-
苹果是多年生经济作物,我国的苹果栽培面积和产量位居世界第一[1]。研究表明,植物需要从土壤中获取至少14种必需的营养元素,以维持正常的生长发育,当土壤中的营养元素缺失时,植物会产生一系列的应答反应[2−3],比如土壤中氮素亏缺会导致植株生长缓慢,叶色变黄,甚至作物产量降低等现象[4]。为缓解营养缺乏而造成的缺素症状,农业上常采取施肥措施,但施肥不科学容易导致资源浪费、环境退化和生态环境破坏等问题[4]。因此,如何提升养分胁迫下苹果养分吸收利用效率,对减少人工合成肥料的施用与生态环境的保护具有重要意义。
氮是植物生长必需的大量元素,对植物器官分化、物质代谢及果实品质形成等过程具有不可替代性,参与苹果生长发育的各个阶段,在细胞发育和生命活动中发挥着至关重要的作用[5−6]。研究表明,铵态氮(NH4+)和硝态氮(NO3−)是植物体内主要的氮源,NO3−可通过植物根表皮和表皮细胞从土壤中吸收利用[7−8],对植物生长的促进作用显著[9],而NH4+可以更快地填充土壤溶液中的无机氮溶解池。AMT1和AMT2是植物中两类主要的NH4+转运蛋白,负责植物体内NH4+的转运与吸收[10],NRT1与NRT2家族参与植物器官对NO3−的吸收与转运[11]。
褪黑素是一种强抗氧化剂,能够抑制活性氧的积累,调控逆境响应基因的表达,对盐碱、重金属和干旱等环境胁迫具有很强的缓解作用[12]。研究表明,在养分胁迫和干旱胁迫下,施加褪黑素会促进氮、磷和钾的吸收与分配[13−14];低氮胁迫下,外源褪黑素可以促进小麦幼苗的生长,提高幼苗茎部和根部NO3−含量[15];低NO3−条件下,褪黑素可以促进叶片15NO3−积累,增加15NO3−含量和15NO3−吸收通量[16]。上述研究表明,褪黑素在单一元素亏缺或其他环境胁迫下能够促进植株生长及养分吸收。
虽然对单一元素亏缺或其他环境胁迫下苹果植株氮素吸收利用的研究很多,但是关于外源褪黑素对养分全缺情况下苹果植株氮代谢酶活性及基因表达的影响研究尚缺乏。因此,本试验以平邑甜茶实生苗为材料,在水培条件下模拟养分胁迫,从养分胁迫下平邑甜茶幼苗的氮代谢关键酶活性、氮代谢及氮转运相关基因的表达等方面,探究外源褪黑素对养分胁迫下苹果幼苗氮代谢和转运的影响,为外源褪黑素提升苹果砧木氮素吸收利用效率提供理论依据。
-
本试验以平邑甜茶幼苗为试验材料,于河北农业大学创新实验园(38°23′ N,115°28′ E)中进行,将经低温层积处理30天的平邑甜茶种子种于育苗钵中,待幼苗长至7~8片叶时,将其转移至盛有1/2 Hoagland 营养液的水培盆中,通过气泵通气以保持植物根部正常生长,使用H3PO4调节营养液的pH为6.1±0.1,每5天更换1次营养液。
首先进行预培养,第12天时,将材料分成两组,一组为对照组,另一组施加0.1 μmol/L褪黑素,第15天时,开始进行正式处理。将幼苗均匀分成4个处理组,分别为1/2 Hoagland 营养液(CK)、1/2 Hoagland营养液+0.1 μmol/L褪黑素(MCK)、1/20 Hoagland营养液(ST)、1/20 Hoagland营养液+0.1 μmol/L褪黑素(MST),每个处理3次重复,每个重复40株幼苗,共120株幼苗,每5天处理1次,共处理20天。
在每次试验处理之前(第0、5、10、15天上午 9:00)和第20天时,采集顶端(生长点)以下第5~6片健康、无破损的成熟叶片 ,同时在第20天采集幼苗根系,液氮冷冻后置于−80℃冰箱保存,用于后续酶活性、基因定量表达和褪黑素含量的测定分析,每个指标进行3次生物学重复。
-
硝酸还原酶(NR)、亚硝酸还原酶(NiR)、谷氨酰胺合成酶(GS)、Fd-谷氨酸合成酶(Fd-GOGAT)和NADH-谷氨酸合成酶(NADH-GOGAT)活性采用苏州科铭生物技术有限公司的试剂盒进行测定。
-
按照多糖多酚植物样本RNA提取试剂盒(北京聚合美生物科技有限公司)的说明书从叶和根中提取总RNA,使用UEIriRT-PCR System for First-Strand cDNA Synthesis system (苏州宇恒生物科技有限公司)进行反转录得到cDNA,使用Roche LightCycler 96 real-time PCR system (Roche,Basel,Switzerland) 分析基因的相对表达量,以β-Actin为内参基因,每个样品进行3次重复,引物序列见表1。
表 1 实时荧光定量引物序列
Table 1. Real-time fluorescent quantitative primer sequence
基因 Gene 上游序列 (5′—3′) Forward sequence 下游序列 (5′—3′) Reverse sequence TDC TCACGCTGTGGTTGGAGGT CTGCATGCTCCTGAACCAAC T5H TCGGTGACATGTTTGCTGC GGAAACCTTGGTCTGGCG AANAT GAATCACCGTCCACGCTCC GAAATGCTTCCGATGTCCC ASMT AGAGGAGCGAGAAAGACTCGA CTAAAGAAAAACTTCAATGAGGGAT NR CGATGACGACGAGAATGAGGAC GCGGACCATAGACGAGTTACGAC NiR GTCCATCCGCAGAAACAAGAAG GTTCCCCTGTGCCATACTCATC GS ATATCTGCTGGAGATGAACTGTGG TGGACTTGGTGCTGTAGTTTGTG Fd-GOGAT CGAAGGAAGAAGAAGACCACGC TTGCTGGTGCCTGTTGGGTT NADH-GOGAT TGCCTAAGTTTATCAAGGTTATTCC CTCATCTTCCTCCTCGTGCTCT NRT1.1 CTGGCTGGTCCCACAGTTCTT CTTCATTCCTTTCGGGCACTC NRT2.4 CAGAAGGTGAACCCGGAAG CAAGTGGAACGTCCTCATGTG NRT2.5 TTGTGGTCCATCTAAGAACAAGGC TCATCAGAGGGTCGGGTAACAG NRT2.7 TCTCCAGGCAGACGAGCATT GGAGCAAGTGATACTGGTTTGTTTC AMT2.1 GTGACGATGGATCGATTGAGACTC CCCGCTAACAAAATAAGAGTAATAGCT AMT1.2 AAGCGAGGATGAGACTCAAGGG GCAGGACTGGCATCATTAACAGG AMT1.5 ACAGATAGTGGTAATTATAGGGTGGGT CGTGGTCATGGTACACGTAAGC β-Actin AACAAGCTAGGGAACACGGCTCT ACAGGAAGTAGAAGATGGCGGACA -
