
treatment for 24 d琥珀酸 Succinic acid 根系 Roots 2.85 μg/kg [89] 苹果酸 Malic acid 18.5 μg/kg 柠檬酸 Citric acid 17.2 μg/kg 无菌缺磷营养液处理24天
Sterile P deficient solution
treatment for 24 d琥珀酸 Succinic acid 4.33 μg/kg 苹果酸 Malic acid 1339 μg/kg 柠檬酸 Citric acid 31.2 μg/kg 木豆
Cajanus cajan– 苹果酸 Malic acid、
草酸 Oxalic acid根系 Roots – [90] 蚕豆
Vicia faba单作 Monoculture 草酸 Oxalic acid 根际
Rhizosphere2.5 mg/plant [87] 柠檬酸 Citric acid 0.15 mg/plant 续断菊 (Sonchus asper)间作
Intercropping Sonchus asper草酸 Oxalic acid 5.4 mg/plant 柠檬酸 Citric acid 0.25 mg/plant Cd、Pb胁迫+单作
Cd, Pb stress and monoculture草酸 Oxalic acid 0.28 mg/plant 柠檬酸 Citric acid 0.42 mg/plant Cd、Pb胁迫+续断菊 (Sonchus asper)间作
Cd, Pb stress and intercropping Sonchus asper草酸 Oxalic acid 0.13 mg/plant 柠檬酸 Citric acid 0.15 mg/plant 大豆
Glycine max石英砂 Hoagland-Arnon完全营养液处理30天
Treatment of quartz sand and Hoagland
Arnon solution for 30 d草酸 Oxalic acid 根系 Roots 0.3 mg/(g·h)
(69.0%)[83] 酒石酸 Tartaric acid 柠檬酸 Citric acid 水培正常供磷处理15天
Hydroponic and normal P treatment for 15 d苹果酸 Malic acid 根系 Roots 45 μg/plant [91] 马来酸 Maleic acid 0.1 μg/plant 富马酸 Fumaric acid 0.05 μg/plant 柠檬酸 Citric acid 12 μg/plant 水培缺磷处理15天
P deficiency hydroponic treatment for 15 d苹果酸 Malic acid 12 μg/plant 马来酸 Maleic acid 0.15 μg/plant 富马酸 Fumaric acid 0.18 μg/plant 柠檬酸 Citric acid 20 μg/plant 玉米
Zea mays完全营养液处理30天
Complete nutrient solution treatment for 30 d草酸 Oxalic acid 根系 Roots – [92 ] 苹果酸 Malic acid 酒石酸 Tartaric acid 柠檬酸 Citric acid 注:“–”表示文献中无此信息。
Note:“–” represents there is no information in the citations.植物根际土壤存在大量可分泌有机酸[94]并溶解难溶性磷[95−97]的真菌和细菌。微生物因种类、遗传特性差异,其分泌的有机酸种类和含量差异显著(表2) [98−108]。如黑曲霉(Aspergillus niger)在含磷培养基中分泌苹果酸的量(182 mg/L)显著高于琥珀酸(4.8 mg/L)[107]。Nahas[109]研究了42种土壤细菌和真菌溶解磷矿和磷酸钙的能力,发现在特定条件下矿物溶解度与微生物产酸量呈正比,且产酸量和溶磷能力取决于微生物种类和磷酸盐类型,例如,以天然磷矿为磷源时细菌产酸量更高,以磷酸钙为磷源时则芽孢杆菌属(Bacillus)的产酸量更多。但目前关于产酸微生物对植酸盐溶解能力的研究仍较少。按分泌有机酸的种类可将微生物分为醋酸生产菌(如醋酸杆菌属和葡糖酸杆菌属等)、乳酸生产菌(如乳杆菌属和片球菌属等)、柠檬酸生产菌(如青霉属和毛霉属等)等。土壤中可分泌有机酸的细菌主要为变形菌门(Proteobacteria)和放线菌门(Actinobacteria),变形菌门中多为α–变形菌纲(Alphaproteobacteria),少量为β–变形菌纲(Betaproteobacteria)和γ–变形菌纲(Gammaproteobacteria),包括微枝形杆菌属(Microvirga)、假单胞菌属(Pseudomonas)、新鞘脂菌属(Novosphingobium)、链霉菌属(Streptomyces)和鞘脂单胞菌属(Sphingomonas)等29个属[110]。土壤中可分泌有机酸溶解植酸盐的真菌主要为外生菌根真菌[103, 111],如彩色豆马勃(Pisolithus tinctorius)、硬皮马勃(Scleroderma)等[102−103],主要分泌的有机酸为草酸[102]。部分微生物分泌或代谢、发酵产生的有机酸种类如表2所示[98−108]。
表 2 部分微生物及其有机酸种类与含量
Table 2. Organic acids species and concentrations in microbial secretions
微生物种类
Microbe
species菌属/种
Genus/species培养条件
Culture condition有机酸种类
Organic acid species有机酸含量或占比
Organic acid
content or proportion参考文献
Reference细菌
Bacteria维氏乳杆菌
Lactobacillus vini白酸汤培养基36℃恒温培养8天
Incubation in white sour soup
culture medium at 36℃ for 8 d乳酸 Lactic acid 5.58 mg/mL [98] 法式醋酸杆菌
Acetobacter farinalis乙酸 Acetic acid 1.04 mg/mL 罗旺醋酸杆菌
Acetobacter lovaniensis乙酸 Acetic acid 假单胞菌属
Pseudomonas葡萄糖培养基pH 7.0~7.5,28℃培养28天
Incubation in glucose culture medium (pH 7.0–7.5)
at 28℃ for 28 d乳酸 Lactic acid – [99] 琥珀酸 Succinic acid 欧文氏菌属
Erwinia葡萄糖培养基 pH 7.0~7.5,28℃培养28天
Glucose culture medium (pH 7.0–7.5)
incubation at 28℃ for 28 d乳酸 Lactic acid – [99] 琥珀酸 Succinic acid 弗氏柠檬酸杆菌
Citrobacter葡萄糖培养基,0.3%植酸钠
30℃恒温培养8天
Incubation in glucose culture medium
containing 0.3% sodium phytate
at 30℃ for 8 d葡萄糖酸 Gluconic acid 31.0 mmol/L [100] 乙酸 Acetic acid 25.0 mmol/L 成团泛菌 Pantoea 葡萄糖酸 Gluconic acid 42.0 mmol/L 乙酸 Acetic acid 25.0 mmol/L 肺炎克雷伯菌
Klebsiella Pneumoniae葡萄糖酸 Gluconic acid 28.0 mmol/L 乙酸 Acetic acid 35.0 mmol/L 克雷伯氏菌
Klebsiella sp葡萄糖酸 Gluconic acid 47.0 mmol/L 乙酸 Acetic acid 38.0 mmol/L 丙酮酸 Pyruvic acid 4.00 mmol/L 霍氏肠杆菌
Hormaechei葡萄糖酸 Gluconic acid 11.0 mmol/L 乙酸 Acetic acid 50.0 mmol/L 丙酮酸 Pyruvic acid 2.00 mmol/L 芽孢杆菌属 Bacillus 葡萄糖酸 Gluconic acid – 乙酸 Acetic acid 丙酮酸 Pyruvic acid 己酸菌E-6
Clostridium celerecrescens乙醇醋酸钠培养基34℃静置培养3~5天
Incubation in ethanol sodium acetate
culture medium at 34℃ for 3–5 d乙酸 Acetic acid 0.5±0.07 g/L [101] 丁酸 Butyric acid 2.82±0.17 g/L 丁酸菌株R-2
Clostridium tyrobutyricum梭菌培养基34℃静置培养3~5天
Incubate in clostridium enrichment
medium at 34℃ for 3–5 d乙酸 Acetic acid 0.24±0.02 g/L 丁酸 Butyric acid 1.64±0.09 g/L 己酸 Hexanoic acid 9.3±0.29 g/L 真菌 Fungi 褐环乳牛肝菌
Suillus luteusPachlewski液体培养基培养28天
Incubation in Pachlewski
liquid medium for 28 d草酸 Oxalic acid 21 mg/L [102–103] 乙酸 Acetic acid 0.6 mg/L 琥珀酸 Succinic acid 3.69 mg/L 柠檬酸 Citric acid 0.87 mg/L 亚褐环乳牛肝菌
Suillus subluteusPachlewski液体培养基培养28天
Incubation in Pachlewski
liquid medium for 28 d草酸 Oxalic acid 20 mg/L [102] 乙酸 Acetic acid 4.41 mg/L 琥珀酸 Succinic acid 4.17 mg/L 松乳菇
Lactarius deliciosusPachlewski液体培养基培养28天
Incubation in Pachlewski liquid
medium for 28 d草酸 Oxalic acid 42 mg/L [102] 乙酸 Acetic acid 13.5 mg/L 琥珀酸 Succinic acid 12.6 mg/L 固体培养基25℃暗培养21天
Incubation in dark at 25℃ for 21 d
using solid medium草酸 Oxalic acid 172 mg/L [104] 乙酸 Acetic acid 9.66 mg/L 琥珀酸 Succinic acid 1.18 mg/L 无机磷培养基28℃暗培养2天
Incubate in dark for 2 d at 28℃
using inorganic P medium草酸 Oxalic acid 10.6% [97] 甲酸 Formic acid 89.4% 厚环乳牛肝菌
Suillus grevillei葡萄糖培养基 (pH 7.0),28℃倒置培养2天
Inverted culture in glucose culture
medium (pH 7.0) at 28℃ for 2 d草酸 Oxalic acid 15.3 mg/L [95] 乙酸 Acetic acid 13.7 mg/L 琥珀酸 Succinic acid 1.05 mg/L 牛肝菌
Boletus葡萄糖培养基 (pH 7.0),28℃倒置培养2天
Inverted culture in glucose culture
medium (pH 7.0) at 28℃ for 2 d草酸 Oxalic acid 30.3 mg/L [95] 乙酸 Acetic acid 8.87 mg/L 琥珀酸 Succinic acid 2.76 mg/L 固体培养基25℃暗培养21天
Solid culture medium 25℃ dark culture for 21 d草酸 Oxalic acid 307 mg/L [104] 乙酸 Acetic acid 26.7 mg/L 酒石酸 Tartaric acid 75.6 mg/L 硬皮马勃
Scleroderma葡萄糖培养基 (pH 7.0),28℃倒置培养2天
Incubation in glucose culture medium (pH 7.0)
at 28℃ for 2 d草酸 Oxalic acid 28.8 mg/L [95] 乙酸 Acetic acid 12.8 mg/L 甲酸 Formic acid 0.38 mg/L 彩色豆马勃
Pisolithus tinctorius葡萄糖培养基 (pH 7.0),28℃倒置培养2天
Inverted culture in glucose culture
medium (pH 7.0) at 28℃ for 2 d草酸 Oxalic acid 43.1 mg/L [95] 琥珀酸 Succinic acid 57.4 mg/L 柠檬酸 Citric acid 111 mg/L 无机磷培养基28℃培养2天
Inorganic phosphorus medium
cultured at 28℃ for 2 d酒石酸 Tartaric acid 49% [97] 草酸 Oxalic acid 20.5% 琥珀酸 Succinic acid 4.88% 甲酸 Formic acid 25.6% 固体培养基25℃暗培养21天
Solid culture medium at 25℃ in dark for 21 d草酸 Oxalic acid 135 μmol/g [104] 土生空球菌
Cenococcum
geophilumPachlewski固体培养基25℃暗培养21天
Culture in Pachlewski solid medium
in dark at 25℃ for 21 d琥珀酸 Succinic acid 11.1 μmol/g [104] 草酸 Oxalic acid 118 mg/L 乙酸 Acetic acid 47 mg/L 酒石酸 Tartaric acid 75.6 mg/L Pachlewski固体培养基25℃暗培养28天
Pachlewski solid medium incubation
in dark at 25℃ for 28 d草酸 Oxalic acid 18.6±1.24 mg/L [105] 乙酸 Acetic acid 2.24±0.37 mg/L 双色蜡蘑
Laccaria bicolor葡萄糖培养基培养28天
Glucose culture medium culture for 28 d, pH 5.0酒石酸 Tartaric acid 32.0 μmol/L [106] 苹果酸 Malic acid 12.1 μmol/L 琥珀酸 Succinic acid 92.7 μmol/L 乳酸 Lactic acid 65.3 μmol/L 乙酸 Acetic acid 106 μmol/L 甲酸 Formic acid 93.6 μmol/L 青霉属 Penicillium 葡萄糖培养基24℃培养2~5天
