-
氮肥是确保水稻粮食安全不可缺少的资源[1−2],但过量氮肥施用也会带来病虫害增加,水稻倒伏减产,农业面源污染等诸多问题[3−4]。水稻对氮素的利用受到多种因素限制,如施氮量、氮运筹、移栽密度等。增施氮肥和适宜的氮运筹有利于水稻齐穗前期的干物质和氮素积累,有效提高水稻产量[5]。增施氮肥但氮肥运筹不合理会导致水稻贪青徒长,不利于水稻高产[6−7]。适度的增密减氮可以控制水稻无效分蘖,提高群体质量,可以稳产或者增产,但移栽密度过高会降低水稻个体生长质量导致减产[8]。桂君梅等[9]发现:不同水稻品种和种植模式对氮肥的响应程度不同,杂交稻的性状和产量优于籼稻或粳稻。长江流域是我国重要的水稻种植区域,优化氮肥管理措施对该区域水稻增产稳产具有重要意义。我们收集了长江流域水稻独立试验数据并进行综合分析,以明确氮肥管理在不同条件下(氮肥品种、区域和土壤条件等)的增产增效作用,为水稻生产中氮肥管理提供新思路。
-
利用中国知网(CNKI)和Web of Science两个数据库,以“氮运筹、施氮量、氮累积量和水稻产量”以及“N application, N rate, Nitrogen accumulation and rice yield”等为关键词,检索了2000—2021年国内外期刊发表的中国水稻施氮量、产量论文及学位论文。根据以下条件对文献进行了筛选:1)以单季稻、双季稻和稻油/稻麦轮作(不考虑再生稻)为研究对象的大田试验,且有明确的时间和地点信息;2)试验必须包含不施氮肥和施氮肥处理,且每一个处理重复至少3次;3)试验数据需至少包含水稻产量、吸氮量、成熟期干物质累积量中的两者;4)需详细记录试验前土壤的化学性质(至少包含土壤有机质含量、速效氮含量、速效磷含量和速效钾含量)和施氮量信息,氮肥指常规氮肥,不统计缓/控释肥和稳定性肥料等增效氮肥产品。对于每个选定的研究,直接从表格和文本中收集原始数据,如果数据为图形,则使用Get Data Graph Digitizer 2.24软件(Get Data Pty Ltd, Kogarah NSW 2210, 澳大利亚)提取。
文献中的水稻植株吸氮量、地上部干物质量、产量为响应变量,水稻施氮量、基肥分蘖肥之和的比例、种植区域、水稻品种、种植模式、移栽苗数和土壤养分指标为解释变量,其中种植区域参照文献Wu等[10]研究划分,土壤养分指标划分以第二次土壤普查为准[11],具体划分如表1所示。
表 1 氮肥管理对水稻产量及其构成因子效应数据库解释变量的分组
Table 1. Classification and grouping of explanatory variables of nitrogen management on rice yield and component factors
解释变量 Explanatory variables 分组 Group 水稻种植区域
Rice planting area长江流域上游、中游、下游
Upper, middle, and lower reaches of the Yangtze River basin水稻品种 Rice variety 杂交稻、粳稻、籼稻 Hybrid rice, japonica rice, and indica rice 水稻种植模式
Rice planting mode单季稻、双季稻、水旱轮作 (水稻—油菜,水稻—小麦)
Single cropping, double cropping, Rice-upland rotation (Rice−rape, rice−wheat)水稻移栽密度 Rice transplant density (×104/hm2) ≤50, 50~100, >100 总施氮量 Total N application rate (kg/hm2) ≤50, 50~100, 100~150, 150~200, 200~250, 250~300, >300 基蘖氮肥量 Base and tillering N rate (kg/hm2) ≤90, 90~120, 120~150, 150~180, 180~210, >210 有机质含量 Soil organic matter content (g/kg) ≤10, 10~20, >20 速效氮含量 Available N content (mg/kg) ≤90, 90~150, >150 速效磷含量 Available P content (mg/kg) ≤10, 10~20, >20 速效钾含量 Available K content (mg/kg) ≤80, 80~160, >160 注:长江流域上游包括四川东部、陕西南部、湖北西部、重庆。长江流域中游包括湖北东部、河南南部、江西北部、湖南北部、安徽。长江流域下游包括山东南部、浙江北部、江苏。
Note: Upper reaches of the Yangtze River Basin include eastern Sichuan, southern Shaanxi, western Hubei, Chongqing; middle reaches of the Yangtze River Basin include eastern Hubei, southern Henan, northern Jiangxi, northern Hunan, and Anhui; lower reaches of the Yangtze River Basin include southern Shandong, northern Zhejiang, and Jiangsu. -
蔡岸冬等[12]认为整合分析(meta-analysis)方法可对多个相互独立的研究结果进行定量综合评价。本研究采用 Meta Win 2.1 软件进行整合分析。为了描述施氮对水稻吸氮量、干物质累积量、产量的影响,用自然对数响应比lnR来表示[13]:
$ ln\;R= \mathrm{ln}{(x}_{\mathrm{a}}/{x}_{\mathrm{b}}) $ 式中:xa和xb分别是施氮和不施氮处理对应的水稻植株吸氮量、地上部干物质量、产量的平均值。在分组计算合并效应时,需对独立的响应比进行加权处理,根据参考文献[14]公式如下:
$ V= \frac{{S D}_{a}^{2}}{{nx}_{a}^{2}}+\frac{{S D}_{b}^{2}}{{nx}_{b}^{2}} $ $ W= \frac{1}{V} $ 式中:V为平均变异系数,W为权重系数,
$ {S D}_{a}^{2} $ 和$ {S D}_{b}^{2} $ 分别代表施肥处理组和不施肥处理组的标准差,由于我们分析的大多数研究没有报告结果的标准偏差,因此,通过平均数的5%作为相应处理的SD[15]。其中n分别对应施氮和不施氮处理各自的重复数。通过卡方检验(Chi-square test) 对不同分组间的效应值进行异质性检验,若检验结果P<0.05,表示分组间存在异质性,采用随机效应模型,反之采用固定效应模型[16]。本研究采用随机效应模型计算平均效应值,95%置信区间(CI)采用bootstrapping (n=4999)法进行估计。本研究中的合并效应值以百分比表示,通过公式(
$ {e}^{\mathrm{l}\mathrm{n}R} $ – 1)×100%进行换算[17]。如果变量的95%CI与零重叠,表明与不施氮肥处理相比,施用氮肥未显著影响该变量。如果变量的95%CI没有与零重叠,则认为它们的均值存在显著差异,在零刻度右边表明施氮处理显著高于不施氮处理,在零刻度左边表明施氮处理显著低于不施氮处理[18]。说明该效应结果受施氮水平分组因素显著影响。有异质性采用随机效应模型,无异质性采用固定效应模型。 -
参数计算参考朱从桦等[19]的方法。
氮干物质生产效率(kg/kg)=成熟期地上部干物质累积量/成熟期地上部吸氮量;
氮稻谷生产效率(kg/kg)=籽粒产量/成熟期地上部吸氮量;
收获指数(%)=籽粒产量/成熟期地上部干物质累积量×100;
氮肥吸收利用率(%)=(成熟期施氮区地上部吸氮量–成熟期不施氮区地上部吸氮量)/施氮量×100;
氮肥农学效率(kg/kg)=(施氮区籽粒产量–不施氮区籽粒产量)/施氮量;
氮肥偏生产力(kg/kg)=作物籽粒产量/施氮量;
水稻移栽密度(×104/hm2)= [1/(行距×株距)]×每穴苗数。
-
采用Microsoft Excel 2010软件进行数据整理,MetaWin 2.1软件进行meta统计分析,运用SPSS单因素分析中的Duncan法进行显著性分析,采用 Sigmaplot 10.0、Origin 2017软件绘图。
-
如图1所示,长江流域施氮肥处理的水稻平均吸氮量、地上部干物质量和产量均显著高于不施氮肥处理,不施氮肥处理下,分别为86.9、11327.5 和6319.7 kg/hm2,施用氮肥后可分别达到166.6、16763.0 和8750.4 kg/hm2,提升幅度分别为91.7%、47.9%和38.4%,产量提高2430.7 kg/hm2。利用meta 软件分析了水稻吸氮量、地上部干物质量和产量对施肥的响应比(本研究响应比是指施肥对响应变量增加的幅度),且分布检验表明全部响应比的相对频率(R2>0.98)均符合正态分布。