褪黑素含量的测定参照Cao等[17]的方法。取0.5 g样品于液氮中研磨成粉末,加入5 mL甲醇,超声35 min,4℃,10000×g离心15 min,上清液过0.22 μm有机滤膜后,使用高效液相色谱(HPLC)检测叶片中褪黑素含量。
-
使用Excel 2016和IBM SPSS Statistics 20进行数据处理与分析,采用SigmaPlot 10.0 绘制图表,使用单因素方差分析(ANOVA)比较统计学差异,Tukey’s多区间检验(P<0.05)评价处理间差异。
-
如图1所示,处理20天中,CK处理的褪黑素合成相关基因的表达相对稳定,MCK处理的MdTDC、MdT5H和MdAANAT的表达量呈先上升后下降的趋势,在处理第10天达到峰值,MdASMT的表达呈上升趋势,在处理第20天值最高。ST处理的MdTDC、MdT5H、MdAANAT和MdASMT的表达量呈先上升后下降的趋势,MST处理的MdTDC和MdAANAT的表达量呈上升趋势,在处理第20天值最高,MdT5H的表达量呈先下降再上升后下降的趋势,在处理第15天达到峰值,MdASMT的表达量呈先上升再下降后上升的趋势,在处理第20天值最高。处理第20天时,与CK处理相比,ST处理上调了褪黑素合成相关基因MdTDC、MdT5H、MdAANAT和 MdASMT的表达。与ST处理相比,外源褪黑素提高了苹果幼苗叶中MdTDC、MdT5H、MdAANAT和 MdASMT的表达水平。如图2所示,养分胁迫下,苹果幼苗叶片中褪黑素含量显著增加,外源施加褪黑素显著增加了苹果幼苗叶中的褪黑素含量(P<0.05)。MCK处理较CK处理显著增加了30.21%,MST处理较ST处理显著增加了3.10%。
-
如图3所示,在养分正常和胁迫条件下,外源褪黑素均提高了苹果叶片中氮代谢酶活性。与CK相比,MCK处理显著提高了叶片中的NR、NiR、GS、Fd-GOGAT和NADH-GOGAT活性(P<0.05),分别较CK提高了28.13%、13.72%、17.36%、9.34%和26.82%;ST处理显著降低了叶片中的NR、NiR、GS、Fd-GOGAT和NADH-GOGAT活性(P<0.05),分别较CK降低了50.00%、36.75%、29.66%、14.01%和36.59%;与ST处理相比,MST显著提高了养分胁迫下叶片中的NR、NiR、GS和Fd-GOGAT活性(P<0.05),分别较ST处理提高了65.62%、51.49%、59.63%和17.53%。
图 3 外源褪黑素对养分正常和胁迫条件下苹果叶片中NR、NiR、GS、Fd-GOGAT和NADH-GOGAT酶活性的影响
Figure 3. Effects of exogenous melatonin on the activities of NR, NiR, GS, Fd-GOGAT and NADH-GOGAT in M. hupehensis leaves under normal and low nutrient supply conditions
如图4所示,在养分正常和胁迫条件下,外源褪黑素均提高了苹果根中氮代谢酶活性。与CK相比,MCK处理显著提高了叶片中的NADH-GOGAT活性(P<0.05),较CK提高了26.88%;ST处理显著降低了根中的NR、NiR、GS、Fd-GOGAT和NADH-GOGAT活性(P<0.05),分别较CK降低了25.00%、9.56%、43.25%、15.88%和44.04%;与ST处理相比,外源褪黑素显著提高了养分胁迫下根中的NiR、GS和Fd-GOGAT活性(P<0.05),分别提高了19.52%、52.09%和12.72%。
-
如图5所示,处理第20天时,在养分正常和胁迫条件下,外源褪黑素均上调了苹果叶片中氮代谢相关基因的表达水平。养分正常条件下,外源褪黑素显著上调了NR、NiR和GS基因的表达水平(P<0.05),MCK处理分别为CK处理的1.37、1.77和1.40倍。ST处理的幼苗叶片中NR、GS和NADH-GOGAT基因的表达水平显著下调(P<0.05),分别较CK降低了51.07%、37.64%和24.51%。与ST处理相比,外源褪黑素显著提高了养分胁迫下叶中NR、NiR、GS、Fd-GOGAT和NADH-GOGAT基因的表达水平(P<0.05),MST处理分别为ST处理的2.16、2.08、2.22、1.71和1.19倍。
图 5 外源褪黑素对养分正常和胁迫条件下苹果叶片中NR、NiR、GS、Fd-GOGAT和NADH-GOGAT基因相对表达量的影响
Figure 5. Effects of exogenous melatonin on the expression of NR, NiR, GS, Fd-GOGAT and NADH-GOGAT genesin M. hupehensis leaves under normal and low nutrient supply conditions
如图6所示,处理第20天时,在养分正常和胁迫条件下,外源褪黑素均上调了苹果根中氮代谢相关基因的表达水平。养分正常条件下,外源褪黑素显著上调了NiR基因的表达水平(P<0.05),MCK处理为CK处理的1.88倍。ST处理根中的NR、NiR、GS、Fd-GOGAT和NADH-GOGAT基因的表达水平显著低于CK (P<0.05),分别较CK降低了62.22%、60.25%、48.41%、59.14%和57.90%;MST处理显著提高了养分胁迫下根中NiR、GS、Fd-GOGAT和NADH-GOGAT基因的表达水平(P<0.05),分别为ST处理的1.31、1.41、1.74和1.54倍。
-