Culture in glucose culture medium
at 24℃ for 2–5 d苹果酸 Malic acid – [107] 柠檬酸 Citric acid 曲霉属 Aspergillus 葡萄糖培养基24℃培养2~5天
Culture in glucose culture medium
at 24℃ for 2–5 d葡萄糖酸 Gluconic acid – 苹果酸 Malic acid 柠檬酸 Citric acid 根霉属 Rhizopus 葡萄糖培养基24℃培养2~5天
Cultivate glucose culture medium
at 24℃ for 2–5 d乳酸 Lactic acid – 富马酸 Fumaric acid 毛霉属 Mucor 葡萄糖培养基24℃培养2~5天
Culture in glucose culture medium
at 24℃ for 2–5 d乳酸 Lactic acid – 富马酸 Fumaric acid 柠檬酸 Citric acid 烟曲霉
Aspergillus fumigatusPikovsky固体培养基28℃培养7天
Culture in Pikovsky solid
medium at 28℃ for 7 d乳酸 Lactic acid – [108] 草酸 Oxalic acid 富马酸 Fumaric acid 苹果酸 Malic acid 酒石酸 Tartaric acid 栖土曲霉
Aspergillus terricola乳酸 Lactic acid 柠檬酸 Citric acid 赭曲霉 Aspergillus ochraceus
温特曲霉 Aspergillus wentii
华丽曲霉 Aspergillus ornatus
棒曲霉 Aspergillus clavatus
构巢曲霉 Aspergillus nidulans
黄曲霉 Aspergillus flavus
浅蓝灰曲霉 Aspergillus caesiellus乳酸 Lactic acid 富马酸 Fumaric acid 苹果酸 Malic acid 酒石酸 Tartaric acid 草酸 Oxalic acid 柠檬酸 Citric acid 注:“–”表示文献中无此信息。
Note:“–” represents there is no information in the citations. -
土壤中有机酸种类和含量受植被类型、土壤类型和土壤理化性质等影响。5种植被类型土壤中有机酸含量表现为:乔木(0.375 cmol/kg)>灌木(0.2 cmol/kg)>农田(0.18 cmol/kg)≈草本(0.175 cmol/kg)>弃耕地(0.065 cmol/kg)[111]。乔木植被凋落物较多,凋落物分解叠加植物根系和微生物有机酸分泌,因而土壤中有机酸含量较高。农田土壤由于施肥、作物秸秆覆盖等使有机质含量较高,有机质分解产生大量有机酸,而弃耕地土壤裸露,有机质矿化作用较弱,因此农田土壤有机酸含量显著高于弃耕地[111]。不同植被类型土壤中有机酸种类亦存在显著差异,乙酸普遍存在于各类植被土壤中,乔木593 μg/kg、农田558 μg/kg、灌木554 μg/kg、草本378 μg/kg、弃耕地243 μg/kg。除农田土壤外,柠檬酸在其余4种植被类型土壤中均被检出,酒石酸仅在乔木植被土壤中检出,且苹果酸含量亦较少,可能与植被类型和微生物分解有关[111]。例如,喀斯特地区石灰岩森林植被类型原生林中檵木(Loropetalum chinense)、紫弹树(Celtis biondii)和青檀(Pteroceltis tatarinowii)根际土壤中,草酸含量显著高于灌木林中红背山麻杆(Alchornea trewioides)、小蜡(Ligustrum sinense)和深紫木蓝(Indigofera atropurpurea)根际土壤中的草酸含量(204 vs. 84.9 μg/kg)[112]。
土壤类型[82−83]及土壤理化性质(土壤有机质含量、pH、土壤通气状况和土壤温度等)均影响土壤有机酸的种类与含量[12, 113−114]。研究发现,植物根系分泌有机酸量与土壤有机碳和全氮含量呈正相关[112]。例如,在有机碳(150 vs. 128 g/kg)和全氮含量(7.45 vs. 5.86 g/kg)更高的土壤中,测得的草酸含量更高(204 vs. 84.9 μg/kg)[112]。通过土壤有机质分解产生有机酸的量受有机质全碳含量的直接影响,如大豆秸秆(全碳含量403 g/kg)经腐解产生的乙酸(1.59 g/kg)是玉米秸秆(全碳含量373 g/kg)产生乙酸(0.41 g/kg)的4倍[115]。此外,土壤有机质通过影响微生物生长代谢活力影响其有机酸分泌[116]。通常,土壤有机质C:N质量比为25:1时微生物活力旺盛,有机酸分泌速度加快。土壤pH通过影响微生物活力及群落组成影响有机质的分解[117],进而影响有机酸的转化形成。真菌适宜pH=3~6的酸性环境,大多数细菌适宜中性环境,放线菌则在微碱性条件下活性更高。例如,真菌分泌有机酸的能力与土壤pH呈显著负相关,而细菌则无显著相关性[118]。土壤温度亦通过影响微生物活性及有机质矿化分解速率,进而影响有机酸的转化形成效率[4]。通常,0℃~35℃范围内,有机质分解速率随温度升高而加快,温度每升高10℃,土壤有机质最大分解速率提高2~3倍,使土壤有机酸含量升高。土壤微生物活性的最适温度为25℃~35℃,超出该范围,微生物活性受明显抑制,有机酸分泌量降低。
此外,土壤有机酸含量亦受降水量和季节变化的影响。潘复静等[112]研究发现,植物根系分泌的草酸含量在雨季(755 μg/kg)高于旱季(143 μg/kg),苹果酸(1.58 vs. 4.82 μg/kg)和乙酸(2.59 vs. 13.3 μg/kg)则相反。曹莹菲[115]发现,土壤中乙酸含量随季节变化表现为冬季(1.3 g/kg)>春季(0.89 g/kg)>夏季(0.4 g/kg)>秋季(0.38 g/kg)。
-
植物根系、细菌(假单胞菌、芽孢杆菌等)[119−120]和真菌(青霉菌属、曲霉菌属等)[121−122]分泌的有机酸(葡萄糖酸、草酸、柠檬酸等)[74]含有大量羟基和羧基等多种官能团,可通过配体交换、静电吸附、氢键、桥键作用和范德华力等多种方式[123−125]与土壤黏土矿物及金属氧化物发生反应,通过竞争吸附、络合反应、断裂有机质–金属架桥等过程提高植酸盐的溶解性和生物有效性[48,126] (图1)。植酸作为一种磷酸单酯,其固定及释放的过程机制与正磷酸盐相似[13],因此可推测植酸盐的吸附−解吸、溶解−沉淀过程机制。植酸盐通过2个或4个磷酸基以内圈表面配合物的形式与土壤中铁氧化物(如针铁矿、铁水合矿)、铝氧化物(如薄水铝石、三水铝石)或黏土矿物的结合位点(如羟基)发生吸附[41- 42, 57]。
有机酸对植酸盐的活化则通过竞争黏土和金属氧化物的吸附位点实现[127]。首先,有机酸可通过配体交换,以羧酸根取代土壤吸附的磷酸基团来解吸植酸[66]。Lindegren等[128]发现,有机配体多重氢键的相互作用比与内圈表面配合物的配体交换作用更强,因此有机酸能与金属离子络合形成更稳定的金属配体复合物,不仅抑制土壤溶液中Al3+或Fe3+与植酸分子发生反应[129],提高植酸的生物有效性,同时有机酸经络合作用形成的金属络合物易被土壤吸附,可防止有机酸被微生物分解,从而促进有机酸对土壤中植酸盐的持续性溶解[130]。研究发现,有机酸如富里酸等通过对金属离子的络合作用,可抑制金属离子与植酸分子结合形成难溶性络合物或不溶性沉淀,进而提高土壤中植酸盐的溶解性和移动性[131]。其次,有机酸可通过氢离子溶解铁和铝,从而破坏其与植酸中磷酸基团的吸附位点,释放植酸分子,提高其活动性[66]。例如,柠檬酸不仅可通过配体交换取代被吸附的植酸分子,亦能使吸附表面负电荷增加[132],同时可促进金属氧化物溶解[133],从而促进植酸盐解吸。再者,有机酸可通过溶解有机质中的金属离子,断裂有机质−金属架桥,促进有机质−金属−植酸复合物的溶解[66],从而提高植酸的溶解性和生物有效性。最后,土壤溶液中的胶体腐殖质–Fe3+–植酸配合物扩散到根表后,Fe3+可被还原为Fe2+,使有机配合物的稳定性降低,从而使植酸从腐殖质中释放,提高植酸的生物有效性[13] (图1)。
目前,动物饲料方面的研究发现,饲料中添加有机酸可降低动物消化系统的pH,使植酸酶的活性及利用率提高(数据未给出)[134−135]。由此可推测,土壤中有机酸含量增加导致土壤pH降低后,亦能使植酸酶活性发生改变。但具体情况需结合土壤pH的变化与植酸酶最适pH综合分析。总的来说,根系释放的有机酸可以促进植酸盐活化,增加植酸的溶解度,进而促进植酸酶的水解效率,提高土壤中植酸的生物有效性,但有机酸与植酸酶相互作用的具体机制以及哪种方式活化作用更强仍需进一步探明。
综上,有机酸活化土壤植酸的主要途径包括:1)有机酸通过配体交换与植酸盐竞争结合位点,以羧酸等阴离子取代配体表面的磷酸基团,从而降低土壤矿物对植酸的吸附[12, 48, 136−137];2)有机酸与铁、铝、钙等金属离子发生络合反应形成复合物[12, 48],将Fe–P、Al–P和Ca–P中的植酸磷释放,促进植酸盐的溶解[9, 12, 80,138];3)有机酸不仅可释放氢离子溶解金属氧化物,且在以可变电荷为主的土壤中,有机酸与土壤中的铁铝氧化物、铁铝水化物发生络合反应,使吸附表面负电荷增加,从而降低土壤对植酸盐的吸附[1, 12, 139];4)有机酸通过增溶有机质,断裂有机质–金属架桥,促进植酸以可溶性复合物形式存在,提高其溶解性(图1)。通常,有机酸对土壤植酸的活化是以上多种途径共同作用的结果[12],且有机酸诱导的植酸活化受植酸盐类型的影响[20]。
-
有机酸对土壤植酸的活化效率与土壤对植酸的吸附强度和有机酸的活化能力有关,故主要影响因素包括有机酸种类与浓度、土壤pH、土壤有机质含量、金属氧化物等(表3)[55, 57, 71,140−141]。
表 3 有机酸对不同土壤/矿物中植酸的活化效率
Table 3. Mobilization efficiency of phytate by organic acids in different soils or minerals
有机酸种类
Organic acid
species有机酸pH
Organic acid pH有机酸浓度 (mol/L)
Organic acid
concentration土壤理化性质 Soil physical and chemical properties 解吸率
Desorption ratio
(%)解吸量
Desorption amount
(mg/kg)参考文献
Reference土壤矿物类型
Soil mineral type全磷
Total P
(mg/kg)吸附态磷
Adsorbed P
(μmol/m2)pH 温度
Temperature
(℃)柠檬酸
Citric acid6.0 0.02 针铁矿 Goethite 0.62 5 25±1 30 [71] 4 6 8 0.02 赤铁矿 Hematite 5 25±1 60 0.01 勃姆石 Boehmite 5 25±1 4.33 柠檬酸
Citric acid4.0 0.002 砂质黏壤土 Sandy clay loam
高岭石 Kaolinite183 4.4 – 2.19 [140] 黏土 Clay
混合矿物 Mixed mineral305 6 1.34 黏土 Clay,砷钴矿 Smaltite 435 6.1 1.4 粉质黏壤土 Silty clay loam,高岭石 Kaolinite 77.4 4.6 0.81 黏土 Clay,高岭石 Kaolinite 255 5.3 0.05 柠檬酸
Citric acid3.3 0.002 老成土 Ultisol,黏土 Clay,
高岭石 Kaolinite403 4.9 – 5.8 5.5 0.002 老成土 Ultisol,黏土 Clay,
高岭石 Kaolinite403 4.9 6.6 6.0 0.002 老成土 Ultisol,黏土 Clay,
高岭石 Kaolinite403 4.9 6 3.3 0.002 氧化土 Oxisol,黏土 Clay,
高岭石 Kaolinite764 5.7 0.5 6.0 0.002 氧化土 Oxisol,黏土 Clay,
高岭石 Kaolinite764 5.7 0.7 3.3 0.002 淋溶土 Luvisols,黏土 Clay,
砷钴矿 Smaltite1542 7.4 5.9 6.0 0.002 淋溶土 Luvisols,黏土 Clay,
砷钴矿 Smaltite1542 7.4 6.9 续表 3 Table 3 continued 有机酸种类
Organic acid
species有机酸pH
Organic acid pH有机酸浓度 (mol/L)
Organic acid
concentration土壤理化性质 Soil physical and chemical properties 解吸率
Desorption ratio
(%)解吸量
Desorption amount
(mg/kg)参考文献
Reference土壤矿物类型
Soil mineral type全磷
Total P
(mg/kg)吸附态磷
Adsorbed P
(μmol/m2)pH 温度
Temperature
(℃)柠檬酸
Citric acid4.0 0.01 黏土 Clay 86~429 4.4~6.1 – 0.5 0.019 2.5 0.026 2.9 草酸
Oxalic acid4.0 0.008 0.3 0.017 0.45 0.023 0.75 马来酸
Maleic acid4.0 0.01 0.15 0.021 0.2 0.028 0.25 柠檬酸
Citric acid3.8 0.02 针铁矿 Goethite 3.6 4.5 – 1.47 [55] 4.5 0.02 2.53 柠檬酸
Citric acid6.0 0.02 赤铁矿 Hematite 0.67 5 25 60 [57] 柠檬酸
Citric acid– 0.01 牛粪有机肥
Cow manure
organic fertilizer2300 – – 600 [141] 0.05 680 苹果酸
Malic acid0.01 610 0.05 720 琥珀酸
Succinic acid0.01 450 0.05 640 注:“–”表示文献中无此信息。
Note:“–” represents there is no information in the citations. -