-
如图2所示,水稻成熟期吸氮量、地上部干物质量的提升幅度均随总氮肥、基蘖肥用氮量(基肥和分蘖肥氮之和)增多呈增加或持平趋势;水稻产量提升幅度随总氮肥用量增多持平,随基蘖肥用氮量增多略微有降低趋势。吸氮量的提升幅度在氮肥用量超过300 kg/hm2、基蘖肥用氮量超过180 kg/hm2时无显著性提升,分别为111.3%和116.4%;地上部干物质量的提升幅度在氮肥用量超过250 kg/hm2、基蘖肥用氮量超过180 kg/hm2时无显著性提升,分别为49.1%和53.7%;产量的提升幅度在氮肥用量超过200 kg/hm2、基蘖肥用氮量超过120 kg/hm2时无显著性提升,分别为42.5%和47.3%。
-
水稻种植区域、水稻品种、水稻种植模式及种植密度影响着水稻吸氮量、地上部干物质量和产量对氮肥量的响应(图3)。长江流域中、下游水稻吸氮量和地上部干物质量对施氮的响应程度与上游地区无显著差异,但产量响应显著高于上游地区,上游氮肥对产量提升幅度为24.9%,中游和下游提升幅度分别为42.4%和41.8%。施氮对杂交稻地上部干物质量的提升幅度低于对籼稻和粳稻,但对杂交稻吸氮量和产量的提升幅度却高于籼稻和粳稻,分别为97.9%和43.9%,较粳稻及籼稻分别增加12.6%~15.2%和3.5%~5.1%。施氮对不同种植模式下的水稻吸氮量、地上部干物质量和产量的提升幅度变化趋势相同,对双季稻、水旱轮作的提升效果显著优于对单季稻。单季稻产量增幅29.1%,双季稻和水旱轮作产量增幅分别为46.3%和43.8%。氮肥对水稻吸氮量、地上部干物质量和产量的提升幅度随水稻种植密度的增加而增大,但移栽密度50~100×104/hm2和>100×104/hm2之间,水稻吸氮量和产量的增幅变化很小,分别仅为0.6%和0.3%。
-
如图4所示,氮肥对水稻吸氮量、地上部干物质量和产量的作用受到土壤养分含量的影响。土壤有机质水平对氮肥提升水稻地上部干物质量和产量的效应无显著差异,低有机质含量土壤氮肥提升水稻吸氮量的幅度显著高于高有机质含量土壤,高有机质含量土壤的提升幅度又显著高于中等有机质含量土壤(P<0.001)。速效氮水平对氮肥提升产量的效应无显著差异,低速效氮土壤氮肥提升水稻吸氮量和地上部干物质量的幅度显著高于其他速效氮水平土壤,中等速效氮土壤氮肥提升水稻吸氮量幅度显著高于高速效氮土壤,提升地上部干物质量的幅度无显著差异。速效磷水平对氮肥提升水稻吸氮量、地上部干物质量和产量的效应无显著差异。速效钾水平对氮肥提升水稻吸氮量和地上部干物质量的效应无显著差异,低速效钾含量土壤氮肥提升水稻产量的幅度显著高于其他速效钾含量水平土壤,中等速效钾含量与高速效钾含量土壤的提升幅度无显著差异。总之,在土壤高有机质(>725 g/kg)和速效磷(>20 mg/kg)及低速效氮(<90 mg/kg)和速效钾(<80 mg/kg)土壤中,氮肥增产率可达43.3%~48.5%。
-
不同施氮量对水稻氮吸收及利用效率的影响具有差异性。表2结果显示,氮素干物质量生产效率和氮稻谷生产效率随施氮量增加整体变化趋势相同,收获指数在施氮量不超过150 kg/hm2下持平,超过后随施氮量增加而降低;氮吸收利用效率、农学利用效率和氮肥偏生产力随施氮量增加而降低,在施氮量低于50 kg/hm2下分别取得最大值,分别为56.19%、20.88 kg/kg和158.69 kg/kg。
表 2 不同施氮量水平下水稻氮吸收及利用效率
Table 2. Nitrogen absorption and utilization efficiency of rice under different N application rates
施氮量
N rate
(kg/hm2)氮素干物质量生产效率 (kg/kg)
Dry matter production
efficiency of N氮稻谷生产效率 (kg/kg)
Grain production
efficiency of N收获指数 (%)
HI氮吸收利用效率 (%)
N absorption use efficiency氮农学利用效率 (kg/kg)
Agronomy use efficiency of N氮肥偏生产力 (kg/kg)
Partial factor productivity
of N fertilizer平均值
Averagen 平均值
Averagen 平均值
Averagen 平均值
Averagen 平均值
Averagen 平均值
Averagen ≤50 124.06±14.92 6 74.15±21.17 6 55.9±9.94 10 56.19±13.07 6 20.88±9.27 10 158.69±13.12 10 (50~100) 103.57±17.28 52 59.40±13.84 52 56.58±8.57 57 50.79±15.96 52 18.97±7.65 57 90.11±19.84 57 (100~150) 120.85±38.88 154 63.32±24.02 162 55.69±11.69 194 46.38±24.93 162 16.19±6.08 202 65.51±15.59 202 (150~200) 100.40±27.09 132 52.44±14.82 136 54.70±9.34 210 43.40±22.74 136 13.57±4.7 214 45.79±6.7 214 (200~250) 114.14±36.86 177 58.97±18.24 178 52.13±6.24 188 39.08±13.25 178 12.05±4.83 189 41.01±7.59 189 (250~300) 111.19±27.49 147 54.40±11.96 162 49.71±8.21 188 32.90±9.1 162 10.13±5.18 203 33.21±6.71 203 >300 99.85±23.22 57 49.07±9.26 59 49.38±7.38 76 29.37±9.72 60 8.23±4.97 80 26.83±5.08 79 注:n—样本数。
Note:n—Sample number; HI—Harvest index. -
如图5所示,影响水稻产量和吸氮量的主控因素存在差异。氮肥提高水稻产量主要受速效磷、速效钾、速效氮含量的影响,结合土壤有机质,四者总的贡献率达到61.7%,四者对水稻吸氮量的总贡献率达40.2%;而水稻吸氮量主要受到水稻品种、种植区域和移栽密度的影响,三者总贡献率达到38.9%。
-
本研究通过整合长江流域水稻吸氮量、地上部干物质量数据发现,与不施氮肥相比,施用氮肥条件下可以显著提高水稻地上部干物质量和吸氮量(图1),施用氮肥能供给植物吸收,利于水稻氮素积累促进水稻生长[20]。袁锐等[21]研究发现,氮肥施用会促进水稻营养生长,增加地上部氮含量和干物质累积量。本研究表明,水稻成熟期吸氮量、地上部干物质量提升幅度均随氮肥用量增多而增加(图2),水稻基肥蘖肥施氮量超过180 kg/hm2时对水稻成熟期吸氮量、地上部干物质量提升幅度无显著性变化。
长江流域下游水稻吸氮量、地上部干物质量提升幅度最大,原因有两个方面。一方面,长江流域下游地区地势平坦,而上游地区多丘陵山地养分容易流失,因此,水稻对氮肥的响应程度下游地区较低而上游地区较高[17, 22] ;另一方面,长江上游和下游降雨和气候等条件不同,水稻对氮肥响应也不同[23] 。水稻种植模式划分下,单季稻吸氮量、地上部干物质量及产量提升幅度低于双季稻和水旱轮作模式,任科宇等[17]对不同气候、土壤等条件下产量提升幅度进行荟萃分析,但对水稻种植模式对产量提升幅度的影响未作研究。水稻品种对水稻吸氮量的贡献率最高,为14.6% (图5),杂交水稻的吸氮量、产量提升幅度最高(图3),原因是杂交稻通过提高叶面积指数和干物重显著增产[24] 。本研究发现,水稻移栽密度提高能增加地上部干物质量(>100×104/hm2),提升水稻吸氮量(>50×104/hm2),尹彩侠等[8]也证明提高移栽密度,使水稻群体物质与氮素积累维持了较高水平,移栽密度过大,引起水稻群体养分竞争加剧,导致干物质与氮素积累下降。
土壤速效氮含量<90 mg/kg水稻氮累积和地上部干物质量提升幅度最高,土壤氮含量较为贫瘠的区域对氮肥的输入依赖性更强[25−26] ,因此对氮肥输入的响应程度更高。而土壤速效磷含量越高(>20 mg/kg)对外源氮肥的响应程度增加,磷是水稻体内生长代谢必需的养分之一,能与氮肥协同促进水稻生长,土壤速效磷含量较高的种植区域能提高水稻对氮肥等养分的需求和吸收[27] 。
-
与不施氮肥相比,施用氮肥条件下可以显著提高水稻产量2430.7 kg/hm2 (图1)。施氮量超过200 kg/hm2,水稻产量增幅没有显著性变化。张福锁等[28]指出,在我国目前的栽培技术和产量水平下,粮食作物的推荐施氮总量为 150~200 kg/hm2,即使在高产条件下也不应超过 250 kg/hm2,这说明长江流域适宜施氮量也符合此规律。王颖姮等[22]发现,过量的氮肥投入会促进水稻吸氮量增加,但也容易导致水稻抵御自然灾害及病虫害的能力下降。随基蘖肥用氮量增加至超过120 kg/hm2,水稻产量提升幅度响应逐渐变小,这是因为基蘖氮肥占总氮肥比例过大,穗期氮肥过少则导致水稻前期营养生长过于旺盛,后期没有足够的养分转移至籽粒中使产量提升幅度变小[6]。