如图7所示,处理20天内,MCK处理叶片中NO3−转运基因MdNRT1.1、MdNRT2.5、MdNRT2.7的表达量呈现先升高后降低的趋势,NH4+转运基因MdAMT1.2、MdAMT1.5和MdAMT2.1的相对表达量呈上升趋势,ST和MST处理叶片中NO3−转运基因MdNRT1.1、MdNRT2.5、MdNRT2.7和NH4+转运基因MdAMT1.2、MdAMT1.5和MdAMT2.1的相对表达量呈现先升高后降低的趋势,在处理第10天或第15天达到峰值,这些基因的表达在CK处理的叶片中相对稳定。处理第20天时,与CK处理相比,ST处理叶中的MdNRT1.1、MdNRT2.5、MdNRT2.7、MdAMT1.2、MdAMT1.5和MdAMT2.1的表达量上调。与ST处理相比,外源褪黑素提高了MdNRT2.4、MdNRT2.5、MdNRT2.7、MdAMT1.2和MdAMT2.1的表达水平。MST处理的叶片中MdNRT2.4的表达水平呈现上升趋势,处理第20天值最高,为ST处理的9.23倍。
-
当土壤中的营养元素缺乏时,易导致植物产生缺素症状[2],褪黑素作为抗氧化剂,可以通过调节关键基因表达来应对环境胁迫[18]。本试验通过水培来模拟养分胁迫,通过测定平邑甜茶幼苗的褪黑素合成基因表达量、褪黑素含量、氮代谢酶活性以及氮代谢和转运相关基因表达量,探究外源褪黑素对养分胁迫下苹果幼苗氮代谢和转运的影响。结果表明,对养分胁迫下的苹果幼苗外源施加褪黑素,能上调平邑甜茶幼苗叶中褪黑素合成基因的表达水平,显著提高苹果幼苗叶中褪黑素含量,提高苹果幼苗叶和根中氮代谢酶活性,增强氮代谢和转运相关基因的表达。
在植物正常生长条件下,褪黑素水平可以保持相对稳定的状态。然而,褪黑素水平受环境胁迫的强烈影响。研究表明,植物中褪黑素的形成始于色氨酸,包括4个酶促步骤,由色氨酸脱羧酶(TDC)、色氨酸羟化酶(TPH)、色胺-5-羟化酶(T5H)、5-羟色胺-N-乙酰基转移酶(SNAT)、5-羟色胺-N-乙酰基转移酶(ASMT)等进行催化,因此,TDC、T5H、SNAT、ASMT等酶的相关基因参与褪黑素合成过程[12, 19]。干旱胁迫下,桃苗的ASMT和TDC表达显著上调,经褪黑素处理的植株表达量进一步升高[19],上调褪黑素生物合成基因MdTDC1、MdAANAT2、MdT5H4和MdASMT1的表达可以调节干旱胁迫下平邑甜茶植株的水分平衡[20]。此外,外源施加褪黑素可以增加内源褪黑素含量[21−22],也可以自我调节褪黑素合成基因的表达[18]。本试验结果表明,养分胁迫下,苹果幼苗叶片中褪黑素合成相关基因的表达上调,褪黑素含量升高,同时,外源施加褪黑素会提高养分胁迫下苹果幼苗叶片中褪黑素合成相关基因MdTDC、MdT5H、MdAANAT和MdASMT的表达水平,增加内源褪黑素的含量。这表明养分胁迫一定程度上会刺激褪黑素合成基因的表达,致使褪黑素含量增加以响应养分胁迫,外源褪黑素可以进一步促进褪黑素合成基因的表达,提高内源褪黑素的含量。
NR、NiR、GS、Fd-GOGAT和NADH-GOGAT是氮代谢过程的关键酶,硝酸盐在NR的催化下变成亚硝酸盐,NiR将亚硝酸盐还原成铵,GS参与植物体内的氨同化过程,将植株体内的NH4+催化成谷氨酰胺,Fd-GOGAT和NADH-GOGAT将其催化成谷氨酸,参与植物体内氨基酸循环,GOGAT能够与GS结合,完成氨同化[4]。研究表明,氮磷亏缺会严重影响苹果叶片氮代谢酶活性,低氮情况下,苹果砧木的NR活性低于正常供氮[7],适氮低磷与低氮适磷均会导致嘎啦植株中NR和NiR活性降低[23]。低氮胁迫降低了平邑甜茶幼苗叶片的NR、NiR、GS与GOGAT活性,外源褪黑素会缓解氮代谢酶活性的降低[4]。本试验结果显示,与CK处理相比,ST处理的叶和根中NR、NiR、GS、Fd-GOGAT和NADH-GOGAT活性降低,外源褪黑素可以减小下降幅度。褪黑素可以调控氮代谢相关基因的表达。研究表明,低氮条件下植物NR、NiR、GS的表达显著下调,外源褪黑素能增强低氮条件下植物NR、NiR、GS、Fd-GOGAT和NADH-GOGAT基因的表达[4, 24],这与本研究的结果一致。表明低氮胁迫会抑制氮代谢关键酶活性及氮代谢基因表达,外源褪黑素可以通过提高氮代谢关键酶活和氮代谢基因的表达水平,从而提高苹果幼苗氮代谢水平。
褪黑素能够缓解养分胁迫导致的植物氮转运受阻现象。研究表明,低氮胁迫会促进植株NRT和AMT家族部分基因的表达,如低氮胁迫下,苹果植株的NRT1.1基因表达量上调[13],油菜的BnAMT1.1、BnAMT1.2、BnAMT1.5、BnAMT1.4和Bn AMT2.1以及BnNRT2.4a、BnNRT2.4b、Bn NRT2.5a和Bn NRT2.5b的表达上调[25],本试验中,ST处理叶中的NRT1.1、AMT2.1、AMT1.2和AMT1.5的表达量上调,表明养分胁迫可能一定程度上提高了平邑甜茶幼苗对NO3−和NH4+的吸收与转运能力。低NH4+胁迫下,外源褪黑素不同程度上调了AMT1.2、AMT1.5、AMT2.1、NRT1.1的表达水平,促进了平邑甜茶叶片或根部对NH4+的吸收和转运[4]。本研究中,养分胁迫下,外源褪黑素提高了NRT2.4、NRT2.5、NRT2.7、AMT1.2和AMT2.1的表达水平,表明外源褪黑素可能通过增强平邑甜茶幼苗的NH4+和NO3−转运基因表达,来促进苹果植株对氮的吸收与转运。
-
养分胁迫下,平邑甜茶幼苗叶片中褪黑素合成基因的表达上调,内源褪黑素含量显著提高,苹果幼苗叶片及根中氮代谢酶活性显著降低,氮代谢相关基因表达水平显著下调,氮转运相关基因的表达上调,表明苹果幼苗在养分胁迫条件下通过提高内源褪黑素合成基因的表达,提高对氮的利用。添加外源褪黑素强化了内源褪黑素的效果,尤其在养分胁迫条件下,总之,外源褪黑素可以通过促进苹果植株对氮的代谢和吸收转运来缓解养分胁迫。
外源褪黑素对养分胁迫下苹果砧木幼苗氮代谢相关酶活性及基因表达的影响
Effects of exogenous melatonin on nitrogen metabolism related enzyme activities and genes expression in apple rootstock seedlings under nutrient stress
-
摘要:
【目的】 探究外源褪黑素对养分胁迫下苹果砧木幼苗内源褪黑素合成、氮代谢关键酶活性及氮代谢和氮转运相关基因表达的影响。 【方法】 水培试验材料为7~8片叶的平邑甜茶(Malus hupehensis Rehd.)幼苗。幼苗在1/2 Hoagland营养液中生长12天,然后分为两组,一组营养液中添加褪黑素(0.1 μmol/L),一组不添加作为对照。第15天时,两组幼苗的营养液浓度又分为1/2和1/20 Hoagland营养液两个养分水平,形成4个处理:1/2 Hoagland营养液(CK)、1/2 Hoagland营养液+0.1 μmol/L褪黑素(MCK)、1/20 Hoagland营养液(ST)、1/20 Hoagland营养液+0.1 μmol/L褪黑素(MST)。第35天时(处理20天),取平邑甜茶幼苗叶片和根系样品,测定褪黑素含量、氮代谢相关酶活性、褪黑素合成关键酶和氮转运代谢相关基因的相对表达量。 【结果】 与CK相比,养分胁迫 (ST)上调了平邑甜茶幼苗叶片中褪黑素合成相关基因MdTDC、MdT5H、MdAANAT和MdASMT的表达,显著增加了内源褪黑素含量,降低了幼苗叶片及根中的硝酸还原酶(NR)、亚硝酸还原酶(NiR)、谷氨酰胺合成酶(GS)、Fd-谷氨酸合成酶(Fd-GOGAT)和NADH-谷氨酸合成酶(NADH-GOGAT)活性(P<0.05),下调了5个氮代谢相关基因NR、NiR、GS、Fd-GOGAT和NADH-GOGAT的表达量,但上调了叶片中氮转运基因MdNRT1.1、MdNRT2.5、MdNRT2.7、MdAMT1.2、MdAMT1.5和MdAMT2.1的表达量。与ST相比,MST处理苹果幼苗叶片中4个褪黑素合成基因的表达上调,内源褪黑素含量显著升高了3.10% (P<0.05),叶片中NR、NiR、GS和Fd-GOGAT活性分别升高65.62%、51.49%、59.63%和17.53%,根系中NiR、GS和Fd-GOGAT活性分别显著升高19.52%、52.09%和12.72%;叶片中5个氮代谢相关基因NR、NiR、GS、Fd-GOGAT和NADH-GOGAT的表达水平显著升高至ST处理的2.16、2.08、2.22、1.71和1.19倍,根系中4个氮代谢相关基因NiR、GS、Fd-GOGAT和NADH-GOGAT表达水平升高至ST处理的1.31、1.41、1.74和1.54倍,并显著上调了苹果幼苗叶片中氮转运基因MdNRT2.4、MdNRT2.5、MdNRT2.7、MdAMT1.2和MdAMT2.1的表达水平。 【结论】 养分胁迫下,平邑甜茶幼苗通过上调褪黑素合成相关基因表达水平提高内源褪黑素含量,进而促进氮代谢酶活性,上调氮转运代谢相关基因的表达水平,最终促进氮的代谢和吸收转运,起到缓解苹果砧木养分胁迫的作用。不论是否养分胁迫,外源添加褪黑素均有助于提升植物体内的褪黑素含量,提高氮代谢水平,提升作物对养分胁迫的抗性。 Abstract:【Objectives】 The aim of the research was to investigate the effects of exogenous melatonin on endogenous melatonin synthesis, nitrogen metabolism key enzyme activities, nitrogen metabolism, and nitrogen transport gene expression in apple rootstock seedlings under nutrient stress. 【Methods】 In this experiment, Malus hupehensis Rehd. seedlings were used as experimental materials for hydroponic experiments. M. hupehensis seedlings with 7−8 leaves were firstly cultured in 1/2 Hoagland nutrient solution for 12 days. Then the seedlings were divided into two groups, one group was added wtih 0.1 μmol/L melatonin in the nutrient solution and the other group wa not, and continued to grow for another 3 days. Each group was then further divided into two groups, one was supplied with 1/2 Hoagland nutrient solution, and the other was supplied with 1/20 Hoagland nutrient solution (nutrient stress), forming 4 treatments, as: 1/2 Hoagland nutrient solution (CK), 1/2 Hoagland nutrient solution+0.1 μmol/L melatonin (MCK), 1/20 Hoagland nutrient solution (ST), 1/20 Hoagland nutrient solution+0.1 μmol/L melatonin (MST). After 20 days of treatment, the leaf and root samples were collected for the measurement of melatonin content, nitrogen metabolism-related enzyme activities, melatonin synthesis enzymes, and N transport/metabolism related gene expression levels. 【Results】 Compare with CK, ST treatment up-regulated the expression of melatonin synthesis-related genes MdTDC, MdT5H, MdAANAT and MdASMT in the leaves of M. hupehensis seedlings, and increased the endogenous melatonin content (P<0.05), decreased the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), Fd-glutamate synthetase (Fd-GOGAT) and NADH-glutamate synthetase (NADH-GOGAT) in the leaves and roots ofM. hupehensis seedlings (P<0.05), and down-regulated