不同植物和微生物分泌的不同种类和数量的有机酸对土壤植酸的活化能力存在差异[74]。一般来说,有机酸对植酸活化作用的强弱顺序表现为三元羧酸>二元羧酸>一元羧酸[20],这与形成的有机酸络合物的稳定性呈正相关,如柠檬酸(logKAl=9.6)>草酸(logKAl=7.3)>乙酸(logKAl=1.5)[130, 142]。柠檬酸对铁和铝的络合作用较好,因酸性土壤中植酸主要以铁盐、铝盐形式存在,故柠檬酸对酸性土壤中植酸的活化作用显著。例如,pH=5时,0.02 mol/L柠檬酸可活化60%被赤铁矿吸附的植酸[57, 64],0.01 mol/L柠檬酸可活化4.33%被勃姆石吸附的植酸[64]。Bolan等[143]亦发现,对土壤(pH=5.6)中Ca–P进行活化时,柠檬酸和草酸的活化率分别为88%和73%。同时,草酸对钙的络合作用较好,因碱性土壤中植酸主要以钙镁复盐形式存在,故草酸对中性和碱性土壤中植酸的活化作用较好[144]。乙酸作为一元羧酸溶解与植酸结合的金属离子而产生的活化效果则相对较弱[145]。对酸性黏土中植酸的活化效率表现为:柠檬酸(2.75 mg/kg)>草酸(0.75 mg/kg)>马来酸(0.33 mg/kg)[140]。
有机酸浓度通过影响配体交换反应速率从而影响对土壤植酸的活化效率[74, 113]。植物根系释放的有机酸阴离子通量可影响配体交换反应速率,同时,若无等量阳离子流出或阴离子流入补偿以维持电中性,有机阴离子就无法从根细胞中持续流出[146],导致有机酸对植酸的活化效率降低。通常,有机酸浓度越高则对植酸的活化效率越高。以腐殖酸为例,随着初始浓度由37.5 mg/L升至75和150 mg/L,其对勃姆石吸附态植酸的解吸率由10.5%分别提高至17.5%和31.6%[147]。
-
1)土壤pH的影响
pH影响土壤中植酸的赋存形态及有机酸与植酸的吸附竞争反应,进而影响有机酸对植酸的活化效率。一般情况下,有机酸对植酸的活化效率随pH的升高而提高。例如,当柠檬酸溶液pH由3.3升至5.5~6.0时,其对热带森林地区中性或弱碱性(pH=7.4)黏土中植酸的解吸量由5 mg/kg提高至6.2 mg/kg,使弱酸性(pH=4.9)黏土中植酸的解吸量由5.8 mg/kg提高至6.0~6.6 mg/kg[140]。类似地,Martin等[55]发现,pH=4.5时,柠檬酸对针铁矿表面植酸的解吸率是pH=3.8时的1.7倍(2.53% vs. 1.47%)。但亦有研究发现,只有在较高的柠檬酸浓度(>1×10–4)和较低的pH (2.5~4.0)条件下,柠檬酸才可通过溶解针铁矿释放被吸附的植酸[62, 148]。因此,当pH由4.0升至8.0时,柠檬酸通过配体交换活化针铁矿表面吸附态植酸的速率随pH升高而降低,解吸速率由0.12 μmol/(m2·h)降至0.05 μmol/(m2·h) [64]。此外,不同pH条件下,土壤中铁铝氧化物和矿物的存在形态有显著差异,从而影响其对植酸的吸附强度和吸附效率[1, 149]。通常,植酸在中性或碱性土壤中易被黏土矿物、碳酸钙和有机质吸附,而在酸性土壤中易与金属离子结合形成络合物[4, 52]。不同类型土壤对植酸的吸附能力表现为:红壤(酸性)>褐土(弱碱性)>灰潮土(弱碱性)[25]。
pH影响有机酸与植酸对吸附位点的竞争吸附,进而影响有机酸对植酸的活化效率[150]。静电作用方面,酸性土壤中矿物表面带正电,与植酸之间的静电引力作用更强,导致植酸的活化效率较低。随土壤pH升高至超过零点电荷时,矿物表面负电荷增多,植酸和土壤胶体间的斥力增强,植酸与土壤的结合力降低[25],使有机酸更易与矿物表面结合,提高对植酸盐的活化效率。另一方面,植酸盐的P−O基团可与矿物表面的羟基结合形成氢键而被吸附,这种方式下的吸附作用强度亦受pH的影响。例如,Persson等[151]发现,在较高pH条件下(pH>8),未与Fe3+结合的P−O基充当氢键受体,质子更靠近配位表面,不利于有机酸发挥解吸的活化作用。最后,pH降低可提高产酸微生物的活性,提高有机酸的分泌量,进而提高对土壤植酸的活化效率。例如,降低pH使黑曲霉(Aspergillus niger)产酸量提高,从而促进其对磷酸钙、氟磷灰石等矿物的增溶作用[152]。
2)土壤有机质的影响 磷在土壤剖面中的迁移特性与有机质含量有关[50],由此可推测有机酸对植酸的活化作用亦受有机质含量的影响。首先,有机质通过解离氢离子产生可变电荷[145],如有机质中羧基或羟基官能团中氢离子的解离可使有机质呈现净负电荷,不仅促进金属氧化物溶解,同时通过改变土壤pH进而影响有机酸对植酸的解吸[153]。其次,土壤有机质带负电荷后可与植酸盐竞争土壤胶体或矿物表面的吸附位点,降低金属阳离子对植酸盐的吸附。
因此,可推测土壤中有机质含量越高,对植酸的吸附越强,有机酸对植酸的活化效率则越低。例如,McKercher等[50]通过分析有机质含量差异显著的两种土壤对植酸的吸附效率,发现有机质含量为10%的土壤对植酸的吸附量是有机质含量4.5%土壤的2.8倍(2500 vs. 900 μmol/g)。
3)土壤矿物/金属氧化物的影响 金属氧化物表面通常带正电荷,植酸带负电荷,两者通过范德华力、表面配体交换、静电吸附、氢键和表面沉淀等作用方式发生吸附或形成络合物和沉淀。不同金属氧化物对植酸的吸附方式不同,不同作用方式影响有机酸对植酸的活化效率。研究发现,植酸分子的4个磷酸基与针铁矿发生吸附,剩余2个磷酸基为自由态,而与水铁矿和赤铁矿的表面吸附只通过2个磷酸基发生[154−155]。柠檬酸对赤铁矿吸附态植酸的活化效率是针铁矿吸附态的2倍(60% vs. 30%)[64],可能是由于赤铁矿与磷酸根络合形成单齿双核络合物[156],而与针铁矿形成双齿双核络合物[157]。另外,金属氧化物的性质通过决定参与配位交换的磷酸基团数量从而影响吸附作用的强度[158−159]。结合的磷酸基团越多,形成化学键所需能量越高[159],因此吸附亲和力更小,活化效率更高。
金属氧化物的颗粒大小、比表面积及结晶度亦是影响有机酸对植酸活化效率的重要因素[1, 160]。通常,矿物颗粒粒径越小,比表面积越大,则矿物与植酸的亲和力越强,越不利于有机酸对植酸的解吸和活化。粒径较大的矿物表面通常以表面络合方式吸附植酸,而粒径较小矿物表面不仅形成内圈络合物,亦可发生表面沉淀反应,导致对植酸的吸附能力提高,不利于有机酸对植酸的活化[64]。铁铝氧化物亦因其比表面积较大,因而比硅氧化物、钙镁氧化物等土壤组分具有更强的吸附能力,对控制植酸在土壤中的赋存形态和生物有效性具有重要作用[161]。因此,通过提高有机酸对铁铝氧化物的溶解作用,可提高对植酸的活化效率。此外,矿物对植酸的最大吸附量通常随矿物结晶度的增加而降低[58−60],即矿物结晶度越高,对植酸的吸附量越低,越利于有机酸对植酸的活化反应,解吸效率表现为晶质矿物>弱晶质矿物。一方面由于弱晶质矿物(如水铁矿和无定形铝)比晶质矿物(如赤铁矿和针铁矿)的羟基和活性吸附位点更多[60]。另一方面,亦与络合方式有关。Yan等[60]发现,植酸在晶质矿物勃姆石表面主要形成内圈络合物,而在弱晶质的无定形铝表面可发生表面络合−沉淀反应,进一步降低植酸的生物有效性。
-
有机酸被证明可直接用于土壤磷的活化,宋金凤等[162]研究了苹果酸对暗棕壤中磷有效性的影响。同样,土壤有机酸对植酸的活化作用可用于土壤改良,以保障农业可持续发展。有机酸的活化作用可提高植酸在土壤中的活动性和生物有效性,促进植酸与植酸酶的水解反应,催化植酸脱磷酸化速率,释放土壤内源植酸磷供植物吸收,从而减少不可再生磷矿资源的消耗,将对降低外源磷肥的施加以及土壤磷流失的潜在面源和水体污染风险[163],具有十分重要的社会经济和生态环境意义[164]。因此,未来研究可关注土壤中有机酸对植酸活化作用的实际应用效率与影响因素。
在产酸微生物方面,田间试验和温室试验表明,植物根系接种产酸真菌后,不仅可提高土壤中有效态磷含量,增加植物对植酸磷的吸收利用和作物产量,亦能在一定的土壤和气候条件下生产出性能更稳定的产酸真菌[142]。因此,可对产酸真菌进一步筛选,制成植物真菌菌剂,进一步促进作物对土壤植酸磷的利用和作物产量的提高。此外,有机酸可提高植酸酶活性和植物的抗氧化应激能力。Jin等[165]研究发现,苹果酸使绿豆中植酸酶活性由22 U/g提高至137 U/g,草酸使植酸酶活性由8.5 U/g提高至90 U/g,分别是对照组的2.69和1.58倍。因此,后续可探究土壤中有机酸对植酸酶活性的影响。此外,真菌分泌的有机酸不仅能活化植酸,同时可作为营养物质供自身吸收。Vassilev等[166]指出,培养基中黑曲霉(Aspergillus niger)等真菌在营养物质不足时,可利用其分泌的有机酸(如柠檬酸等)维持自身生命活动和产生孢子。
-
植酸是土壤有机磷的主要组分和重要的磷素储存库。充分利用植酸这一磷素资源,尚需加强以下几方面的研究:(1)不同有机酸对不同类型土壤中植酸的活化效率,定量分析有机酸种类和浓度对土壤植酸的解吸量和活化效率;(2)被植酸强吸附的矿物表面在较大pH范围内具有较高的负电荷,阻碍有机酸的吸附和置换反应,因此需要深入探究提高有机酸活化强吸附态植酸的技术和方法;(3)需监测和评估有机酸活化土壤植酸的长期效应。
有机酸提高土壤植酸生物有效性的机制、影响因素及应用
Mechanism, influencing factors and practical application of organic acids in improving soil phytate bioavailability
-
摘要: 土壤中的植酸主要来源于植物残体和单胃动物排泄物,可被专一性酶—植酸酶(myo-inositol hexakisphate phosphohydrolase)矿化水解,经脱磷酸化过程释放无机磷供植物吸收。植酸是土壤有机磷的重要组成部分,占有机磷总量的50%~80%。植酸分子中含有6个磷酸基团和12个可解离质子,极易被土壤吸附或与金属离子形成难溶性络合物,阻止其与植酸酶接触,极大降低了植酸的分解矿化效率,难以为植物提供磷素营养。因此,提高植酸的溶解性和生物有效性是保障土壤供磷效率的重要前提。土壤中的有机酸主要来源于植物根系、微生物释放及有机质分解。有机酸含有的多种官能团可与金属离子络合形成更稳定的金属配合物,通过竞争吸附、络合作用、断裂有机质−金属架桥等,将吸附态植酸或植酸金属络合物活化释放,实现植酸磷的解吸和活化。土壤中有机酸的种类和含量因植物和微生物种类而异,土壤pH、有机质含量、土壤矿物/金属氧化物种类与含量等均影响有机酸对植酸的活化效率。因此,后续研究可关注:1)不同有机酸对不同类型土壤中植酸的活化效率,定量分析有机酸种类和浓度对土壤植酸的解吸量和活化效率;2)被植酸强吸附的矿物表面在较大pH范围内具有较高的负电荷,阻碍有机酸的吸附和置换反应,因此需要深入探究提高有机酸活化强吸附态植酸的技术和方法;3)需监测和评估有机酸活化土壤植酸的长期效应。Abstract: Phytate in soils mainly origins from plant residues and monogastric animal excrement. The phytate can only be mineralized to release P through hydrolysis and dephosphorylation, which are catalysed by specific enzymes-phytase (myo-inositol hexakisphate phosphohydrolase). Phytic acids or phytate, are important components of soil organic phosphorus, accounting for 50%–80% of total organic P. Phytic acids contain 6 phosphate groups and 12 dissociable protons, thus readily being adsorbed by soils or form insoluble complexes with metal ions. Consequently, phytic acids are prevented from interactions with phytase, their decomposition and mineralization efficiency are thus decreased greatly, hard to release P for plant uptake. Improving the solubility and bioavailability of phytate is one of the prerequisites to ensure the efficient P supply of soil to crops. Soil organic acids are derived from plant root excretes, microorganisms, and organic matter decomposition. Organic acids have plenty of functional groups, which can form more stable ligand complexes with metal ions, therefore, mobilize the adsorbed phytate or phytate-metal complexes through competitive adsorption, complexation, and fracturing organic matter-metal bridges. The kinds and contents of soil organic acids varied, depending on plant and microbe species. Besides, soil pH, organic matter content, the types and contents of soil minerals/metal oxides all influence the mobilization efficiency of organic acids-mediated phytate. As such, further studies should work on the following points: 1) Phytate mobilization efficiency of different organic acids in different types of soils. Quantitatively analyze phytate desorption and mobilization efficiency by different kinds and concentrations of organic acids; 2) Phytate-adsorped mineral surface is highly negative charged in a large pH ranges, which hinders the adsorption and displacement reactions of organic acids. Therefore, it is necessary to explore strategies to improve the mobilization of adsorbed-phytate; 3) Monitoring and evaluate the long-term performance of organic acids-mediated phytate mobilization.