长江流域上游水稻产量提升幅度最小,本研究结果显示上游流域土壤有机质平均含量为18.75 g/kg,速效氮平均含量为90 mg/kg,低于中下游流域(有机质和速效氮含量平均分别为26g/kg和122 mg/kg)。双季稻和水旱轮作模式下的产量提升幅度均高于单季稻。单季稻生长周期平均长于双季稻,生育积温和光照时数的增加有利于水稻生长和产量的形成;水旱轮作能提高土地复种指数促进水稻生长和产量的形成[29]。本研究发现杂交稻产量提升幅度最高。杂交稻光温资源利用率高[30],桂君梅等[9]研究结果表明,产量的增幅对施氮量的响应更加敏感,杂交稻提高净光合同化物累积有利于更多的氮转运至籽粒中,提高水稻产量。本研究结果表明移栽密度在(50~100)×104/hm2下较50×104/hm2水稻产量提升幅度增大。陈海飞等[31]和Huang等[7]研究表明,通过合理移栽密度与适宜施氮量的协同调控,增加有效分蘖数,避免过多的无效分蘖争水争肥,形成优质个体和高质量的水稻群体,促进水稻高产;夏瑜等[32]研究同样表明,水稻移栽过密,水稻群体生长量过大,遮蔽严重,虽然成穗数较多,但由于个体生长受抑制,群体质量下降,导致水稻产量没有显著提高。
土壤是作物生长的主要载体,土壤养分含量与水稻生长密切相关[33],本研究表明土壤养分含量(AN、AP、AK)对水稻产量具有较高的贡献率(图5),且在土壤速效氮和速效钾含量较低的区域水稻产量提升幅度最高(图4)。以氮磷为例,它们是水稻生长组成和代谢活动的重要养分,土壤缺失外界养分输入对水稻影响程度增加。余华清等[34]认为,土壤速效磷含量越高,有利于水稻调动氮磷协同吸收效应机制, 提高植株养分的累积,还利于提高水稻颖花数和每穗粒数进而促进水稻增产。氮肥用量的提升会造成氮肥利用效率的进一步降低[35]。Li等[36]研究结果表明,不合理施用氮肥不仅不会增产,还会降低氮肥利用效率,增加氮素损失。
-
增施氮肥能有效提高水稻产量,但长江流域适宜氮施用量不宜超过250 kg/hm2,前期基肥和分蘖肥用氮量之和不宜超过120 kg/hm2,需施用穗肥,避免过多的氮肥投入增加水稻减产的风险,降低水稻的氮素利用效率。长江流域上游和中、下游气候环境和土壤理化性质的差异使水稻增产增效策略不同,上游可以选用杂交稻利用其良好的品种优势,单季稻模式应选择生育周期长的水稻品种以降低对氮肥的依赖性,也可采用双季稻或水旱轮作以改善土壤,达到减氮、增产增效的目的;中、下游双季稻或水旱轮作制度下,可适当提高移栽密度(不宜超过106/hm2),进一步提高水稻产量和氮利用率。
我国长江流域不同水稻种植区域氮肥和栽培管理策略研究
Study of nitrogen fertilizer management and cultivation strategies in different rice planting areas of the Yangtze River Basin of China
-
摘要:
【目的】 长江流域是我国水稻主要栽培区域,全面分析该区域氮肥管理水平下的水稻产量和氮肥利用率,以及水稻类型、栽培方式等因素对氮肥管理措施的影响,对我国长江流域水稻可持续发展具有重要意义。 【方法】 以施氮量、基蘖氮肥(基肥和分蘖肥氮之和)、种植区域、水稻品种、栽培模式、种植密度和土壤性质等关键词,在中国知网(CNKI)和Web of Science数据库中,共检索到国内外有关稻田氮肥管理论文56篇,进一步对试验处理和数据进行筛查,共获取有效数据956组。采用整合分析(meta-analysis)方法量化分析了不同条件下氮肥管理对水稻植株吸氮量、地上部干物质量和产量的影响。 【结果】 总氮量和基蘖肥用氮量分别不超过300和180 kg/hm2范围内,水稻植株吸氮量和地上部干物质量随氮肥量的增加而增加,而分别超过250和120 kg/hm2则产量没有显著增加。长江流域上游氮肥对产量提升幅度为24.9%,显著低于中游(42.4%)和下游(41.8%)水稻种植区域。水稻品种之间,杂交稻品种较粳稻和籼稻氮肥增加水稻植株吸氮量和产量更具有优势,分别增加12.6%~15.2%和3.5%~5.1%。氮肥对单季稻吸氮量、地上部干物质量、产量提升幅度均显著低于双季稻和水旱轮作,例如单季稻产量增幅29.1%,双季稻和水旱轮作产量增幅分别为46.3%和43.8%。长江流域水稻移栽密度均不宜超过106/hm2,在此范围内,适度增加移栽密度能有效提高植株吸氮量和地上部干物质量。在土壤高有机质(>25 g/kg)和速效磷(>20 mg/kg)及低速效氮 (<90 mg/kg)和速效钾(<80 mg/kg)土壤中,水稻产量对氮肥响应程度最高,氮肥增产率可达43.3%~48.5%,且土壤有机质、速效磷、速效氮、速效钾对水稻产量和吸氮量总贡献率分别达到61.7%和40.2%。氮肥施用量(N)超过250 kg/hm2,氮素干物质生产效率、稻谷生产效率和收获指数下降,氮素吸收利用效率、农学利用效率和偏生产力甚至随施氮量增加而不断降低。 【结论】 长江流域水稻总施N量不宜超过250 kg/hm2,基肥和分蘖肥N投入量之和不宜超过120 kg/hm2,基糵肥与总氮肥之差应以穗肥补齐。长江流域不同种植区域水稻栽培管理策略不同,上游应优先选用杂交稻以利用其良好的品种优势,单季稻模式水稻生育周期长的品种可以降低对氮肥的依赖性,否则采用双季稻或水旱轮作制度利于改善土壤,达到减氮、增产增效的目的,中、下游通过双季稻或水旱轮作模式,合理提高移栽密度(不宜超过106/hm2),能进一步提高水稻产量和氮利用率。 Abstract:【Objectives】 Nitrogen (N) fertilization plays important roles in yield and efficiency of rice production. We studied the suitable N management for different planting areas, rice varieties, and cultivation methods, etc., for the efficient rice production in the Yangtze River Basin, China. 【Methods】 Literatures were searched in CNKI and Web of Sciences, using key words N application rate, sum of base and tillering N fertilizer (BTN rate), planting area, rice variety, cropping system, transplanting density, soil property, etc. There were total of 56 published papers meet the requirement of N, and a total of 956 sets of qualified data were screened out from the field experiments of the papers. Meta-analysis was used to quantitatively analyze the effects of N fertilizer management on N uptake, aboveground dry matter weight (ADMW), and yield of rice under different N application rates, basal+tiller fertilizer rates (sum of basal and tiller fertilizers), planting areas, varieties, planting modes, transplanting densities, and soil properties. 