the expression levels of nitrogen metabolism related genesNR, NiR, GS, Fd-GOGAT and NADH-GOGAT, while up-regulated the expression levels of nitrogen transport genes MdNRT1.1, MdNRT2.5, MdNRT2.7, MdAMT1.2, MdAMT1.5, and MdAMT2.1 in leaves. Compared with ST, MST treatment up-regulated the expression of the four melatonin synthesis-related genes in leaves, and increased the endogenous melatonin content by 3.10% (P<0.05), enhanced the activities of NR, NiR, GS and Fd-GOGAT in leaves and the activities of NiR, GS, Fd-GOGAT in roots ofM.hupehensis seedlings. Enzyme activities related to N metabolism in leaves were increased by 65.62%, 51.49%, 59.63% and 17.53%, while those in roots were increased by 19.52%, 52.09% and 12.72%, respectively. Meanwhile, MST treatment up-regulated the leaf expression levels of the nitrogen metabolism-related genes NiR, GS, Fd-GOGAT and NADH-GOGAT to 2.16-, 2.08-, 2.22-, 1.71- and 1.19-fold, and root expression levels of 1.31-, 1.41-, 1.74- and 1.54-fold to those of ST treatment. In addition, melatonin significantly upregulated the expression levels of nitrogen transport genes MdNRT2.4, MdNRT2.5, MdNRT2.7, MdAMT1.2 and MdAMT2.1 in leaves of M. hupehensis seedlings under nutrient stress. 【Conclusions】 Under nutrient stress, exogenous melatonin plant upregulates the gene expression related with synthesis of melatonin, so increases the melatonin content in leaves and roots, to alleviate nutrient stress by promoting nitrogen metabolism enzyme activity and upregulating the expression of nitrogen transport and metabolism related genes. The addition of exogenous melatonin strengthens the mitigation effect of plant to nutrient stress. -
Key words:
- nutrient deficiency /
- Malus hupehensis /
- melatonin /
- nitrogen metabolism /
- gene expression
-
表 1 实时荧光定量引物序列
Table 1. Real-time fluorescent quantitative primer sequence
基因 Gene 上游序列 (5′—3′) Forward sequence 下游序列 (5′—3′) Reverse sequence TDC TCACGCTGTGGTTGGAGGT CTGCATGCTCCTGAACCAAC T5H TCGGTGACATGTTTGCTGC GGAAACCTTGGTCTGGCG AANAT GAATCACCGTCCACGCTCC GAAATGCTTCCGATGTCCC ASMT AGAGGAGCGAGAAAGACTCGA CTAAAGAAAAACTTCAATGAGGGAT NR CGATGACGACGAGAATGAGGAC GCGGACCATAGACGAGTTACGAC NiR GTCCATCCGCAGAAACAAGAAG GTTCCCCTGTGCCATACTCATC GS ATATCTGCTGGAGATGAACTGTGG TGGACTTGGTGCTGTAGTTTGTG Fd-GOGAT CGAAGGAAGAAGAAGACCACGC TTGCTGGTGCCTGTTGGGTT NADH-GOGAT TGCCTAAGTTTATCAAGGTTATTCC CTCATCTTCCTCCTCGTGCTCT NRT1.1 CTGGCTGGTCCCACAGTTCTT CTTCATTCCTTTCGGGCACTC NRT2.4 CAGAAGGTGAACCCGGAAG CAAGTGGAACGTCCTCATGTG NRT2.5 TTGTGGTCCATCTAAGAACAAGGC TCATCAGAGGGTCGGGTAACAG NRT2.7 TCTCCAGGCAGACGAGCATT GGAGCAAGTGATACTGGTTTGTTTC AMT2.1 GTGACGATGGATCGATTGAGACTC CCCGCTAACAAAATAAGAGTAATAGCT AMT1.2 AAGCGAGGATGAGACTCAAGGG GCAGGACTGGCATCATTAACAGG AMT1.5 ACAGATAGTGGTAATTATAGGGTGGGT CGTGGTCATGGTACACGTAAGC β-Actin AACAAGCTAGGGAACACGGCTCT ACAGGAAGTAGAAGATGGCGGACA -