-
Key words:
- phytate /
- phosphorus /
- bioavailability /
- organic acids /
- mobilization mechanism /
- utilization efficiency
-
表 1 部分植物根系分泌物中的有机酸种类与含量
Table 1. Organic acid species and concentrations in some plants root exudates
植物
Plant土壤及处理方式
Soil and treatment method有机酸种类
Organic acids分泌部位
Secretion site有机酸含量或占比
Organic acid content or proportion参考文献
Reference鹰嘴豆
Cicer arietinum黏性土 Cohesive soil 苹果酸 Malic acid 根际 Rhizosphere 170 μmol/g [81] 柠檬酸 Citric acid 35.0 μmol/g 小麦
Triticum aestivumKyle 小麦 Kyle wheat
黏性土 Cohesive soil乙酸 Acetic acid 根际 Rhizosphere 40.0 nmol/g [82] 丙酸 Propionic acid 513 nmol/g 苹果酸 Malic acid 39.8 nmol/g 草酸 Oxalic acid 43.2 nmol/g Arcola 小麦 Arcola wheat
黏性土 Cohesive soil乙酸 Acetic acid 6.8 nmol/g 丙酸 Propionic acid 203 nmol/g 苹果酸 Malic acid 14.1 nmol/g 草酸 Oxalic acid 42.3 nmol/g 小麦
Triticum aestivum石英砂培养基,Hoagland-Arnon
完全营养液处理30天
Quartz sand medium, grow 30 d
in Hoagland Arnon solution草酸 Oxalic acid 根系 Roots 0.25 mg/(g·h) (68.9%) [83] 酒石酸 Tartaric acid 柠檬酸 Citric acid 辐射松
Pinus radiata– 草酸 Oxalic acid 根系 Roots – [84] 马来酸 Maleic acid 柠檬酸 Citric acid 白羽扇豆
Lupinus albus缺磷处理28天
P deficiency treatment for 28 d富马酸 Fumaric acid 排根区
Proteoid roots1.5×10–5 mg/(cm·h) [85] 苹果酸 Malic acid 2.0×10–4 mg/(cm·h) 柠檬酸 Citric acid 2.8×10–4 mg/(cm·h) 富马酸 Fumaric acid 非排根区
Non proteoid roots1.0×10–5 mg/(cm·h) 苹果酸 Malic acid 2.9×10–4 mg/(cm·h) 乙酸 Acetic acid 1.5×10–4 mg/(cm·h) 供磷处理28天
P treatment for 28 d富马酸 Fumaric acid 排根区
Proteoid roots1.5×10–5 mg/(cm·h) 苹果酸 Malic acid 1.8×10–4 mg/(cm·h) 柠檬酸 Citric acid 1.5×10–4 mg/(cm·h) 富马酸 Fumaric acid 非排根区
Non proteoid roots1.1×10–5 mg/(cm·h) 苹果酸 Malic acid 2.2×10–4 mg/(cm·h) 乙酸 Acetic acid 1.8×10–4 mg/(cm·h) 无芒隐子草
Cleistogenes songorica四子王旗基地淡栗钙土
Light chestnut soil in Siziwangqi
base (pH 8.4~8.8)油酸 Oleic acid 根系 Roots 0.06% [86] 棕榈酸 Palmitic acid 0.62% 邻苯二甲酸 Phthalic acid 0.004% 冷蒿
Artemisia frigida邻苯二甲酸 Phthalic acid 0.001% 棕榈酸 Palmitic acid 0.67% 银灰旋花
Convolvulus ammannii油酸 Oleic acid 0.07% 琥珀酸 Succinic acid – 邻苯二甲酸 Phthalic acid 0.007% 续断菊
Sonchus asper云南会泽红壤
Red soil in Huize, Yunnan
(pH 5.5)乙酸 Acetic acid 根际
Rhizosphere1.7 mg/plant [87] 草酸 Oxalic acid 0.95 mg/plant 苹果酸 Malic acid 0.8 mg/plant 柠檬酸 Citric acid 2.7 mg/plant 长白落叶松
Larix olgensis典型暗棕壤
Typical dark brown soil
(pH 5.32)苹果酸 Malic acid 根系 Roots 38.2 μg/kg [88] 草酸 Oxalic acid 368 μg/kg 琥珀酸 Succinic acid 93.8 μg/kg 柠檬酸 Citric acid 195 μg/kg 1 mg/kg Cd胁迫10天
1 mg/kg Cd stress for 10 d苹果酸 Malic acid 72.9 μg/kg 草酸 Oxalic acid 471 μg/kg 琥珀酸 Succinic acid 54.3 μg/kg 柠檬酸 Citric acid 291 μg/kg 没食子酸 Gallic acid 2.55 μg/kg 4 mg/kg Cd胁迫处理10天
4 mg/kg Cd stress for 10 d苹果酸 Malic acid 96.1 μg/kg 草酸 Oxalic acid 494 μg/kg 琥珀酸 Succinic acid 109 μg/kg 柠檬酸 Citric acid 473 μg/kg 没食子酸 Gallic acid 2.48 μg/kg 8 mg/kg Cd胁迫处理10天
8 mg/kg Cd stress for 10 d苹果酸 Malic acid 51.3 μg/kg 草酸 Oxalic acid 550 μg/kg 琥珀酸 Succinic acid 59.3 μg/kg 柠檬酸 Citric acid 427 μg/kg 紫苜蓿
Medicago sativa无菌全营养液处理24天
Sterile nutrient solution
treatment for 24 d琥珀酸 Succinic acid 根系 Roots 2.85 μg/kg [89] 苹果酸 Malic acid 18.5 μg/kg 柠檬酸 Citric acid 17.2 μg/kg 无菌缺磷营养液处理24天
Sterile P deficient solution
treatment for 24 d琥珀酸 Succinic acid 4.33 μg/kg 苹果酸 Malic acid 1339 μg/kg 柠檬酸 Citric acid 31.2 μg/kg 木豆
Cajanus cajan– 苹果酸 Malic acid、
草酸 Oxalic acid根系 Roots – [90] 蚕豆
Vicia faba单作 Monoculture 草酸 Oxalic acid 根际
Rhizosphere2.5 mg/plant [87] 柠檬酸 Citric acid 0.15 mg/plant 续断菊 (Sonchus asper)间作
Intercropping Sonchus asper草酸 Oxalic acid 5.4 mg/plant 柠檬酸 Citric acid 0.25 mg/plant Cd、Pb胁迫+单作
Cd, Pb stress and monoculture草酸 Oxalic acid 0.28 mg/plant 柠檬酸 Citric acid 0.42 mg/plant Cd、Pb胁迫+续断菊 (Sonchus asper)间作
Cd, Pb stress and intercropping Sonchus asper草酸 Oxalic acid 0.13 mg/plant 柠檬酸 Citric acid 0.15 mg/plant 大豆
Glycine max石英砂 Hoagland-Arnon完全营养液处理30天
Treatment of quartz sand and Hoagland
Arnon solution for 30 d草酸 Oxalic acid 根系 Roots 0.3 mg/(g·h)
(69.0%)[83] 酒石酸 Tartaric acid 柠檬酸 Citric acid 水培正常供磷处理15天
Hydroponic and normal P treatment for 15 d苹果酸 Malic acid 根系 Roots 45 μg/plant [91] 马来酸 Maleic acid 0.1 μg/plant 富马酸 Fumaric acid 0.05 μg/plant 柠檬酸 Citric acid 12 μg/plant 水培缺磷处理15天
P deficiency hydroponic treatment for 15 d苹果酸 Malic acid 12 μg/plant 马来酸 Maleic acid 0.15 μg/plant 富马酸 Fumaric acid 0.18 μg/plant 柠檬酸 Citric acid 20 μg/plant 玉米
Zea mays完全营养液处理30天
Complete nutrient solution treatment for 30 d草酸 Oxalic acid 根系 Roots – [92 ] 苹果酸 Malic acid 酒石酸 Tartaric acid 柠檬酸 Citric acid 注:“–”表示文献中无此信息。
Note:“–” represents there is no information in the citations.表 2 部分微生物及其有机酸种类与含量
Table 2. Organic acids species and concentrations in microbial secretions
微生物种类
Microbe
species菌属/种
Genus/species培养条件
Culture condition有机酸种类
Organic acid species有机酸含量或占比
Organic acid
content or proportion参考文献
Reference细菌
Bacteria维氏乳杆菌
Lactobacillus vini白酸汤培养基36℃恒温培养8天
Incubation in white sour soup
culture medium at 36℃ for 8 d乳酸 Lactic acid 5.58 mg/mL [98] 法式醋酸杆菌
Acetobacter farinalis乙酸 Acetic acid 1.04 mg/mL 罗旺醋酸杆菌
Acetobacter lovaniensis乙酸 Acetic acid 假单胞菌属
Pseudomonas葡萄糖培养基pH 7.0~7.5,28℃培养28天
Incubation in glucose culture medium (pH 7.0–7.5)
at 28℃ for 28 d乳酸 Lactic acid – [99] 琥珀酸 Succinic acid 欧文氏菌属
Erwinia葡萄糖培养基 pH 7.0~7.5,28℃培养28天
Glucose culture medium (pH 7.0–7.5)
incubation at 28℃ for 28 d乳酸 Lactic acid – [99] 琥珀酸 Succinic acid 弗氏柠檬酸杆菌
Citrobacter葡萄糖培养基,0.3%植酸钠
30℃恒温培养8天
Incubation in glucose culture medium
containing 0.3% sodium phytate
at 30℃ for 8 d葡萄糖酸 Gluconic acid 31.0 mmol/L [100] 乙酸 Acetic acid 25.0 mmol/L 成团泛菌 Pantoea 葡萄糖酸 Gluconic acid 42.0 mmol/L 乙酸 Acetic acid 25.0 mmol/L 肺炎克雷伯菌
Klebsiella Pneumoniae葡萄糖酸 Gluconic acid 28.0 mmol/L 乙酸 Acetic acid 35.0 mmol/L 克雷伯氏菌
Klebsiella sp葡萄糖酸 Gluconic acid 47.0 mmol/L 乙酸 Acetic acid 38.0 mmol/L 丙酮酸 Pyruvic acid 4.00 mmol/L 霍氏肠杆菌
Hormaechei葡萄糖酸 Gluconic acid 11.0 mmol/L 乙酸 Acetic acid 50.0 mmol/L 丙酮酸 Pyruvic acid 2.00 mmol/L 芽孢杆菌属 Bacillus 葡萄糖酸 Gluconic acid – 乙酸 Acetic acid 丙酮酸 Pyruvic acid 己酸菌E-6
Clostridium celerecrescens乙醇醋酸钠培养基34℃静置培养3~5天
Incubation in ethanol sodium acetate
culture medium at 34℃ for 3–5 d乙酸 Acetic acid 0.5±0.07 g/L [101] 丁酸 Butyric acid 2.82±0.17 g/L 丁酸菌株R-2
Clostridium tyrobutyricum梭菌培养基34℃静置培养3~5天
Incubate in clostridium enrichment
medium at 34℃ for 3–5 d乙酸 Acetic acid 0.24±0.02 g/L 丁酸 Butyric acid 1.64±0.09 g/L 己酸 Hexanoic acid 9.3±0.29 g/L 真菌 Fungi 褐环乳牛肝菌
Suillus luteusPachlewski液体培养基培养28天
Incubation in Pachlewski
liquid medium for 28 d草酸 Oxalic acid 21 mg/L [102–103] 乙酸 Acetic acid 0.6 mg/L 琥珀酸 Succinic acid 3.69 mg/L 柠檬酸 Citric acid 0.87 mg/L 亚褐环乳牛肝菌
Suillus subluteusPachlewski液体培养基培养28天
Incubation in Pachlewski
liquid medium for 28 d草酸 Oxalic acid 20 mg/L [102] 乙酸 Acetic acid 4.41 mg/L 琥珀酸 Succinic acid 4.17 mg/L 松乳菇
Lactarius deliciosusPachlewski液体培养基培养28天
Incubation in Pachlewski liquid
medium for 28 d草酸 Oxalic acid 42 mg/L [102] 乙酸 Acetic acid 13.5 mg/L 琥珀酸 Succinic acid 12.6 mg/L 固体培养基25℃暗培养21天
Incubation in dark at 25℃ for 21 d
using solid medium草酸 Oxalic acid 172 mg/L [104] 乙酸 Acetic acid 9.66 mg/L 琥珀酸 Succinic acid 1.18 mg/L 无机磷培养基28℃暗培养2天
Incubate in dark for 2 d at 28℃
using inorganic P medium草酸 Oxalic acid 10.6% [97] 甲酸 Formic acid 89.4% 厚环乳牛肝菌
Suillus grevillei葡萄糖培养基 (pH 7.0),28℃倒置培养2天
Inverted culture in glucose culture
medium (pH 7.0) at 28℃ for 2 d草酸 Oxalic acid 15.3 mg/L [95] 乙酸 Acetic acid 13.7 mg/L 琥珀酸 Succinic acid 1.05 mg/L 牛肝菌
Boletus葡萄糖培养基 (pH 7.0),28℃倒置培养2天
Inverted culture in glucose culture
medium (pH 7.0) at 28℃ for 2 d草酸 Oxalic acid 30.3 mg/L [95] 乙酸 Acetic acid 8.87 mg/L 琥珀酸 Succinic acid 2.76 mg/L 固体培养基25℃暗培养21天
Solid culture medium 25℃ dark culture for 21 d草酸 Oxalic acid 307 mg/L [104] 乙酸 Acetic acid 26.7 mg/L 酒石酸 Tartaric acid 75.6 mg/L 硬皮马勃
Scleroderma葡萄糖培养基 (pH 7.0),28℃倒置培养2天
Incubation in glucose culture medium (pH 7.0)
at 28℃ for 2 d草酸 Oxalic acid 28.8 mg/L [95] 乙酸 Acetic acid 12.8 mg/L 甲酸 Formic acid 0.38 mg/L 彩色豆马勃
Pisolithus tinctorius葡萄糖培养基 (pH 7.0),28℃倒置培养2天
Inverted culture in glucose culture
medium (pH 7.0) at 28℃ for 2 d草酸 Oxalic acid 43.1 mg/L [95] 琥珀酸 Succinic acid 57.4 mg/L 柠檬酸 Citric acid 111 mg/L 无机磷培养基28℃培养2天
Inorganic phosphorus medium
cultured at 28℃ for 2 d酒石酸 Tartaric acid 49% [97] 草酸 Oxalic acid 20.5% 琥珀酸 Succinic acid 4.88% 甲酸 Formic acid 25.6% 固体培养基25℃暗培养21天
Solid culture medium at 25℃ in dark for 21 d草酸 Oxalic acid 135 μmol/g [104] 土生空球菌
Cenococcum
geophilumPachlewski固体培养基25℃暗培养21天
Culture in Pachlewski solid medium
in dark at 25℃ for 21 d琥珀酸 Succinic acid 11.1 μmol/g [104] 草酸 Oxalic acid 118 mg/L 乙酸 Acetic acid 47 mg/L 酒石酸 Tartaric acid 75.6 mg/L Pachlewski固体培养基25℃暗培养28天
Pachlewski solid medium incubation
in dark at 25℃ for 28 d草酸 Oxalic acid 18.6±1.24 mg/L [105] 乙酸 Acetic acid 2.24±0.37 mg/L 双色蜡蘑
Laccaria bicolor葡萄糖培养基培养28天
Glucose culture medium culture for 28 d, pH 5.0酒石酸 Tartaric acid 32.0 μmol/L [106] 苹果酸 Malic acid 12.1 μmol/L 琥珀酸 Succinic acid 92.7 μmol/L 乳酸 Lactic acid 65.3 μmol/L 乙酸 Acetic acid 106 μmol/L 甲酸 Formic acid 93.6 μmol/L 青霉属 Penicillium 葡萄糖培养基24℃培养2~5天
Culture in glucose culture medium
at 24℃ for 2–5 d苹果酸 Malic acid – [107] 柠檬酸 Citric acid 曲霉属 Aspergillus 葡萄糖培养基24℃培养2~5天
Culture in glucose culture medium
at 24℃ for 2–5 d葡萄糖酸 Gluconic acid – 苹果酸 Malic acid 柠檬酸 Citric acid 根霉属 Rhizopus 葡萄糖培养基24℃培养2~5天
Cultivate glucose culture medium
at 24℃ for 2–5 d乳酸 Lactic acid – 富马酸 Fumaric acid 毛霉属 Mucor 葡萄糖培养基24℃培养2~5天
Culture in glucose culture medium
at 24℃ for 2–5 d乳酸 Lactic acid – 富马酸 Fumaric acid 柠檬酸 Citric acid 烟曲霉
Aspergillus fumigatusPikovsky固体培养基28℃培养7天
Culture in Pikovsky solid
medium at 28℃ for 7 d乳酸 Lactic acid – [108] 草酸 Oxalic acid 富马酸 Fumaric acid 苹果酸 Malic acid 酒石酸 Tartaric acid 栖土曲霉
Aspergillus terricola乳酸 Lactic acid 柠檬酸 Citric acid 赭曲霉 Aspergillus ochraceus
温特曲霉 Aspergillus wentii
华丽曲霉 Aspergillus ornatus
棒曲霉 Aspergillus clavatus
构巢曲霉 Aspergillus nidulans
黄曲霉 Aspergillus flavus
浅蓝灰曲霉 Aspergillus caesiellus乳酸 Lactic acid 富马酸 Fumaric acid 苹果酸 Malic acid 酒石酸 Tartaric acid 草酸 Oxalic acid 柠檬酸 Citric acid 注:“–”表示文献中无此信息。
Note:“–” represents there is no information in the citations.表 3 有机酸对不同土壤/矿物中植酸的活化效率
Table 3. Mobilization efficiency of phytate by organic acids in different soils or minerals
有机酸种类
Organic acid
species有机酸pH
Organic acid pH有机酸浓度 (mol/L)
Organic acid
concentration土壤理化性质 Soil physical and chemical properties 解吸率
Desorption ratio
(%)解吸量
Desorption amount
(mg/kg)参考文献
Reference土壤矿物类型
Soil mineral type全磷
Total P
(mg/kg)吸附态磷
Adsorbed P
(μmol/m2)pH 温度
Temperature
(℃)柠檬酸
Citric acid6.0 0.02 针铁矿 Goethite 0.62 5 25±1 30 [71] 4 6 8 0.02 赤铁矿 Hematite 5 25±1 60 0.01 勃姆石 Boehmite 5 25±1 4.33 柠檬酸
Citric acid4.0 0.002 砂质黏壤土 Sandy clay loam
高岭石 Kaolinite183 4.4 – 2.19 [140] 黏土 Clay
混合矿物 Mixed mineral305 6 1.34 黏土 Clay,砷钴矿 Smaltite 435 6.1 1.4 粉质黏壤土 Silty clay loam,高岭石 Kaolinite 77.4 4.6 0.81 黏土 Clay,高岭石 Kaolinite 255 5.3 0.05 柠檬酸
Citric acid3.3 0.002 老成土 Ultisol,黏土 Clay,
高岭石 Kaolinite403 4.9 – 5.8 5.5 0.002 老成土 Ultisol,黏土 Clay,
高岭石 Kaolinite403 4.9 6.6 6.0 0.002 老成土 Ultisol,黏土 Clay,
高岭石 Kaolinite403 4.9 6 3.3 0.002 氧化土 Oxisol,黏土 Clay,
高岭石 Kaolinite764 5.7 0.5 6.0 0.002 氧化土 Oxisol,黏土 Clay,
高岭石 Kaolinite764 5.7 0.7 3.3 0.002 淋溶土 Luvisols,黏土 Clay,
砷钴矿 Smaltite1542 7.4 5.9 6.0 0.002 淋溶土 Luvisols,黏土 Clay,
砷钴矿 Smaltite1542 7.4 6.9 续表 3 Table 3 continued 有机酸种类
Organic acid
species有机酸pH
Organic acid pH有机酸浓度 (mol/L)
Organic acid
concentration土壤理化性质 Soil physical and chemical properties 解吸率
Desorption ratio
(%)解吸量
Desorption amount
(mg/kg)参考文献
Reference土壤矿物类型
Soil mineral type全磷
Total P
(mg/kg)吸附态磷
Adsorbed P
(μmol/m2)pH 温度
Temperature
(℃)柠檬酸
Citric acid4.0 0.01 黏土 Clay 86~429 4.4~6.1 – 0.5 0.019 2.5 0.026 2.9 草酸
Oxalic acid4.0 0.008 0.3 0.017 0.45 0.023 0.75 马来酸
Maleic acid4.0 0.01 0.15 0.021 0.2 0.028 0.25 柠檬酸
Citric acid3.8 0.02 针铁矿 Goethite 3.6 4.5 – 1.47 [55] 4.5 0.02 2.53 柠檬酸