【Results】 BOth the N uptake and ADMW of rice would not stop increasing with the enhancement of N fertilizer rate until the total N rate and the basal+tiller fertilizer rate beyond 300 and 180 kg/hm2, when they were higher than 250 kg/hm2 and 120 kg/hm2, there was no significant yield increase. The grain yield increase caused by N fertilizer in the upper reaches of the Yangtze River Basin was 24.9%, significantly lower than those in the middle reaches (42.4%) and lower reaches (41.8%) of rice planting areas. Although there was no significant difference among rice varieties, hybrid rice varieties had an advantage in increasing N uptake and rice yield compared to japonica and indica rice, with an increase of 12.6%−15.2% and 3.5%−5.1%. N fertilizer significantly improved less N uptake, ADMW, and yield of single cropping rice compared to double cropping rice and rice -upland rotation. For example, the yield of single cropping rice was increased by 29.1%, while the yield of double cropping rice and rice-upland rotation were increased by 46.3% and 43.8%, respectively. When the transplanting density was controlled within 106/hm2, increasing the transplanting density could effectively improve the N uptake and ABDW of rice. Under high soil organic matter (>25 g/kg) and available P (>20 mg/kg), and low available N (<90 mg/kg) and potassium in soil (<80 mg/kg), rice yield responded the highest to N fertilizer, with rice yield increase ofv43.3%−48.5%, the total contribution rates of SOM, AP, AN, and AK to rice yield and nitrogen uptake reached 61.7% and 40.2%, respectively. N dry matter production efficiency, rice production efficiency, and harvest index all decreased when N rate exceeded 250 kg/hm2, while N absorption use efficiency, agronomic use efficiency, and partial productivity all decreased with increasing nitrogen application rate. 【Conclusions】 Increasing the application of nitrogen fertilizer in the Yangtze River Basin can effectively improve rice yield. To decrease the risk of yield reduction and increase N use efficiency, the total N input should not exceed 250 kg/hm2, the sum of base and tillering N should controlled within 120 kg/hm2, and the gap with the total N input could be top dressed as ear fertilizer. In the upstream of the Yangtze River Basin, hybrid rice is preferred as the good variety advantages. Under single cropping system, the rice cultivars with long growth period should be chosen to reduce their dependence on N fertilizer. Double rice cropping or rice-upland rotation system is beneficial for improving soil fertility and achieving the goals of reducing N, increasing yield and N use efficiency. In the double rice cropping or rice-upland rotation system of the middle and lower reaches, reasonable increase of transplant density (< 106/hm2) can further improve rice yield and N use efficiency. -
表 1 氮肥管理对水稻产量及其构成因子效应数据库解释变量的分组
Table 1. Classification and grouping of explanatory variables of nitrogen management on rice yield and component factors
解释变量 Explanatory variables 分组 Group 水稻种植区域
Rice planting area长江流域上游、中游、下游
Upper, middle, and lower reaches of the Yangtze River basin水稻品种 Rice variety 杂交稻、粳稻、籼稻 Hybrid rice, japonica rice, and indica rice 水稻种植模式
Rice planting mode单季稻、双季稻、水旱轮作 (水稻—油菜,水稻—小麦)
Single cropping, double cropping, Rice-upland rotation (Rice−rape, rice−wheat)水稻移栽密度 Rice transplant density (×104/hm2) ≤50, 50~100, >100 总施氮量 Total N application rate (kg/hm2) ≤50, 50~100, 100~150, 150~200, 200~250, 250~300, >300 基蘖氮肥量 Base and tillering N rate (kg/hm2) ≤90, 90~120, 120~150, 150~180, 180~210, >210 有机质含量 Soil organic matter content (g/kg) ≤10, 10~20, >20 速效氮含量 Available N content (mg/kg) ≤90, 90~150, >150 速效磷含量 Available P content (mg/kg) ≤10, 10~20, >20 速效钾含量 Available K content (mg/kg) ≤80, 80~160, >160 注:长江流域上游包括四川东部、陕西南部、湖北西部、重庆。长江流域中游包括湖北东部、河南南部、江西北部、湖南北部、安徽。长江流域下游包括山东南部、浙江北部、江苏。
Note: Upper reaches of the Yangtze River Basin include eastern Sichuan, southern Shaanxi, western Hubei, Chongqing; middle reaches of the Yangtze River Basin include eastern Hubei, southern Henan, northern Jiangxi, northern Hunan, and Anhui; lower reaches of the Yangtze River Basin include southern Shandong, northern Zhejiang, and Jiangsu.表 2 不同施氮量水平下水稻氮吸收及利用效率
Table 2. Nitrogen absorption and utilization efficiency of rice under different N application rates