[1] 王金政, 毛志泉, 丛佩华, 等. 新中国果树科学研究70年: 苹果[J]. 果树学报, 2019, 36(10): 1255−1263. Wang J Z, Mao Z Q, Cong P H, et al. Fruit scientific research in New China in the past 70 years: Apple[J]. Journal of Fruit Science, 2019, 36(10): 1255−1263. Wang J Z, Mao Z Q, Cong P H, et al . Fruit scientific research in New China in the past 70 years: Apple[J]. Journal of Fruit Science,2019 ,36 (10 ):1255 −1263 .[2] 范腾飞, 曹增强, 毕艳孟, 等. 缺钾胁迫对连作草莓生长和土传病害的影响[J]. 园艺学报, 2013, 40(4): 633−640. Fan T F, Cao Z Q, Bi Y M, et al. Influence of K-deficiency stress on plant growth of strawberry and soil-borne diseases under continuous cultivation[J]. Acta Horticulturae Sinica, 2013, 40(4): 633−640. doi: 10.16420/j.issn.0513-353x.2013.04.001 Fan T F, Cao Z Q, Bi Y M, et al . Influence of K-deficiency stress on plant growth of strawberry and soil-borne diseases under continuous cultivation[J]. Acta Horticulturae Sinica,2013 ,40 (4 ):633 −640 . doi: 10.16420/j.issn.0513-353x.2013.04.001[3] 李艾凝, 姜百惠, 李桂新, 等. 乙烯调控植物营养缺乏胁迫响应的分子机制[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 14−22. Li A N, Jiang B H, Li G X, et al. Molecular mechanisms on ethylene regulation of nutrient deficiency stress responses in plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 14−22. Li A N, Jiang B H, Li G X, et al . Molecular mechanisms on ethylene regulation of nutrient deficiency stress responses in plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2023 ,49 (1 ):14 −22 .[4] Du P H, Yin B Y, Zhou S S, et al. Melatonin and dopamine mediate the regulation of nitrogen uptake and metabolism at low ammonium levels in Malus hupehensis[J]. Plant Physiology and Biochemistry, 2022, 171: 182−90. doi: 10.1016/j.plaphy.2022.01.004 [5] Zhao H, Wu Y W, Shen L N, et al. Cross-talk between transcriptome analysis and physiological characterization identifies the genes in response to the low phosphorus stress in Malus mandshurica[J]. International Journal of Molecular Sciences, 2022, 23(9): 4896. doi: 10.3390/ijms23094896 [6] Nong Q, Malviya M K, Solanki M K, et al. Integrated metabolomic and transcriptomic study unveils the gene regulatory mechanisms of sugarcane growth promotion during interaction with an endophytic nitrogen-fixing bacteria[J]. BMC Plant Biology, 2023, 23(1): 54. doi: 10.1186/s12870-023-04065-6 [7] 解斌, 安秀红, 陈艳辉, 等. 苹果砧木对低氮胁迫的响应及适应性评价[J]. 植物营养与肥料学报, 2022, 28(6): 1092−1103. Xie B, An X H, Chen Y H, et al. Response and tolerance of apple rootstocks to low nitrogen stress[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(6): 1092−1103. doi: 10.11674/zwyf.2021546 Xie B, An X H, Chen Y H, et al . Response and tolerance of apple rootstocks to low nitrogen stress[J]. Journal of Plant Nutrition and Fertilizers,2022 ,28 (6 ):1092 −1103 . doi: 10.11674/zwyf.2021546[8] Marschner P. Mineral nutrition of higher plants[M]. Pittsburgh: Academic Press, 2012. [9] 文滨滨, 张新昊, 沈红艳, 等. 