Citric acid6.0 0.02 赤铁矿 Hematite 0.67 5 25 60 [57] 柠檬酸
Citric acid– 0.01 牛粪有机肥
Cow manure
organic fertilizer2300 – – 600 [141] 0.05 680 苹果酸
Malic acid0.01 610 0.05 720 琥珀酸
Succinic acid0.01 450 0.05 640 注:“–”表示文献中无此信息。
Note:“–” represents there is no information in the citations. -
[1] 闫金龙. 铁氧化物–有机质复合物对磷的吸附与形态调控效应研究[D]. 重庆: 西南大学博士学位论文, 2016. Yan J L. Study on the adsorption of iron oxide-organic matter complex on phosphorus and its regulation on phosphorus fraction[D]. Chongqing: PhD Dissertation of Southwest University, 2016. Yan J L. Study on the adsorption of iron oxide-organic matter complex on phosphorus and its regulation on phosphorus fraction[D]. Chongqing: PhD Dissertation of Southwest University, 2016. [2] 王小春, 梁新强. 生态环境中植酸酶种类及来源分析[J]. 环境生态学, 2020, 2(4): 51−56. Wang X C, Liang X Q. Analysis of the types and sources of phytase in ecological environment[J]. Environmental Ecology, 2020, 2(4): 51−56. Wang X C, Liang X Q . Analysis of the types and sources of phytase in ecological environment[J]. Environmental Ecology,2020 ,2 (4 ):51 −56 .[3] Scholz R W, Ulrich A E, Eilittä M, et al. Sustainable use of phosphorus: A finite resource[J]. Science of the Total Environment, 2013, 461: 799−803. [4] 李海蓝. 植酸在不同沉积物、矿物材料和土壤中的行为研究[D]. 湖北武汉: 华中农业大学博士学位论文, 2016. Li H L. Behaviors of phytates in sediments, mineral materials and soils[D]. Wuhan, Hubei: PhD Dissertation of Huazhong Agricultural University, 2016. Li H L. Behaviors of phytates in sediments, mineral materials and soils[D]. Wuhan, Hubei: PhD Dissertation of Huazhong Agricultural University, 2016. [5] 赵少华, 宇万太, 张璐, 等. 土壤有机磷研究进展[J]. 应用生态学报, 2004, 15(11): 2189−2194. Zhao S H, Yu W T, Zhang L, et al. Research advance in soil organic phosphorus[J]. Chinese Journal of Applied Ecology, 2004, 15(11): 2189−2194. Zhao S H, Yu W T, Zhang L, et al . Research advance in soil organic phosphorus[J]. Chinese Journal of Applied Ecology,2004 ,15 (11 ):2189 −2194 .[6] 张林, 吴宁, 吴彦, 等. 土壤磷素形态及其分级方法研究进展[J]. 应用生态学报, 2009, 20(7): 1775−1782. Zhang L, Wu N, Wu Y, et al. Soil phosphorus form and fractionation scheme: A review[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1775−1782. Zhang L, Wu N, Wu Y, et al . Soil phosphorus form and fractionation scheme: A review[J]. Chinese Journal of Applied Ecology,2009 ,20 (7 ):1775 −1782 .[7] 蒋柏藩. 石灰性土壤无机磷有效性的研究[J]. 土壤, 1992, 24(2): 61−64. Jiang B F. Study on availability of inorganic phosphorus in calcareous soil[J]. Soils, 1992, 24(2): 61−64. Jiang B F . Study on availability of inorganic phosphorus in calcareous soil[J]. Soils,1992 ,24 (2 ):61 −64 .[8] Saavedra C, Delgado A. Phosphorus fractions and release patterns in typical mediterranean soils[J]. Soil Science Society of America Journal, 2005, 69(3): 607−615. doi: 10.2136/sssaj2004.0156 [9] Ryan P R, Delhaize E, Jones D L. Function and mechanism of organic anion exudation from plant roots[J]. Annual Review of Plant Biology, 2001, 52(1): 527−560. doi: 10.1146/annurev.arplant.52.1.527 [10] Buenemann E K. Assessment of gross and net mineralization rates of soil organic phosphorus: A review[J]. Soil Biology and Biochemistry, 2015, 89: 82−98. doi: 10.1016/j.soilbio.2015.06.026 [11] 徐阳春, 沈其荣, 茆泽圣. 长期施用有机肥对土壤及不同粒级中有机磷含量与分配的影响[J]. 土壤学报, 2003, 40(4): 593−598. Xu Y C, Shen Q R, Mao Z S. Influences of long-term fertilization on the contents and distributions of forms of organic P in soil and soil particle sizes[J]. Acta Pedologica Sinica, 2003, 40(4): 593−598. Xu Y C, Shen Q R, Mao Z S . Influences of long-term fertilization on the contents and distributions of forms of organic P in soil and soil particle sizes[J]. Acta Pedologica Sinica,2003 ,40 (4 ):593 −598 .[12] 马啸. 香溪河流域农业面源磷迁移转化及流失过程特征研究[D]. 湖北武汉: 武汉理工大学博士学位论文, 2014. Ma X. Transfer and loss of phosphorus from agriculture non-point source of Xiangxi River watershed[D]. Wuhan, Hubei: PhD Dissertation of Wuhan University of Technology, 2014. Ma X. Transfer and loss of phosphorus from agriculture non-point source of Xiangxi River watershed[D]. Wuhan, Hubei: PhD Dissertation of Wuhan University of Technology, 2014. [13] Gerke J. Phytate (inositol hexakisphosphate) in soil and phosphate acquisition from inositol phosphates by higher plants. A review[J]. Plants, 2015, 4(2): 253−266. doi: 10.3390/plants4020253 [14] Hayes J E, Simpson R J, Richardson A E. The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate[J]. Plant and Soil, 2000, 220(1): 165−174. [15] Raghothama K G, Karthikeyan A S. Phosphate acquisition[J]. Plant and Soil, 2005, 274(1): 37−49. [16] Palomo L, Claassen N, Jones D L. Differential mobilization of P in the maize rhizosphere by citric acid and potassium citrate[J]. Soil Biology and Biochemistry, 2006, 38(4): 683−692. doi: 10.1016/j.soilbio.2005.06.019 [17] Khademi Z, Jones D L, Malakouti M J, et al. Organic acids differ in enhancing phosphorus uptake by Triticum aestivum L.: Effects of rhizosphere concentration and counterion[J]. Plant and Soil, 2010, 334(1): 151−159. [18] Gang X U, Hongbo S, Nie Y, et al. The role of root-released organic acids and anions in phosphorus transformations in a sandy loam soil from Yantai, China[J]. African Journal of Microbiology Research, 2012, 6(3): 674−679. [19] Strobel B W. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution: A review[J]. Geoderma, 2001, 99(3-4): 169−198. doi: 10.1016/S0016-7061(00)00102-6 [20] Jones D L, Dennis P G, Owen A G, et al. Organic acid behavior in soils-misconceptions and knowledge gaps[J]. Plant and Soil, 2003, 248(1): 31−41. [21] Cosgrove D J, Irving G. Inositol phosphates: Their chemistry, biochemistry, and physiology[M]. London, UK: Elsevier Scientific Publishing Company, 1980. [22] 徐真真. 基于可见/近红外光谱的稻米植酸、无机磷及总磷含量的模型创建[D]. 浙江杭州: 浙江大学硕士学位论文, 2019. Xu Z Z. Construction of phytic acid, inorganic phosphorus and total phosphorus content models based on visible and near infrared spectroscopy in rice[D]. Hangzhou, Zhejiang: MS Thesis of Zhejiang University, 2019. Xu Z Z. Construction of phytic acid, inorganic phosphorus and total phosphorus content models based on visible and near infrared spectroscopy in rice[D]. Hangzhou, Zhejiang: MS Thesis of Zhejiang University, 2019. [23] Raboy V. Myo-inositol-1, 2, 3, 4, 5, 6-hexakisphosphate[J]. Phytochemistry, 2003, 64(6): 1033−1043. doi: 10.1016/S0031-9422(03)00446-1 [24] 余安. 花生粕中植酸的提取及纯化研究[D]. 湖北武汉: 华中农业大学硕士学位论文, 2010. Yu A. Research on extraction technique and purification of phytic acid from peanut meal[D]. Wuhan, Hubei: MS Thesis of Huazhong Agricultural University, 2010. Yu A. Research on extraction technique and purification of phytic acid from peanut meal[D]. Wuhan, Hubei: MS Thesis of Huazhong Agricultural University, 2010. [25] 李修臣. 典型土壤和沉积物中植酸的释放和吸附解吸行为研究[D]. 湖北武汉: 武汉理工大学硕士学位论文, 2013. Li X C. Release, adsorption and desorption of phytic acid in typical sediments and soils[D]. Wuhan, Hubei: MS Thesis of Wuhan University of Technology, 2013. Li X C. Release, adsorption and desorption of phytic acid in typical sediments and soils[D]. Wuhan, Hubei: MS Thesis of Wuhan University of Technology, 2013. [26] Cosgrove D J. The chemistry and biochemistry of inositol polyphosphates[J]. Reviews of Pure and Applied Chemistry, 1966, 16: 209−224. [27] Bohn L, Meyer A S, Rasmussen S. Phytate: Impact on environment and human nutrition. A challenge for molecular breeding[J]. Journal of Zhejiang University Science B, 2008, 9(3): 165−191. doi: 10.1631/jzus.B0710640 [28] 闫晓坤. NaCl-CaCl2处理对绿豆芽菜磷酸肌醇形成及抗氧化能力的影响[D]. 江苏南京: 南京农业大学硕士学位论文, 2017. Yan X K. Effect of NaCl-CaCl2 on phosphoinositide metabolism and antioxidant ability of mung bean sprout[D]. Nanjing, Jiangsu: MS Thesis of Nanjing Agricultural University, 2017. Yan X K. Effect of NaCl-CaCl2 on phosphoinositide metabolism and antioxidant ability of mung bean sprout[D]. Nanjing, Jiangsu: MS Thesis of Nanjing Agricultural University, 2017. [29] Caldwell A G, Black C A. Inositol hexaphosphate: I. Quantitative determination in extracts of soils and manures[J]. Soil Science Society of America Journal, 1958, 22(4): 290−293. doi: 10.2136/sssaj1958.03615995002200040006x [30] Peperzak P, Caldwell A G, Hunziker R R, et al. Phosphorus fractions in manures[J]. Soil Science, 1959, 87(5): 293−302. doi: 10.1097/00010694-195905000-00010 [31] Liu J B, Xue P C, Cao S C, et al. Effects of dietary phosphorus concentration and body weight on postileal phosphorus digestion in pigs[J]. Animal Feed Science and Technology, 2018, 242: 86−94. doi: 10.1016/j.anifeedsci.2018.06.003 [32] Stevenson F J, Cole M A. Cycles of soils: Carbon, nitrogen, phosphorus, sulfur, micronutrients[M]. New York, USA: John Wiley and Sons, 1999. [33] Turner B L, Papházy M J, Haygarth P M, et al. Inositol phosphates in the environment[J]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2002, 357: 449–469. [34] Turner B L, Cheesman A W, Godage H Y, et al. Determination of neo- and D-chiro-inositol hexakisphosphate in soils by solution 31P NMR spectroscopy[J]. Environmental Science & Technology, 2012, 46(9): 4994−5002. [35] Borie F, Rubio R. Total and organic phosphorus in Chilean volcanic soils[J]. Gayana Bot, 2003, 60(1): 69−78. [36] Reddy N R, Pierson M D, Sathe S K, et al. Phytates in cereals and legumes[M]. Boca Raton, Oxford: CRC Press, 1989. [37] Anderson G, Malcolm R E. The nature of alkali-soluble soil organic phosphates[J]. Journal of Soil Science, 1974, 25(3): 282−297. doi: 10.1111/j.1365-2389.1974.tb01124.x [38] Shang C, Zelazny L W, Berry D F, et al. Orthophosphate and phytate extraction from soil components by common soil phosphorus tests[J]. Geoderma, 2013, 209: 22−30. [39] De Groot C J, Golterman H L. On the presence of organic phosphate in some Camargue sediments: Evidence for the importance of phytate[J]. Hydrobiologia, 1993, 252(1): 117−126. doi: 10.1007/BF00000133 [40] Berry D F, Shang C, Sajdak C A W, et al. Measurement of phytase activity using tethered phytic acid as an artificial substrate: Methods development[J]. Soil Biology and Biochemistry, 2007, 39(1): 361−367. doi: 10.1016/j.soilbio.2006.06.010 [41] Goldberg S, Sposito G. On the mechanism of specific phosphate adsorption by hydroxylated mineral surfaces: A review[J]. Communications in Soil Science and Plant Analysis, 1985, 16(8): 801−821. [42] Parfitt R L, Russell J D, Farmer V C. Confirmation of the surface structures of goethite (α-FeOOH) and phosphated goethite by infrared spectroscopy[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1976, 72: 1082–1087. [43] Leytem A B, Gilliam J W, Mikkelsen R L. Sorption of organic phosphorus compounds in Atlantic coastal plain soils[J]. Soil Science, 2002, 167: 652−658. doi: 10.1097/00010694-200210000-00003 [44] 冯屏, 冯小兵, 徐玉佩. 植酸与金属离子络合的研究[J]. 