施氮量
N rate
(kg/hm2)氮素干物质量生产效率 (kg/kg)
Dry matter production
efficiency of N氮稻谷生产效率 (kg/kg)
Grain production
efficiency of N收获指数 (%)
HI氮吸收利用效率 (%)
N absorption use efficiency氮农学利用效率 (kg/kg)
Agronomy use efficiency of N氮肥偏生产力 (kg/kg)
Partial factor productivity
of N fertilizer平均值
Averagen 平均值
Averagen 平均值
Averagen 平均值
Averagen 平均值
Averagen 平均值
Averagen ≤50 124.06±14.92 6 74.15±21.17 6 55.9±9.94 10 56.19±13.07 6 20.88±9.27 10 158.69±13.12 10 (50~100) 103.57±17.28 52 59.40±13.84 52 56.58±8.57 57 50.79±15.96 52 18.97±7.65 57 90.11±19.84 57 (100~150) 120.85±38.88 154 63.32±24.02 162 55.69±11.69 194 46.38±24.93 162 16.19±6.08 202 65.51±15.59 202 (150~200) 100.40±27.09 132 52.44±14.82 136 54.70±9.34 210 43.40±22.74 136 13.57±4.7 214 45.79±6.7 214 (200~250) 114.14±36.86 177 58.97±18.24 178 52.13±6.24 188 39.08±13.25 178 12.05±4.83 189 41.01±7.59 189 (250~300) 111.19±27.49 147 54.40±11.96 162 49.71±8.21 188 32.90±9.1 162 10.13±5.18 203 33.21±6.71 203 >300 99.85±23.22 57 49.07±9.26 59 49.38±7.38 76 29.37±9.72 60 8.23±4.97 80 26.83±5.08 79 注:n—样本数。
Note:n—Sample number; HI—Harvest index. -
[1] Yang Y J, Zhang H P, Shan Y H, et al. Response of denitrification in paddy soils with different nitrification rates to soil moisture and glucose addition[J]. Science of the Total Environment, 2019, 651: 2097−2104. doi: 10.1016/j.scitotenv.2018.10.066 [2] 赵正洪, 戴力, 黄见良, 等. 长江中游稻区水稻产业发展现状、问题与建议[J]. 中国水稻科学, 2019, 33(6): 553–564. Zhao Z H, Dai L, Huang J L, et al. Status, problems and solutions in rice industry development in the middle reaches of the Yangtze River[J] Chinese Journal of Rice Science, 2019, 33(6): 553– 564. Zhao Z H, Dai L, Huang J L, et al. Status, problems and solutions in rice industry development in the middle reaches of the Yangtze River[J] Chinese Journal of Rice Science, 2019, 33(6): 553– 564. [3] Bhattacharyya P, Roy K S, Neogi S, et al. Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice[J]. Soil and Tillage Research, 2012, 124: 119−130. doi: 10.1016/j.still.2012.05.015 [4] 程家安, 祝增荣. 中国水稻病虫草害治理60年: 问题与对策[J]. 植物保护学报, 2017, 44(6): 885−895. Cheng J A, Zhu Z R. Development of rice pest management in the past 60 years in China: Problems and strategies[J]. Journal of Plant Protection, 2017, 44(6): 885−895. Cheng J A, Zhu Z R . Development of rice pest management in the past 60 years in China: Problems and strategies[J]. Journal of Plant Protection,2017 ,44 (6 ):885 −895 .[5] 任维晨, 常庆霞, 张亚军, 等. 不同氮利用率粳稻品种的碳氮积累与转运特征及其生理机制[J]. 中国水稻科学, 2022, 36(6): 586−600. Ren W C, Chang Q X, Zhang Y J, et al. Characteristics and physiological mechanism of carbon and nitrogen accumulation and translocation of japonica rice varieties differing in nitrogen use efficiency[J]. Chinese Journal of Rice Science, 2022, 36(6): 586−600. Ren W C, Chang Q X, Zhang Y J, et al . Characteristics and physiological mechanism of carbon and nitrogen accumulation and translocation of japonica rice varieties differing in nitrogen use efficiency[J]. Chinese Journal of Rice Science,2022 ,36 (6 ):586 −600 .[6] 刘昆, 黄健, 周沈琪, 等. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机制[J]. 作物学报, 2022, 48(8): 2028– 2040. Liu K, Huang J, Zhou S Q, et al. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism[J] Acta Agronomica Sinica, 2022, 48(8): 2028–2040. Liu K, Huang J, Zhou S Q, et al. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism[J] Acta Agronomica Sinica, 2022, 48(8): 2028–2040. [7] Huang L Y, Yang D S, Li X X, et al. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice[J]. Field Crops Research, 2019, 233: 49−58. doi: 10.1016/j.fcr.2019.01.005 [8] 尹彩侠, 刘志全, 孔丽丽, 等. 减氮增密提高寒地水稻产量与氮素吸收利用[J]. 