氮素亏缺对苹果愈伤组织硝态氮吸收及同化的影响[J]. 植物营养与肥料学报, 2019, 25(11): 1939−1948. Wen B B, Zhang X H, Shen H Y, et al. Effects of nitrogen deficiency on nitrate uptake and assimilation of apple callus[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1939−1948. doi: 10.11674/zwyf.18470 Wen B B, Zhang X H, Shen H Y, et al . Effects of nitrogen deficiency on nitrate uptake and assimilation of apple callus[J]. Journal of Plant Nutrition and Fertilizers,2019 ,25 (11 ):1939 −1948 . doi: 10.11674/zwyf.18470[10] Zhou Y, Bai L, Song C P. Ammonium homeostasis and signaling in plant cells[J]. Science Bulletin, 2015, 60(8): 741−747. doi: 10.1007/s11434-015-0759-2 [11] Zhang S W, Zhang Y P, Wang Y D, et al. Nitrogen absorption pattern detection and expression analysis of nitrate transporters in flowering Chinese cabbage[J]. Horticulturae, 2022, 8: 188. doi: 10.3390/horticulturae8030188 [12] Sun C L, Liu L J, Wang L X, et al. Melatonin: A master regulator of plant development and stress responses[J]. Journal of Integrative Plant Biology, 2021, 63(1): 126−45. doi: 10.1111/jipb.12993 [13] 梁博文. 多巴胺和褪黑素对干旱和养分胁迫下苹果矿质养分吸收的调控研究[D]. 陕西杨凌: 西北农林科技大学博士学位论文, 2018. Liang B W. Regulatory function of dopamine and melatonin on mineral nutrient uptake in Malus under drought and nutrient stresses[D]. Yangling, Shaanxi: PhD Dissertation of Northwest A&F University, 2018. Liang B W. Regulatory function of dopamine and melatonin on mineral nutrient uptake in Malus under drought and nutrient stresses[D]. Yangling, Shaanxi: PhD Dissertation of Northwest A&F University, 2018. [14] Liu L, Li D, Ma Y L, et al. Combined application of arbuscular mycorrhizal fungi and exogenous melatonin alleviates drought stress and improves plant growth in tobacco seedlings[J]. Journal of Plant Growth Regulation, 2020, 40(3): 1074−1087. [15] Qiao Y J, Yin L N, Wang B M, et al. Melatonin promotes plant growth by increasing nitrogen uptake and assimilation under nitrogen deficient condition in winter wheat[J]. Plant Physiology and Biochemistry, 2019, 139: 342−349. doi: 10.1016/j.plaphy.2019.03.037 [16] Du P H, Yin B Y, Cao Y, et al. Beneficial effects of exogenous melatonin and dopamine on low nitrate stress in Malus hupehensis[J]. Frontiers in Plant Science, 2021, 12: 807472. [17] Cao Y, Du P H, Yin B Y, et al. Melatonin and dopamine enhance waterlogging tolerance by modulating ROS scavenging, nitrogen uptake, and the rhizosphere microbial community in Malus hupehensis[J]. Plant and Soil, 2023, 483: 475−493. doi: 10.1007/s11104-022-05759-w [18] Arnao M B, Hernandez-ruiz J. Melatonin: A new plant hormone and/or a plant master regulator?