中国油脂, 2006, 31(8): 63−66. Feng P, Feng X B, Xu Y P. Complexation of phytic acid with metal ions[J]. China Oils and Fats, 2006, 31(8): 63−66. doi: 10.3321/j.issn:1003-7969.2006.08.020 Feng P, Feng X B, Xu Y P . Complexation of phytic acid with metal ions[J]. China Oils and Fats,2006 ,31 (8 ):63 −66 . doi: 10.3321/j.issn:1003-7969.2006.08.020[45] Bretti C, Cigala R M, De Stefano C, et al. Interaction of phytate with Ag+, CH3Hg+, Mn2+, Fe2+, Co2+, and VO2+: Stability constants and sequestering ability[J]. Journal of Chemical and Engineering Data, 2012, 57(10): 2838−2847. doi: 10.1021/je300755y [46] Cigala R M, Crea F, Stefano C D, et al. Electrochemical study on the stability of phytate complexes with Cu2+, Pb2+, Zn2+, and Ni2+: A comparison of different techniques[J]. Journal of Chemical and Engineering Data, 2010, 55(11): 4757−4767. doi: 10.1021/je100384f [47] Stumm W, Morgan J J. Aquatic chemistry: Chemical equilibria and rates in natural waters[M]. New York, USA: John Wiley and Sons, 2012. [48] Wei L, Chen C, Xu Z. Citric acid enhances the mobilization of organic phosphorus in subtropical and tropical forest soils[J]. [J]. Biology and Fertility of Soils, 2010, 46(7): 765−769. [49] Richardson A E, Hocking P J, Simpson R J, et al. Plant mechanisms to optimise access to soil phosphorus[J]. Crop & Pasture Science, 2009, 60(2): 124−143. [50] McKercher R B, Anderson G. Organic phosphate sorption by neutral and basic soils[J]. Communications in Soil Science and Plant Analysis, 1989, 20(7/8): 723−732. [51] Karathanasis A D, Shumaker P D. Organic and inorganic phosphate interactions with soil hydroxy-interlayered minerals[J]. Journal of Soils and Sediments, 2009, 9(5): 501−510. doi: 10.1007/s11368-009-0116-7 [52] Ryan J, Curtin D, Cheema M A. Significance of iron oxides and calcium carbonate particle size in phosphate sorption by calcareous soils[J]. Soil Science Society of America Journal, 1985, 49(1): 74−76. doi: 10.2136/sssaj1985.03615995004900010014x [53] Celi L, Lamacchia S, Barberis E. Interaction of inositol phosphate with calcite[J]. Nutrient Cycling in Agroecosystems, 2000, 57(3): 271−277. doi: 10.1023/A:1009805501082 [54] Anderson G, Arlidge E Z. The adsorption of inositol phosphates and glycerophosphate by soil clays, clay minerals, and hydrated sesquioxides in acid media[J]. Journal of Soil Science, 2010, 13(2): 216−224. [55] Martin M, Celi L, Barberis E. Desorption and plant availability of myo-inositol hexaphosphate adsorbed on goethite[J]. Soil Science, 2004, 169(2): 115−124. doi: 10.1097/01.ss.0000117787.98510.9d [56] Johnson B B, Quill E, Angove M J. An investigation of the mode of sorption of inositol hexaphosphate to goethite[J]. Journal of Colloid and Interface Science, 2012, 367(1): 436−442. doi: 10.1016/j.jcis.2011.09.066 [57] Yan Y, Wan B, Liu F, et al. Adsorption-desorption of myo-inositol hexakisphosphate on hematite[J]. Soil Science, 2014, 179(10-11): 476−485. doi: 10.1097/SS.0000000000000091 [58] Turner B L, Frossard E, Baldwin D S, et al. Organic phosphorus in the environment[M]. London, UK: CABI Publishing, 2005. [59] Ruttenberg K C, Sulak D J. Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr) oxides in seawater[J]. Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society, 2011, 75(15): 4095−4112. doi: 10.1016/j.gca.2010.10.033 [60] Yan Y P, Liu Jr F, Li W, et al. Sorption and desorption characteristics of organic phosphates of different structures on aluminium (oxyhydr) oxides[J]. European Journal of Soil Science, 2014, 65(2): 308−317. doi: 10.1111/ejss.12119 [61] Chen H, Koopal L K, Xiong J, et al. Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite[J]. Journal of Colloid and Interface Science, 2017, 504: 457−467. doi: 10.1016/j.jcis.2017.05.078 [62] Wang X, Li W, Harrington R, et al. Effect of ferrihydrite crystallite size on phosphate adsorption reactivity[J]. Environmental Science & Technology, 2013, 47(18): 10322−10331. [63] Wang X, Hu Y, Tang Y, et al. Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces[J]. Environmental Science: Nano, 2017, 4(11): 2193−2204. doi: 10.1039/C7EN00705A [64] 严玉鹏. 几种土壤有机磷在铁铝氧化物表面的吸附、解吸与沉淀[D]. 湖北武汉: 武汉理工大学博士学位论文, 2015. Yan Y P. Adsorption, desorption and precipitation of several soil organic phosphorus on the surface of iron aluminum oxides[D]. Wuhan, Hubei: PhD Dissertation of Wuhan University of Technology, 2015. Yan Y P. Adsorption, desorption and precipitation of several soil organic phosphorus on the surface of iron aluminum oxides[D]. Wuhan, Hubei: PhD Dissertation of Wuhan University of Technology, 2015. [65] Yan Y, Li W, Yang J, et al. Mechanism of myo-inositol hexakisphosphate sorption on amorphous aluminum hydroxide: Spectroscopic evidence for rapid surface precipitation[J]. Environmental Science & Technology, 2014, 48(12): 6735−6742. [66] Gerke J. Humic (organic matter)-Al (Fe)-phosphate complexes: An underestimated phosphate form in soils and source of plant-available phosphate[J]. Soil Science, 2010, 175(9): 417−425. doi: 10.1097/SS.0b013e3181f1b4dd [67] Mullaney E J, Richardson A E, Turner B L. Inositol phosphates: Linking agriculture and the environment[M]. London: CABI Publishing, 2006. [68] Chen A, Arai Y. Functional group specific phytic acid adsorption at the ferrihydrite-water interface[J]. Environmental Science & Technology, 2019, 53(14): 8205−8215. [69] Ruyter-Hooley M, Larsson A C, Johnson B B, et al. Surface complexation modeling of inositol hexaphosphate sorption onto gibbsite[J]. Journal of Colloid and Interface Science, 2015, 440: 282−291. doi: 10.1016/j.jcis.2014.10.065 [70] 杨平平, 王燕, 史宝军, 陶文沂. 对发酵生产植酸酶过程中植酸酶活性测定方法的初步探讨[J]. 食品与发酵工业, 2003, 29(9): 52−55. Yang P P, Wang Y, Shi B J, Tao W Y. Preliminary study on testing methods of phytase activity during phytase produced by fermentative method[J]. Food and Fermentation Industries, 2003, 29(9): 52−55. doi: 10.3321/j.issn:0253-990X.2003.09.013 Yang P P, Wang Y, Shi B J, Tao W Y . Preliminary study on testing methods of phytase activity during phytase produced by fermentative method[J]. Food and Fermentation Industries,2003 ,29 (9 ):52 −55 . doi: 10.3321/j.issn:0253-990X.2003.09.013[71] 刘西德, 陈德强. 植酸在水处理方面的应用[J]. 辽宁化工, 2005, 34(4): 162−164. Liu X D, Chen D Q. Application of the plant acid in dealing with water[J]. Liaoning Chemical Industry, 2005, 34(4): 162−164. Liu X D, Chen D Q . Application of the plant acid in dealing with water[J]. Liaoning Chemical Industry,2005 ,34 (4 ):162 −164 .[72] Turner B L, Condron L M, Richardson S J, et al. Soil organic phosphorus transformations during pedogenesis[J]. Ecosystems, 2007, 10(7): 1166−1181. doi: 10.1007/s10021-007-9086-z [73] Tang J, Leung A, Leung C, et al. Hydrolysis of precipitated phytate by three distinct families of phytases[J]. Soil Biology and Biochemistry, 2006, 38(6): 1316−1324. doi: 10.1016/j.soilbio.2005.08.021 [74] Gerke J, Beißner L, Römer W. The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root. I. The basic concept and determination of soil parameters[J]. Journal of Plant Nutrition and Soil Science, 2000, 163(2): 207−212. doi: 10.1002/(SICI)1522-2624(200004)163:2<207::AID-JPLN207>3.0.CO;2-P [75] Zhang T Q, MacKenzie A F, Liang B C, et al. Soil test phosphorus and phosphorus fractions with long-term phosphorus addition and depletion[J]. Soil Science Society of America Journal, 2004, 68(2): 519−528. [76] Hinsinger P, Bengough A G, Vetterlein D, et al. Rhizosphere: Biophysics, biogeochemistry and ecological relevance[J]. Plant and Soil, 2009, 321(1-2): 117−152. doi: 10.1007/s11104-008-9885-9 [77] Makhani M, Isaac M E. Rhizosphere dynamics under nitrogen-induced root modification: The interaction of phosphorus and calcium[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(4): 624−632. doi: 10.1002/jpln.201300381 [78] Chen C R, Condron L M, Xu Z H. Impacts of grassland afforestation with coniferous trees on soil phosphorus dynamics and associated microbial processes: A review[J]. Forest Ecology and Management, 2008, 255(3/4): 396−409. [79] 黄建凤, 吴昊. 植物根系分泌的有机酸及其作用[J]. 现代农业科技, 2008, (20): 323−324. Huang J F, Wu H. Organic acids secreted by plant roots and their functions[J]. Modern Agricultural Science and Technology, 2008, (20): 323−324. Huang J F, Wu H . Organic acids secreted by plant roots and their functions[J]. Modern Agricultural Science and Technology,2008 , (20 ):323 −324 .[80] 沈阿林, 李学垣, 吴受容. 土壤中低分子量有机酸在物质循环中的作用[J]. 植物营养与肥料学报, 1997, 3(4): 363-371 Shen A L, Li X Y, Wu S R . The composition characteristics of low-molecular-weight organic acids in soil and their roles on soil material cycling[J]. Journal of Plant Nutrition and Fertilizers, 1997, 3(4): 363−371. Shen A L, Li X Y, Wu S R . The composition characteristics of low-molecular-weight organic acids in soil and their roles on soil material cycling[J]. Journal of Plant Nutrition and Fertilizers,1997 ,3 (4 ):363 −371 .[81] Veneklaas E J, Stevens J, Cawthray G R, et al. Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake[J]. Plant and Soil, 2003, 248(1): 187−197. [82] Cieslinski G, Van Rees K C J, Szmigielska A M, et al. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation[J]. Plant and Soil, 1998, 203(1): 109−117. doi: 10.1023/A:1004325817420 [83] 王君, 王东升. 大豆、小麦根系分泌物中低分子量有机酸分析方法[J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(S2): 240−242. Wang J, Wang D S. Low molecular weight organic acid analysis of soybean and wheat root exudates[J]. Journal of Liaoning Technical University (Natural Science), 2009, 28(S2): 240−242. Wang J, Wang D S . Low molecular weight organic acid analysis of soybean and wheat root exudates[J]. Journal of Liaoning Technical University (Natural Science),2009 ,28 (S2 ):240 −242 .[84] Chen C R, Condron L M, Davis M R, et al. Effects of plant species on microbial biomass phosphorus and phosphatase activity in a range of grassland soils[J]. Biology and Fertility of Soils, 2004, 40(5): 313−322. doi: 10.1007/s00374-004-0781-z [85] 田中民, 李春俭, 王晨, 赵紫娟. 缺磷白羽扇豆排根与非排根区根尖分泌有机酸的比较[J]. 植物生理学报, 2000, 26(4): 317−322. Tian Z M, Li C J, Wang C, Zhao Z J. Comparative studies on organic acid exudation by tips of proteoid and non-proteoid roots of phosphorus-deficient white lupin[J]. Plant Physiology Journal, 2000, 26(4): 317−322. Tian Z M, Li C J, Wang C, Zhao Z J . Comparative studies on organic acid exudation by tips of proteoid and non-proteoid roots of phosphorus-deficient white lupin[J]. Plant Physiology Journal,2000 ,26 (4 ):317 −322 .[86] 贾渊. 荒漠草原植物根分泌物及其有机酸组分对土壤中微生物及养分的影响[D]. 内蒙古呼和浩特: 内蒙古师范大学硕士学位论文, 2019. Jia Y. Effects of root exudates and their organic acids on soil microbes and nutrients in desert steppe[D]. Hohhot, Inner Mongolia: MS Thesis of Inner Mongolia Normal University, 2019. Jia Y. Effects of root exudates and their organic acids on soil microbes and nutrients in desert steppe[D]. Hohhot, Inner Mongolia: MS Thesis of Inner Mongolia Normal University, 2019. [87] 秦丽. 间作系统中续断菊与作物Cd、Pb累积特征和根系分泌低分子有机酸机理[D]. 云南昆明: 云南农业大学博士学位论文, 2017. Qin L. Accumulation characteristics of Cd, Pb and the root secretion mechanism of low molecular organic acids in intercropping system [D]. Kunming, Yunnan: PhD Dissertation of Yunnan Agricultural University, 2017. Qin L. Accumulation characteristics of Cd, Pb and the root secretion mechanism of low molecular organic acids in intercropping system [D]. Kunming, Yunnan: PhD Dissertation of Yunnan Agricultural University, 2017. [88] 袁钒淇, 袁进喜, 宋金凤, 张红光. Cd胁迫下长白落叶松幼苗根系有机酸的分泌研究[J]. 土壤通报, 2019, 50(5): 1218−1225. Yuan F Q, Yuan J X, Song J F, Zhang H G. Organic acid secretion from Larix olgensis roots under Cd stress[J]. Chinese Journal of Soil Science, 2019, 50(5): 1218−1225. Yuan F Q, Yuan J X, Song J F, Zhang H G . Organic acid secretion from Larix olgensis roots under Cd stress[J]. Chinese Journal of Soil Science,2019 ,50 (5 ):1218 −1225 .[89] Lipton D S, Blanchar R W, Blevins D G. Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings[J]. Plant Physiology, 1987, 85(2): 315−317. doi: 10.1104/pp.85.2.315 [90] 赵文杰, 张丽静, 畅倩, 等. 低磷胁迫下豆科植物有机酸分泌研究进展[J]. 草业科学, 2011, 28(6): 1207−1213. Zhao W J, Zhang L J, Chang Q, et al. The research progress of organic acids metabolism in leguminous plant under phosphorus deficiency[J]. Pratacultural Science, 2011, 28(6): 1207−1213. Zhao W J, Zhang L J, Chang Q, et al . The research progress of organic acids metabolism in leguminous plant under phosphorus deficiency[J]. Pratacultural Science,2011 , 28(6 ):1207 −1213 .[91] 申建波, 张福锁, 毛达如. 磷胁迫下大豆根分泌有机酸的动态变化[J]. 