农业资源与环境学报, 2022, 39(6): 1124−1132. Yin C X, Liu Z Q, Kong L L, et al. Reducing nitrogen and increasing rice transplanting density in a cold region of China can improve rice yield, nitrogen absorption, and nitrogen utilization[J]. Journal of Agricultural Resources and Environment, 2022, 39(6): 1124−1132. Yin C X, Liu Z Q, Kong L L, et al . Reducing nitrogen and increasing rice transplanting density in a cold region of China can improve rice yield, nitrogen absorption, and nitrogen utilization[J]. Journal of Agricultural Resources and Environment,2022 ,39 (6 ):1124 −1132 .[9] 桂君梅, 王林友, 范小娟, 等. 基于InDel分子标记的籼粳杂交稻与粳粳杂交稻的杂种优势比较研究[J]. 中国农业科学, 2016, 49(2): 219−231. Gui J M, Wang L Y, Fan X J, et al. Comparison the heterosis of indica-japonica hybrids and japonica-japonica hybrids using InDel markers[J]. Scientia Agricultura Sinica, 2016, 49(2): 219−231. Gui J M, Wang L Y, Fan X J, et al . Comparison the heterosis of indica-japonica hybrids and japonica-japonica hybrids using InDel markers[J]. Scientia Agricultura Sinica,2016 ,49 (2 ):219 −231 .[10] Wu L, Chen X P, Cui Z L, et al. Improving nitrogen management via a regional management plan for Chinese rice production[J]. Environmental Research Letters, 2015, 10(9): 095011. doi: 10.1088/1748-9326/10/9/095011 [11] 全国土壤普查办公室. 中国土壤[M]. 中国农业出版社, 1998, 356. National Soil Census Office. Soils in China[M]. Beijing: China Agriculture Press, 1998, 356. National Soil Census Office. Soils in China[M]. Beijing: China Agriculture Press, 1998, 356. [12] 蔡岸冬, 张文菊, 杨品品, 等. 基于Meta-Analysis研究施肥对中国农田土壤有机碳及其组分的影响[J]. 中国农业科学, 2015, 48(15): 2995–3004. Cai A D, Zhang W J, Yang P P, et al. Effect degree of fertilization practices on soil organic carbon and fraction of croplands in China: Based on meta-analysis[J]Scientia Agricultura Sinica , 2015, 48(15): 2995–3004. Cai A D, Zhang W J, Yang P P, et al. Effect degree of fertilization practices on soil organic carbon and fraction of croplands in China: Based on meta-analysis[J]Scientia Agricultura Sinica , 2015, 48(15): 2995–3004. [13] Zhang X Y, Fang Q C, Zhang T, et al. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis[J]. Global Change Biology, 2020, 26(2): 888−900. [14] Lam S K, Chen D, Norton R, et al. Nitrogen dynamics in grain crop and legume pasture systems under elevated atmospheric carbon dioxide concentration: A meta-analysis[J]. Global Change Biology, 2012, 18(9): 2853−2859. doi: 10.1111/j.1365-2486.2012.02758.x [15] 韩天富, 马常宝, 黄晶, 等. 基于Meta分析中国水稻产量对施肥的响应特征[J]. 中国农业科学, 2019, 52(11): 1918−1929. Han T F, Ma C B, Huang J, et al. Variation in rice yield response to fertilization in China: Meta-analysis[J]. Scientia Agricultura Sinica, 2019, 52(11): 1918−1929. Han T F, Ma C B, Huang J, et al . Variation in rice yield response to fertilization in China: Meta-analysis[J]. Scientia Agricultura Sinica,2019 ,52 (11 ):1918 −1929 .[16] Liu C, Lu M, Cui J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis[J]. Global Change Biology, 2014, 20(5): 1366−1381. doi: 10.1111/gcb.12517 [17] 任科宇, 陆东明, 邹洪琴, 等. 有机替代对长江流域水稻产量和籽粒含氮量的影响[J]. 农业资源与环境学报, 2022, 39(4): 716−725. Ren K Y, Lu D M, Zou H Q, et al. Effects of substituting manure for fertilizer on yield and nitrogen content of rice grain in the Yangtze River basin[J]. Journal of Agricultural Resources and Environment, 2022, 39(4): 716−725. Ren K Y, Lu D M, Zou H Q, et al . Effects of substituting manure for fertilizer on yield and nitrogen content of rice grain in the Yangtze River basin[J]. Journal of Agricultural Resources and Environment,2022 ,39 (4 ):716 −725 .[18] Hedges L V, Gurevitch J, Curtis P S. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 1999, 80(4): 1150−1156. doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 [19] 朱从桦, 张玉屏, 向镜, 等. 侧深施氮对机插水稻产量形成及氮素利用的影响[J]. 中国农业科学, 2019, 52(23): 4228−4239. Zhu C H, Zhang Y P, Xiang J, et al. Effects of side deep fertilization on yield formation and nitrogen utilization of mechanized transplanting rice[J]. Scientia Agricultura Sinica, 2019, 52(23): 4228−4239. Zhu C H, Zhang Y P, Xiang J, et al . Effects of side deep fertilization on yield formation and nitrogen utilization of mechanized transplanting rice[J]. Scientia Agricultura Sinica,2019 ,52 (23 ):4228 −4239 .