[J]. Trends in Plant Science, 2019, 24(1): 38−48. doi: 10.1016/j.tplants.2018.10.010 [19] 古咸彬, 陆玲鸿, 宋根华, 等. 外源褪黑素预处理对干旱胁迫下桃苗生长的缓解效应[J]. 植物生理学报, 2022, 58(2): 309−318. Gu X B, Lu L H, Song G H, et al. The mitigative effect of exogenous melatonin pretreatment on peach seedling growth under drought stress[J]. Plant Physiology Journal, 2022, 58(2): 309−318. Gu X B, Lu L H, Song G H, et al . The mitigative effect of exogenous melatonin pretreatment on peach seedling growth under drought stress[J]. Plant Physiology Journal,2022 ,58 (2 ):309 −318 .[20] Li C, Tan D X, Liang D, et al. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress[J]. Journal of Experimental Botany, 2015, 66(3): 669−80. doi: 10.1093/jxb/eru476 [21] 许丽丽, 岳倩宇, 卞凤娥, 等. 褪黑素对葡萄果实成熟及乙烯和ABA含量的影响[J]. 植物生理学报, 2017, 53(12): 2181−2188. Xu L L, Yue Q Y, Bian F E, et al. Effects of melatonin treatment on grape berry ripening and contents of ethylene and ABA[J]. Plant Physiology Journal, 2017, 53(12): 2181−2188. doi: 10.13592/j.cnki.ppj.2017.0244 Xu L L, Yue Q Y, Bian F E, et al . Effects of melatonin treatment on grape berry ripening and contents of ethylene and ABA[J]. Plant Physiology Journal,2017 ,53 (12 ):2181 −2188 . doi: 10.13592/j.cnki.ppj.2017.0244[22] Chen L, Lu B, Liu L T, et al. Melatonin promotes seed germination under salt stress by regulating ABA and GA3 in cotton (Gossypium hirsutum L.)[J]. Plant Physiology and Biochemistry, 2021, 162: 506−516. doi: 10.1016/j.plaphy.2021.03.029 [23] 解斌, 赵德英, 陈艳辉, 等. 不同品种苹果幼树对氮磷亏缺的生理响应[J]. 植物营养与肥料学报, 2022, 28(11): 2106−2117. Xie B, Zhao D Y, Chen Y H, et al. Physiological response of young trees of different apple cultivars to nitrogen and phosphorus deficiency[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(11): 2106−2117. doi: 10.11674/zwyf.2022078 Xie B, Zhao D Y, Chen Y H, et al . Physiological response of young trees of different apple cultivars to nitrogen and phosphorus deficiency[J]. Journal of Plant Nutrition and Fertilizers,2022 ,28 (11 ):2106 −2117 . doi: 10.11674/zwyf.2022078[24] Meng S, Wang X L, Bian Z, et al. Melatonin enhances nitrogen metabolism and haustorium development in hemiparasite Santalum album Linn[J]. Environmental and Experimental Botany, 2021, 186: 104460. doi: 10.1016/j.envexpbot.2021.104460 [25] 巢成生, 王玉乾, 沈欣杰, 等. 甘蓝型油菜苗期氮高效吸收转运特征研究[J]. 中国农业科学, 2022, 55(6): 1172−1188. Chao C S, Wang Y Q, Shen X J, et al. Characteristics of efficient nitrogen uptake and transport of rapeseed at seedling stage[J]. Scientia Agricultura Sinica, 2022, 55(6): 1172−1188. doi: 10.3864/j.issn.0578-1752.2022.06.010 Chao C S, Wang Y Q, Shen X J, et al . Characteristics of efficient nitrogen uptake and transport of rapeseed at seedling stage[J]. Scientia Agricultura Sinica,2022 ,55 (6 ):1172 −1188 . doi: 10.3864/j.issn.0578-1752.2022.06.010 -