中国农业大学学报, 1998, 3(S3): 44−48. Shen J B, Zhang F S, Mao D R. Dynamics of low-molecular-weight organic acids in root exudates of soybean under P-deficiency[J]. Journal of China Agricultural University, 1998, 3(S3): 44−48. Shen J B, Zhang F S, Mao D R . Dynamics of low-molecular-weight organic acids in root exudates of soybean under P-deficiency[J]. Journal of China Agricultural University,1998 ,3 (S3 ):44 −48 .[92] 陈利, 肖靖秀, 郑毅. 间作玉米大豆根系分泌物中有机酸的变化特征[J]. 西南林业大学学报, 2016, 36(5): 78−83. Chen L, Xiao J X, Zheng Y. Characteristics of organic acids from root exudation in maize and soybean intercropping[J]. Journal of Southwest Forestry College, 2016, 36(5): 78−83. Chen L, Xiao J X, Zheng Y . Characteristics of organic acids from root exudation in maize and soybean intercropping[J]. Journal of Southwest Forestry College,2016 ,36 (5 ):78 −83 .[93] 沈宏, 严小龙. 根分泌物研究现状及其在农业与环境领域的应用[J]. 农村生态环境, 2000, 16(3): 51−54. Shen H, Yan X L. Status of the study on root exudates and its application to agriculture and environment[J]. Rural Eco-Environment, 2000, 16(3): 51−54. Shen H, Yan X L . Status of the study on root exudates and its application to agriculture and environment[J]. Rural Eco-Environment,2000 ,16 (3 ):51 −54 .[94] 林启美, 王华, 赵小蓉, 赵紫鹃. 一些细菌和真菌的解磷能力及其机理初探[J]. 微生物学通报, 2001, 28(2): 26−30. Lin Q M, Wang H, Zhao X R, Zhao Z J. Capacity of some bacteria and fungi in dissolving phosphate rock[J]. Microbiology China, 2001, 28(2): 26−30. Lin Q M, Wang H, Zhao X R, Zhao Z J . Capacity of some bacteria and fungi in dissolving phosphate rock[J]. Microbiology China,2001 ,28 (2 ):26 −30 .[95] 赵小蓉, 林启美, 李保国. 微生物溶解磷矿粉能力与pH及分泌有机酸的关系[J]. 微生物学杂志, 2003, 23(3): 5−7. Zhao X R, Lin Q M, Li B G. The relationship between the rock phosphate solubilization and pH and organic acids production of microorganisms[J]. Journal of Microbiology, 2003, 23(3): 5−7. doi: 10.3969/j.issn.1005-7021.2003.03.002 Zhao X R, Lin Q M, Li B G . The relationship between the rock phosphate solubilization and pH and organic acids production of microorganisms[J]. Journal of Microbiology,2003 ,23 (3 ):5 −7 . doi: 10.3969/j.issn.1005-7021.2003.03.002[96] 林启美, 赵小蓉, 孙焱鑫, 姚军. 四种不同生态系统的土壤解磷细菌数量及种群分布[J]. 土壤与环境, 2000, 9(1): 34−37. Lin Q M, Zhao X R, Sun Y X, Yao J. Community characters of soil phosphobacteria in four ecosystems[J]. Soil and Environmental Sciences, 2000, 9(1): 34−37. Lin Q M, Zhao X R, Sun Y X, Yao J . Community characters of soil phosphobacteria in four ecosystems[J]. Soil and Environmental Sciences,2000 ,9 (1 ):34 −37 .[97] 赵小蓉, 林启美, 孙焱鑫, 等. 小麦根际与非根际解磷细菌的分布[J]. 华北农学报, 2001, 16(1): 111−115. Zhao X R, Lin Q M, Sun Y X, et al. Phosphobacteria distribution in rhizophere and nonrhizosphere soil of winter wheat[J]. Acta Agriculturae Boreali-Sinica, 2001, 16(1): 111−115. Zhao X R, Lin Q M, Sun Y X, et al . Phosphobacteria distribution in rhizophere and nonrhizosphere soil of winter wheat[J]. Acta Agriculturae Boreali-Sinica,2001 ,16 (1 ):111 −115 .[98] 万宁威, 雷帮星, 李彪, 等. 白酸汤发酵过程中微生物多样性及有机酸动态变化研究[J]. 食品与发酵工业, 2022, 48(9): 65−70. Wan N W, Lei B X, Li B, et al. Microbial diversity and dynamic changes of organic acids during the fermentation of white sour soup[J]. Food and Fermentation Industries, 2022, 48(9): 65−70. Wan N W, Lei B X, Li B, et al . Microbial diversity and dynamic changes of organic acids during the fermentation of white sour soup[J]. Food and Fermentation Industries,2022 ,48 (9 ):65 −70 .[99] 赵小蓉, 林启美, 孙焱鑫, 等. 细菌解磷能力测定方法的研究[J]. 微生物学通报, 2001, 28(1): 1−4. Zhao X R, Lin Q M, Sun Y X, et al. The method for quantifying capacity of bacteria in dissolving P compounds[J]. Microbiology China, 2001, 28(1): 1−4. Zhao X R, Lin Q M, Sun Y X, et al . The method for quantifying capacity of bacteria in dissolving P compounds[J]. Microbiology China,2001 ,28 (1 ):1 −4 .[100] Patel K J, Singh A K, Nareshkumar G, et al. Organic-acid-producing, phytate-mineralizing rhizobacteria and their effect on growth of pigeon pea ( Cajanus cajan)[J]. Applied Soil Ecology, 2010, 44(3): 252−261. doi: 10.1016/j.apsoil.2010.01.002 [101] 叶凯. 窖泥中产酸微生物的筛选与应用[D]. 湖北武汉: 湖北工业大学硕士学位论文, 2020. Ye K. Screening and application of acid-producing microorganisms in pit mud[D]. Wuhan, Hubei: MS Thesis of Hubei University of Technology, 2020. Ye K. Screening and application of acid-producing microorganisms in pit mud[D]. Wuhan, Hubei: MS Thesis of Hubei University of Technology, 2020. [102] 刘志敏. 钾对外生菌根真菌分泌有机酸及氮、磷、钾营养的影响[D]. 重庆: 西南大学硕士学位论文, 2009. Liu Z M. Effects of potassium on the secretion of organic acids by ectomycorrhizal fungi and the concentrations of nitrogen, phosphorus and potassium in their hyphae[D]. Chongqing: MS Thesis of Southwest University, 2009. Liu Z M. Effects of potassium on the secretion of organic acids by ectomycorrhizal fungi and the concentrations of nitrogen, phosphorus and potassium in their hyphae[D]. Chongqing: MS Thesis of Southwest University, 2009. [103] 江亚男, 辜夕容, 周倩, 贾豪. 铝胁迫下两种外生菌根真菌的有机酸分泌与吸收动力学特征[J]. 生态学杂志, 2019, 38(11): 3441−3449. Jiang Y N, Gu X R, Zhou Q, Jia H. Organic acid secretion and aluminum absorption kinetics by Lactarius deliciosus and Pisolithus tinctorius under aluminum stress[J]. Chinese Journal of Ecology, 2019, 38(11): 3441−3449. Jiang Y N, Gu X R, Zhou Q, Jia H . Organic acid secretion and aluminum absorption kinetics by Lactarius deliciosus and Pisolithus tinctorius under aluminum stress[J]. Chinese Journal of Ecology,2019 ,38 (11 ):3441 −3449 .[104] 周志峰, 王明霞, 袁玲, 黄建国. 不同生境外生菌根真菌对铝胁迫的响应[J]. 生态学报, 2016, 36(10): 2842−2850. Zhou Z F, Wang M X, Yuan L, Huang J G. Response of ectomycorrhizal fungi from different environments to aluminum stress[J]. Acta Ecologica Sinica, 2016, 36(10): 2842−2850. Zhou Z F, Wang M X, Yuan L, Huang J G . Response of ectomycorrhizal fungi from different environments to aluminum stress[J]. Acta Ecologica Sinica,2016 ,36 (10 ):2842 −2850 .[105] 张亮, 王明霞, 张薇, 等. 外生菌根真菌对土壤钾的活化作用[J]. 微生物学报, 2014, 54(7): 786−792. Zhang L, Wang M X, Zhang W, et al. Mobilization of potassium from soil by ectomycorrhizal fungi[J]. Acta Microbiologica Sinica, 2014, 54(7): 786−792. Zhang L, Wang M X, Zhang W, et al . Mobilization of potassium from soil by ectomycorrhizal fungi[J]. Acta Microbiologica Sinica,2014 ,54 (7 ):786 −792 .[106] Cumming J R, Swiger T D, Kurnik B S, et al. Organic acid exudation by Laccaria bicolor and Pisolithus tinctorius exposed to aluminum in vitro[J]. Canadian Journal of Forest Research, 2001, 31(4): 703−710. [107] Akintokun A K, Akande G A, Akintokun P O, et al. Solubilization of insoluble phosphate by organic acid-producing fungi isolated from Nigerian soil[J]. International Journal of Soil Science, 2007, 2(4): 301−307. doi: 10.3923/ijss.2007.301.307 [108] Wahegaonkar N, Palsingankar P, Shinde S. Phosphate solubilisation and organic acid production by some species of Aspergillus[J]. Bioinfolet-A Quarterly Journal of Life Sciences, 2014, 11(1b): 217−221. [109] Nahas E. Factors determining rock phosphate solubilization by microorganisms isolated from soil[J]. World Journal of Microbiology and Biotechnology, 1996, 12(6): 567−572. doi: 10.1007/BF00327716 [110] 贾丽娟. 生物土壤结皮中解磷微生物群落结构和多样性及其作用研究[D]. 内蒙古呼和浩特: 内蒙古农业大学博士学位论文, 2019. Jia L J. Community structure and diversity of phosphorus-solubilizing microorganism in biological soil crust and its function[D]. Hohhot, Inner Mongolia: PhD Dissertation of Inner Mongolia Agricultural University, 2019. Jia L J. Community structure and diversity of phosphorus-solubilizing microorganism in biological soil crust and its function[D]. Hohhot, Inner Mongolia: PhD Dissertation of Inner Mongolia Agricultural University, 2019. [111] 陈小燕. 土壤中有机残体腐解过程的有机酸动态变化研究[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2008. Chen X Y. Reserch for the dynamics of organic acids during the decay of plant remainders in soils[D]. Yangling, Shaanxi: MS Thesis of Northwest Agricultural and Forestry University, 2008. Chen X Y. Reserch for the dynamics of organic acids during the decay of plant remainders in soils[D]. Yangling, Shaanxi: MS Thesis of Northwest Agricultural and Forestry University, 2008. [112] 潘复静, 张伟, 梁月明, 等. 喀斯特不同植被恢复阶段土壤有机酸季节变化与有效氮磷的关系[J]. 生态学杂志, 2020, 39(4): 1112−1120. Pan F J, Zhang W, Liang Y M, et al. Seasonal changes of soil organic acid concentrations in relation to available N and P at different stages of vegetation restoration in a Karst ecosystem[J]. Chinese Journal of Ecology, 2020, 39(4): 1112−1120. Pan F J, Zhang W, Liang Y M, et al . Seasonal changes of soil organic acid concentrations in relation to available N and P at different stages of vegetation restoration in a Karst ecosystem[J]. Chinese Journal of Ecology,2020 ,39 (4 ):1112 −1120 .[113] 王永壮, 陈欣, 史奕, 鲁彩艳. 低分子量有机酸对土壤磷活化及其机制研究进展[J]. 生态学杂志, 2018, 37(7): 2189−2198. Wang Y Z, Chen X, Shi Y, Lu C Y. Review on the effects of low-molecular-weight organic acids on soil phosphorus activation and mechanisms[J]. Chinese Journal of Ecology, 2018, 37(7): 2189−2198. Wang Y Z, Chen X, Shi Y, Lu C Y . Review on the effects of low-molecular-weight organic acids on soil phosphorus activation and mechanisms[J]. Chinese Journal of Ecology,2018 ,37 (7 ):2189 −2198 .[114] 常二华, 杨建昌. 根系分泌物及其在植物生长中的作用[J]. 耕作与栽培, 2006, (5): 13−16. Chang E H, Yang J C. Root exudates and their role in plant growth[J]. Tillage and Cultivation, 2006, (5): 13−16. Chang E H, Yang J C . Root exudates and their role in plant growth[J]. Tillage and Cultivation,2006 , (5 ):13 −16 .[115] 曹莹菲. 腐解过程中还田秸秆和土壤有机酸、质能及结构变化特征[D]. 陕西杨凌: 西北农林科技大学博士学位论文, 2016. Cao Y F. Decomposition, organic acid, thermal and structure characteristic in crop residues and soils among straw returning[D]. Yangling, Shaanxi: PhD Dissertation of Northwest Agricultural and Forestry University, 2016. Cao Y F. Decomposition, organic acid, thermal and structure characteristic in crop residues and soils among straw returning[D]. Yangling, Shaanxi: PhD Dissertation of Northwest Agricultural and Forestry University, 2016. [116] Zhang B, Kong W, Wu N, et al. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China[J]. Journal of Basic Microbiology, 2016, 56(6): 670−679. doi: 10.1002/jobm.201500751 [117] Qi D, Wieneke X, Tao J, et al. Soil pH is the primary factor correlating with soil microbiome in karst rocky desertification regions in the Wushan County, Chongqing, China[J]. Frontiers in Microbiology, 2018, 9: 1027. doi: 10.3389/fmicb.2018.01027 [118] 张星星. 内蒙古荒漠生物土壤结皮及下层土壤微生物多样性和群落结构研究[D]. 内蒙古呼和浩特: 内蒙古农业大学硕士学位论文, 2015. Zhang X X. Community structure and diversity of microorganism in biological soil crusts and underneath soil of Inner Mongolia deserts [D]. Huhehot, Inner Mongolia: MS Thesis of Inner Mongolia Agricultural University, 2015. Zhang X X. Community structure and diversity of microorganism in biological soil crusts and underneath soil of Inner Mongolia deserts [D]. Huhehot, Inner Mongolia: MS Thesis of Inner Mongolia Agricultural University, 2015. [119] Tye A, Siu F, Leung T, et al. Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis[J]. Applied Microbiology and Biotechnology, 2002, 59(2): 190−197. [120] Taurian T, Anzuay M S, Angelini J G, et al. Phosphate-solubilizing peanut associated bacteria: Screening for plant growth-promoting activities[J]. Plant and Soil, 2010, 329(1): 421−431. [121] Relwani L, Krishna P, Sudhakara Reddy M. Effect of carbon and nitrogen sources on phosphate solubilization by a wild-type strain and UV-induced mutants of Aspergillus tubingensis[J]. Current Microbiology, 2008, 57(5): 401−406. doi: 10.1007/s00284-008-9212-y [122] Wakelin S A, Warren R A, Harvey P R, et al. Phosphate solubilization by Penicillium spp. closely associated with wheat roots[J]. Biology and Fertility of Soils, 2004, 40(1): 36−43. doi: 10.1007/s00374-004-0750-6 [123] Arnarson T S, Keil R G. Mechanisms of pore water organic matter adsorption to montmorillonite[J]. Marine Chemistry, 2000, 71(3/4): 309−320. [124] Tombácz E, Libor Z, Illes E, et al. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles[J]. Organic Geochemistry, 2004, 35(3): 257−267. doi: 10.1016/j.orggeochem.2003.11.002 [125] Feng X, Simpson A J, Simpson M J. Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces[J]. Organic Geochemistry, 2005, 36(11): 1553−1566. doi: 10.1016/j.orggeochem.2005.06.008 [126] 梁重山, 党志, 刘丛强. 胡敏酸的结构特征及其吸附行为[J]. 分析化学, 2006, 34(3): 288−292. Liang C S, Dang Z, Liu C Q. Structure characterization of soil humic acid and adsorption equilbria on phenanthrene[J]. Chinese Journal of Analytical Chemistry, 2006, 34(3): 288−292. doi: 10.3321/j.issn:0253-3820.2006.03.002 Liang C S, Dang Z, Liu C Q . Structure characterization of soil humic acid and adsorption equilbria on phenanthrene[J]. Chinese Journal of Analytical Chemistry,2006 ,34 (3 ):288 −292 . doi: 10.3321/j.issn:0253-3820.2006.03.002[127] Staunton S, Leprince F. Effect of pH and some organic anions on the solubility of soil phosphate: Implications for P bioavailability[J]. European Journal of Soil Science, 1996, 47(2): 231−239. doi: 10.1111/j.1365-2389.1996.tb01394.x [128] Lindegren M, Persson P. Competitive adsorption between phosphate and carboxylic acids: Quantitative effects and molecular mechanisms[J]. European Journal of Soil Science, 2009, 60(6): 982−993. doi: 10.1111/j.1365-2389.2009.01171.x [129] Chen Y, Nobili M D, Aviad T. Stimulatory effects of humic substances on plant growth[M]. SBoca Raton, Florida: CRC Press, 2004. [130] Gerke J. The acquisition of phosphate by higher plants: Effect of carboxylate release by the roots. A critical review[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(3): 351−364. doi: 10.1002/jpln.201400590 [131] Lobartini J C, Tan K H, Pape C. Dissolution of aluminum and iron phosphate by humic acids[J]. Communications in Soil Science and Plant Analysis, 1998, 29(5/6): 535−544. [132] Violante A, Colombo C, Buondonno A. Competitive adsorption of phosphate and oxalate by aluminum oxides[J]. Soil Science Society of America Journal, 1991, 55(1): 65−70. doi: 10.2136/sssaj1991.03615995005500010011x [133] Jones D L, Darah P R, Kochian L V. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake[J]. Plant and Soil, 1996, 180(1): 57−66. doi: 10.1007/BF00015411 [134] Boling S D, Webel D M, Mavromichalis I, et al. The effects of citric acid on phytate-phosphorus utilization in young chicks and pigs[J]. Journal of Animal Science, 2000, 78(3): 682−689. doi: 10.2527/2000.783682x [135] 卢广林. 植酸酶、柠檬酸和碳酸化合物酶对肉鸡生长性能和养分利用率的影响[J]. 中国饲料, 2019, (10): 40−44. Lu G L. Effects of phytase plus citric acid and carbohydrase on growth performance and nutrient digestibility of broilers[J]. China Feed, 2019, (10): 40−44. Lu G L . Effects of phytase plus citric acid and carbohydrase on growth performance and nutrient digestibility of broilers[J]. China Feed,2019 , (10 ):40 −44 .[136] Moradi N, Sadaghiani M R, Sepehr E, et al. Effects of low-molecular-weight organic acids on phosphorus sorption characteristics in some calcareous soils[J]. Turkish Journal of Agriculture and Forestry, 2012, 36(4): 459−468. [137] Wang Y, Whalen J K, Xin C, et al. Mechanisms for altering phosphorus sorption characteristics induced by low-molecular-weight organic acids[J]. Canadian Journal of Soil Science, 2016, 96: 289−298. doi: 10.1139/cjss-2015-0068 [138] Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57(1): 233−266. doi: 10.1146/annurev.arplant.57.032905.105159 [139] 吴宏海, 胡勇有, 黎淑平. 有机酸与矿物间界面作用研究评述[J]. 岩石矿物学杂志, 2001, 20(4): 399−404. Wu H H, Hu Y Y, Li S P. A review on interactions at the interface between organic acids and minerals[J]. Acta Petrologica et Mineralogica, 2001, 20(4): 399−404. Wu H H, Hu Y Y, Li S P . A review on interactions at the interface between organic acids and minerals[J]. Acta Petrologica et Mineralogica,2001 ,20 (4 ):399 −404 .[140] Darch T, Blackwell M S A, Chadwick D, et al. Assessment of bioavailable organic phosphorus in tropical forest soils by organic acid extraction and phosphatase hydrolysis[J]. Geoderma, 2016, 284: 93−102. doi: 10.1016/j.geoderma.2016.08.018 [141] 李淑君. 作物根系对有机肥中有机磷营养利用的机制[D]. 江苏南京: 南京农业大学硕士学位论文, 2020. Li S J. Mechanism of crop root utilization of organic phosphorus in organic fertilizer[D]. Nanjing, Jiangsu: MS Thesis of Nanjing Agricultural University, 2020. Li S J. Mechanism of crop root utilization of organic phosphorus in organic fertilizer[D]. Nanjing, Jiangsu: MS Thesis of Nanjing Agricultural University, 2020. [142] Whitelaw M A. Growth promotion of plants inoculated with phosphate-solubilizing fungi[J]. Advances in Agronomy, 1999, 69: 99−151. [143] Bolan N S, Naidu R, Mahimairaja S, et al. Influence of low-molecular-weight organic acids on the solubilization of phosphates[J]. Biology and Fertility of Soils, 1994, 18(4): 311−319. doi: 10.1007/BF00570634 [144] Menezes-Blackburn D, Paredes C, Zhang H, et al. Organic acids regulation of chemical-microbial phosphorus transformations in soils[J]. Environmental Science & Technology, 2016, 50(21): 11521−11531. [145] Harter R D, Naidu R. Role of metal-organic complexation in metal sorption by soils[J]. Advances in Agronomy, 1995, 55: 219−263. [146] 龚松贵, 王兴祥, 张桃林, 等. 低分子量有机酸对红壤无机磷活化的作用[J]. 土壤学报, 2010, 47(4): 692−697. Gong S G, Wang X X, Zhang T L, et al. Release of inorganic phosphorus from red soils induced by low molecular weight organic acids[J]. Acta Pedologica Sinica, 2010, 47(4): 692−697. Gong S G, Wang X X, Zhang T L, et al . Release of inorganic phosphorus from red soils induced by low molecular weight organic acids[J]. Acta Pedologica Sinica,2010 ,47 (4 ):692 −697 .[147] 李芳菲. 腐殖酸对植酸在勃姆石和赤铁矿表面吸附及解吸的影响[D]. 湖北武汉: 华中农业大学硕士学位论文, 2018. Li F F. Influence of humic acid on myo-inositol hexakisphosphate adsorption and desorption on boehmite and hematite[D]. Wuhan, Hubei: MS Thesis of Huazhong Agricultural University, 2018. Li F F. Influence of humic acid on myo-inositol hexakisphosphate adsorption and desorption on boehmite and hematite[D]. Wuhan, Hubei: MS Thesis of Huazhong Agricultural University, 2018. [148] Wang X, Liu F, Tan W, et al. Characteristics of phosphate adsorption-desorption onto ferrihydrite: Comparison with well-crystalline Fe (hydr) oxide[J]. Soil Science, 2013, 178(1): 1−11. doi: 10.1097/SS.0b013e31828683f8 [149] 严玉鹏, 万彪, 刘凡, 等. 环境中植酸的分布、形态及界面反应行为[J]. 应用与环境生物学报, 2012, 18(3): 494−501. Yan Y P, Wan B, Liu F, et al. Distribution, species and interfacial reactions of phytic acid in environment[J]. Chinese Journal of Applied and Environmental Biology, 2012, 18(3): 494−501. doi: 10.3724/SP.J.1145.2012.00494 Yan Y P, Wan B, Liu F, et al . Distribution, species and interfacial reactions of phytic acid in environment[J]. Chinese Journal of Applied and Environmental Biology,2012 ,18 (3 ):494 −501 . doi: 10.3724/SP.J.1145.2012.00494[150] 杨凯, 关连珠, 颜丽, 等. 外源腐殖酸对三种土壤磷吸附与解吸特性的影响[J]. 生态学杂志, 2009, 28(7): 1303−1307. Yang K, Guan L Z, Yan L, et al. Effects of exogenous humic acid on soil phosphorus adsorption and desorption[J]. Chinese Journal of Ecology, 2009, 28(7): 1303−1307. Yang K, Guan L Z, Yan L, et al . Effects of exogenous humic acid on soil phosphorus adsorption and desorption[J]. Chinese Journal of Ecology,2009 ,28 (7 ):1303 −1307 .[151] Persson P, Andersson T, Nelson H, et al. Surface complexes of monomethyl phosphate stabilized by hydrogen bonding on goethite (α-FeOOH) nanoparticles[J]. Journal of Colloid and Interface Science, 2012, 386(1): 350−358. doi: 10.1016/j.jcis.2012.07.042 [152] Cerezine P C, Nahas E, Banzatto D A. Soluble phosphate accumulation by Aspergillus niger from fluorapatite[J]. Applied Microbiology and Biotechnology, 1988, 29(5): 501−505. doi: 10.1007/BF00269076 [153] Bolan N S, Naidu R, Syers J K, et al. Surface charge and solute interactions in soils[J]. Advances in Agronomy, 1999, 67: 87−140. [154] Celi L, Barberis E. 13 Abiotic reactions of inositol phosphates in soil[M]. Wallingford, Oxford: CAB International, 2007. [155] Giaveno C, Celi L, Cessa R M A, et al. Interaction of organic phosphorus with clays extracted from oxisols[J]. Soil Science, 2008, 173(10): 694−706. doi: 10.1097/SS.0b013e3181893b59 [156] Elzinga E J, Sparks D L. Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation[J]. Journal of Colloid and Interface Science, 2007, 308(1): 53−70. doi: 10.1016/j.jcis.2006.12.061 [157] 严玉鹏, 王小明, 熊娟, 等. 基于不同分析方法研究磷酸根在矿物表面吸附机制的进展[J]. 土壤学报, 2020, 57(1): 22−35. Yan Y P, Wang X M, Xiong J, et al. Progresses in studies on sorption mechanisms of phosphate on minerals using multiple analytic approaches[J]. Acta Pedologica Sinica, 2020, 57(1): 22−35. Yan Y P, Wang X M, Xiong J, et al . Progresses in studies on sorption mechanisms of phosphate on minerals using multiple analytic approaches[J]. Acta Pedologica Sinica,2020 ,57 (1 ):22 −35 .[158] Shang C, Huang P M, Stewart J W B. Kinetics of adsorption of organic and inorganic phosphates by short-range ordered precipitate of aluminum[J]. Canadian Journal of Soil Science, 1990, 70(3): 461−470. doi: 10.4141/cjss90-045 [159] Celi L, De Luca G, Barberis E. Effects of interaction of organic and inorganic P with ferrihydrite and kaolinite-iron oxide systems on iron release[J]. Soil Science, 2003, 168(7): 479−488. [160] 苏玲, 章永松, 林咸永. 干湿交替过程中水稻土铁形态和磷吸附解吸的变化[J]. 植物营养与肥料学报, 2001, 7(4): 410−415. Su L, Zhang Y S, Lin X Y. Changes of iron oxides and phosphorus adsorption-desorption in paddy soils under alternating flooded and dried conditions[J]. Journal of Plant Nutrition and Fertilizers, 2001, 7(4): 410−415. Su L, Zhang Y S, Lin X Y . Changes of iron oxides and phosphorus adsorption-desorption in paddy soils under alternating flooded and dried conditions[J]. Journal of Plant Nutrition and Fertilizers,2001 ,7 (4 ):410 −415 .[161] Cornell R M, Schwertmann U. The iron oxides: Structure, properties, reactions, occurrences, and uses[M]. Berlin: Weinheim: Wiley-vch, 2003. [162] 宋金凤, 宋俊杰, 褚永磊, 等. 苹果酸/盐对暗棕壤磷有效性及林木吸收磷的影响[J]. 水土保持学报, 2011, 25(5): 161−167. Song J F, Song J J, Chu Y L, et al. Effects of malic acid/malate on phosphorus availability of dark brown forest soils and absorption of forest seedlings[J]. Journal of Soil and Water Conservation, 2011, 25(5): 161−167. Song J F, Song J J, Chu Y L, et al . Effects of malic acid/malate on phosphorus availability of dark brown forest soils and absorption of forest seedlings[J]. Journal of Soil and Water Conservation,2011 ,25 (5 ):161 −167 .[163] 庞荣丽, 介晓磊, 方金豹, 等. 有机酸对石灰性潮土有机磷组分的影响[J]. 土壤, 2008, 40(4): 566−570. Pang R L, Jie X L, Fang J B, et al. Effect of organic acids on organic phosphorus fractions in calcareous soil[J]. Soils, 2008, 40(4): 566−570. Pang R L, Jie X L, Fang J B, et al . Effect of organic acids on organic phosphorus fractions in calcareous soil[J]. Soils,2008 ,40 (4 ):566 −570 .[164] 冯晨. 持续淋溶条件下有机酸对土壤磷素释放的影响及机理研究[D]. 辽宁沈阳: 沈阳农业大学博士学位论文, 2012. Feng C. The effects and mechanisms of organic acids on phosphorus release under soil column leaching conditions[D]. Shenyang, Liaoning: PhD Dissertation of Shenyang Agricultural University, 2012. Feng C. The effects and mechanisms of organic acids on phosphorus release under soil column leaching conditions[D]. Shenyang, Liaoning: PhD Dissertation of Shenyang Agricultural University, 2012. [165] Jin X, Yang R, Yan X, et al. Malic acid and oxalic acid spraying enhances phytic acid degradation and total antioxidant capacity of mung bean sprouts[J]. International Journal of Food Science and Technology, 2016, 51(2): 370−380. doi: 10.1111/ijfs.12941 [166] Vassilev N, Baca M T, Vassileva M, et al. Rock phosphate solubilization by Aspergillus niger grown on sugar-beet waste medium[J]. Applied Microbiology and Biotechnology, 1995, 44(3): 546−549. -