[20] 石元亮, 王玲莉, 刘世彬, 聂鸿光. 中国化学肥料发展及其对农业的作用[J]. 土壤学报, 2008, 45(5): 852−864. Shi Y L, Wang L L, Liu S B, Nie H G. Development of chemical fertilizer industry and its effect on agriculture of China[J]. Acta Pedologica Sinica, 2008, 45(5): 852−864. Shi Y L, Wang L L, Liu S B, Nie H G . Development of chemical fertilizer industry and its effect on agriculture of China[J]. Acta Pedologica Sinica,2008 ,45 (5 ):852 −864 .[21] 袁锐, 周群, 王志琴, 等. 籼粳杂交稻甬优2640氮素吸收利用特点[J]. 中国水稻科学, 2022, 36(1): 77−86. Yuan R, Zhou Q, Wang Z Q, et al. Characteristics of nitrogen absorption and utilization of an indica-japonica hybrid rice, Yongyou 2640[J]. Chinese Journal of Rice Science, 2022, 36(1): 77−86. Yuan R, Zhou Q, Wang Z Q, et al . Characteristics of nitrogen absorption and utilization of an indica-japonica hybrid rice, Yongyou 2640[J]. Chinese Journal of Rice Science,2022 ,36 (1 ):77 −86 .[22] 王颖姮, 陈丽娟, 崔丽丽, 等. 施氮量对优质稻“福香占”光合特性、产量及品质的影响[J]. 中国水稻科学, 2023, 37(1): 89−101. Wang Y H, Chen L J, Cui L L, et al. Effects of nitrogen rate on photosynthesis, yield and grain quality of superior quality rice “Fuxiangzhan”[J]. Chinese Journal of Rice Science, 2023, 37(1): 89−101. Wang Y H, Chen L J, Cui L L, et al . Effects of nitrogen rate on photosynthesis, yield and grain quality of superior quality rice “Fuxiangzhan”[J]. Chinese Journal of Rice Science,2023 ,37 (1 ):89 −101 .[23] 侯雯嘉, 耿婷, 陈群, 陈长青. 近20年气候变暖对东北水稻生育期和产量的影响[J]. 应用生态学报, 2015, 26(1): 249–259. Hou W J, Geng T, Chen Q, Chen C Q. Impacts of climate warming on growth period and yield of rice in Northeast China during recent two decades[J] Chinese Journal of Applied Ecology, 2015, 26(1): 249–259. Hou W J, Geng T, Chen Q, Chen C Q. Impacts of climate warming on growth period and yield of rice in Northeast China during recent two decades[J] Chinese Journal of Applied Ecology, 2015, 26(1): 249–259. [24] 孟天瑶, 许俊伟, 邵子彬, 等. 甬优系列籼粳杂交稻氮肥群体最高生产力的优势及形成特征[J]. 作物学报, 2015, 41(11): 1711−1725. Meng T Y, Xu J W, Shao Z B, et al. Advantages and their formation characteristics of the highest population productivity of nitrogen fertilization in japonica/indica hybrid rice of Yongyou series[J]. Acta Agronomica Sinica, 2015, 41(11): 1711−1725. doi: 10.3724/SP.J.1006.2015.01711 Meng T Y, Xu J W, Shao Z B, et al . Advantages and their formation characteristics of the highest population productivity of nitrogen fertilization in japonica/indica hybrid rice of Yongyou series[J]. Acta Agronomica Sinica,2015 ,41 (11 ):1711 −1725 . doi: 10.3724/SP.J.1006.2015.01711[25] Lin Y R, Watts D B, Santen E V, Cao G Q. Influence of poultry litter on crop productivity under different field conditions: A meta-analysis[J]. Agronomy Journal, 2018, 110(3): 807−818. doi: 10.2134/agronj2017.09.0513 [26] 冯洋, 陈海飞, 胡孝明, 等. 高、中、低产田水稻适宜施氮量和氮肥利用率的研究[J]. 植物营养与肥料学报, 2014, 20(1): 7−16. Feng Y, Chen H F, Hu X M, et al. Optimal nitrogen application rates on rice grain yield and nitrogen use efficiency in high, middle and low-yield paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(1): 7−16. Feng Y, Chen H F, Hu X M, et al . Optimal nitrogen application rates on rice grain yield and nitrogen use efficiency in high, middle and low-yield paddy fields[J]. Journal of Plant Nutrition and Fertilizers,2014 ,20 (1 ):7 −16 .[27] 侯云鹏, 孔丽丽, 李前, 等. 不同施磷水平下水稻产量、养分吸收及土壤磷素平衡研究[J]. 东北农业科学, 2016, 41(6): 61–66. Hou Y P, Kong L L, Li Q, et al. Studies on effect of different phosphorus levels on yield, nutrient absorption of rice and soil phosphorus balance[J] Journal of Northeast Agricultural Sciences, 2016, 41(6): 61–66. Hou Y P, Kong L L, Li Q, et al. Studies on effect of different phosphorus levels on yield, nutrient absorption of rice and soil phosphorus balance[J] Journal of Northeast Agricultural Sciences, 2016, 41(6): 61–66. [28] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915−924. Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915−924. Zhang F S, Wang J Q, Zhang W F, et al . Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica,2008 ,45 (5 ):915 −924 .[29] 杨蕊, 耿石英, 王小燕. 江汉平原不同氮肥运筹模式下豆麦和稻/麦轮作系统小麦产量和经济效益差异[J]. 应用生态学报, 2020, 31(2): 441−448. Yang R, Geng S Y, Wang X Y. Differences of wheat yield and economic benefits between soybean-wheat and rice-wheat cropping under different nitrogen fertilization patterns in Jianghan Plain, China[J]. Chinese Journal of Applied Ecology, 2020, 31(2): 441−448. Yang R, Geng S Y, Wang X Y . Differences of wheat yield and economic benefits between soybean-wheat and rice-wheat cropping under different nitrogen fertilization patterns in Jianghan Plain, China[J]. Chinese Journal of Applied Ecology,2020 ,31 (2 ):441 −448 .[30] 花劲, 周年兵, 张军, 等. 双季稻区晚稻“籼改粳”品种筛选[J]. 中国农业科学, 2014, 47(23): 4582−4594. Hua J, Zhou N B, Zhang J, et al. Selection of late rice cultivars of japonica rice switched from indica rice in double cropping rice area[J]. Scientia Agricultura Sinica, 2014, 47(23): 4582−4594. Hua J, Zhou N B, Zhang J, et al . Selection of late rice cultivars of japonica rice switched from indica rice in double cropping rice area[J]. Scientia Agricultura Sinica,2014 ,47 (23 ):4582 −4594 .[31] 陈海飞, 冯洋, 蔡红梅, 等. 氮肥与移栽密度互作对低产田水稻群体结构及产量的影响[J]. 植物营养与肥料学报, 2014, 20(6): 1319−1328. Chen H F, Feng Y, Cai H M, et al. Effect of the interaction of nitrogen and transplanting density on the rice population structure and grain yield in low-yield paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(6): 1319−1328. Chen H F, Feng Y, Cai H M, et al . Effect of the interaction of nitrogen and transplanting density on the rice population structure and grain yield in low-yield paddy fields[J]. Journal of Plant Nutrition and Fertilizers,2014 ,20 (6 ):1319 −1328 .[32] 夏瑜, 杨为芳, 唐茂艳, 等. 不同耕作方式和栽培密度下强化栽培水稻的生长发育与产量形成[J]. 中国农学通报, 2006, 22(12): 144−147. Xia Y, Yang W F, Tang M Y, et al. Plant growth and grain yield formation under different tillage patterns and different planting densities in the system of rice intensification[J]. Chinese Agricultural Science Bulletin, 2006, 22(12): 144−147. Xia Y, Yang W F, Tang M Y, et al . Plant growth and grain yield formation under different tillage patterns and different planting densities in the system of rice intensification[J]. Chinese Agricultural Science Bulletin,2006 ,22 (12 ):144 −147 .[33] 肖大康, 丁紫娟, 胡仁, 等. 不同地力水平和施氮量下水稻优质高产的氮肥有机替代比例[J]. 植物营养与肥料学报, 2022, 28(10): 1804−1815. Xiao D K, Ding Z J, Hu R, et al. A suitable replacement ratio of organic nitrogen for high rice yield and quality under different soil fertility levels and nitrogen application rates[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1804−1815. Xiao D K, Ding Z J, Hu R, et al . A suitable replacement ratio of organic nitrogen for high rice yield and quality under different soil fertility levels and nitrogen application rates[J]. Journal of Plant Nutrition and Fertilizers,2022 ,28 (10 ):1804 −1815 .[34] 余华清, 丁峰, 殷尧翥, 等. 不同水氮管理下麦茬杂交稻氮磷钾吸收和转运及其与产量的关系[J]. 湖南农业大学学报(自然科学版), 2019, 45(4): 337−343. Yu H Q, Ding F, Yin Y Z, et al. The uptake and transfer of nitrogen, phosphorus, potassium and their relationship with the yield in wheat stubble hybrid rice under different management of water and nitrogen[J]. Journal of Hunan Agricultural University (Natural Sciences), 2019, 45(4): 337−343. Yu H Q, Ding F, Yin Y Z, et al . The uptake and transfer of nitrogen, phosphorus, potassium and their relationship with the yield in wheat stubble hybrid rice under different management of water and nitrogen[J]. Journal of Hunan Agricultural University (Natural Sciences),2019 ,45 (4 ):337 −343 .[35] Cai S Y, Zhao X, Cameron M, et al. Optimal nitrogen rate strategy for sustainable rice production in China[J]. Nature, 2023, 615: 73−79. doi: 10.1038/s41586-022-05678-x [36] Li T Y, Zhang W F, Yin J, et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem[J]. Global Change Biology, 2018, 24: e511−e521. -