-
水稻在我国粮食作物生产中占重要地位,黑龙江省粳稻生产在保障我国口粮安全中发挥重要作用[1]。近年来,由于肥料施用不当,导致养分间转运率降低和环境污染,影响产量和品质[2-4]。因此,如何保证粳稻高产优质是亟待解决的问题。氮、磷、钾是植株生育过程中必需的大量元素,Pan等[5]探讨了在低氮和正常氮水平下水稻46个重组自交系非结构性碳水化合物 (non-structure carbohydrate,NSC) 转运规律,发现低氮处理下NSC输出率更高。代新俊等[6]研究表明,增加施氮量会促进小麦籽粒可溶性糖形成。王旭东等[7]研究表明,钾肥可促进小麦茎鞘碳水化合物形成与输出,并提高籽粒淀粉积累速率。剡斌等[8]认为,胡麻花后NSC对产量贡献率在高氮肥高磷肥处理下显著升高。魏凤桐等[9]认为,氮肥可降低水稻开花前NSC转运效率,促进花后光合产物形成并转运到籽粒。柳洪娟等[10]认为,增施钾肥会促进甘薯生长中后期碳水化合物的积累。前人研究施肥对作物可溶性糖积累转运的影响多集中在氮[11-12]、磷[13]、钾[14-15]肥单一因素,对以上三因素配施相关研究较少。水稻产量受气候条件的影响,朱相成等[16]、唐启源等[17]研究认为,适当增施氮肥可减少冠层漏光和反射损失,有利于提高水稻光能利用率。张振等[18]研究认为,氮肥基追比例为5∶5时小麦冠层光能利用率显著提高,促进中层营养器官开花前干物质转运。前人的研究大多是关于氮肥对水稻光、温、水资源利用率的影响,而氮磷钾肥配施条件下光、温、水资源是否影响可溶性糖积累转运鲜有报道。
“3414”试验方案优势在于试验效率高、工作量少,目前马铃薯[19-20]、水稻[21-22]、小麦[23-24]、玉米[25]等大田作物均用该试验方案筛选最佳施肥量。王伟妮等[26]在湖北省进行水稻“3414”试验方案,研究认为施氮量为135 kg/hm2、施磷量为45 kg/hm2、施钾量为90 kg/hm2时,水稻产量最高。董作珍等[22]在浙江省进行水稻“3414”试验方案,研究认为施氮量为258.8 kg/hm2、施磷量39.3 kg/hm2、施钾量为100.8 kg/hm2时水稻产量最高。前人研究大多采用“3414”最优设计方案探究氮、磷、钾肥配施的产量效应[21-26],采用“3414”最优设计方案探讨氮、磷、钾肥配施对粳稻可溶性糖积累转运的相关研究较少。本试验采用“3414”施肥方案,试验材料为东农427,通过大田试验探讨氮、磷、钾肥配施对寒地粳稻可溶性糖积累转运、气象资源利用及产量的影响,为黑龙江省粳稻优质栽培和优化施肥提供参考。
-
本试验于2018—2019年在东北农业大学阿城实验实习基地进行,土壤为黑土,其基础肥力见表1。供试粳稻品种为东农427。试验采用“3414”完全实施方案,3个因素分别为氮、磷、钾,N的4个水平为0、75、150、225 kg/hm2,P2O5为0、60、120、180 kg/hm2,K2O为0、40、80、120 kg/hm2,14个处理组合见表2,每个处理3次重复。供试肥料为尿素 (N 46%)、磷酸二胺 (N 18%、P2O5 46%) 过磷酸钙 (P2O5 12%) 和硫酸钾 (K2O 50%)。氮肥施用量基肥∶蘖肥∶穗肥分配比例为6∶3∶1,磷、钾肥作为基肥一次性施入,N0处理中磷肥用过磷酸钙。每小区四周设保护行和隔离行,小区间筑埂,单排单灌。每个小区面积为20 m2。于2018年4月20日 (2019年4月17日) 播种,2018年5月20日 (2019年5月24日) 移栽,插秧规格为30 cm × 10 cm。全生育期田间管理同生产田。
表 1 试验区0—20 cm耕层土壤基础理化性状
Table 1. Basic physical and chemical properties of 0-20 cm soil in the test area
年份
Year有机质
Organic matter
(g/kg)全氮
Total N
(g/kg)全磷
Total P
(g/kg)缓效钾
Slowly available K
(mg/kg)速效氮
Available N
(mg/kg)速效磷
Available P
(mg/kg)速效钾
Available K
(mg/kg)pH 2018 22.721 1.148 0.435 706.5 129.8 18.407 91.35 6.59 2019 22.050 1.175 0.453 704.2 125.4 17.965 92.41 6.62 表 2 “3414”试验处理施肥量
Table 2. Nutrient input in treatment of "3414" test
处理
Treatment施肥量 Fertilization amount (kg/hm2) N P2O5 K2O N0P0K0 0 0 0 N0P2K2 0 120 80 N1P1K2 75 60 80 N1P2K1 75 120 40 N1P2K2 75 120 80 N2P0K2 150 0 80 N2P1K1 150 60 40 N2P1K2 150 60 80 N2P2K0 150 120 0 N2P2K1 150 120 40 N2P2K2 150 120 80 N2P2K3 150 120 120 N2P3K2 150 180 80 N3P2K2 225 120 80 -
观察并记录水稻分蘖期、孕穗期、齐穗期、灌浆期、成熟期相对应的日期。采用微型气象站 (RR-9100) 记录全生育期气温、降水量、日照时数等。冠层分析仪 (LP-80) 测定各生育时期冠层光能截获率并计算全生育期光合有效辐射量。
分别于分蘖期、孕穗期、齐穗期、灌浆期、成熟期,在每个小区选取长势良好的代表性植株5穴,将地上部各器官分为叶片、茎鞘、籽粒放入烘箱,105℃杀青30分钟,80℃烘干至恒重。成熟期每处理选2 m2收获测产,采用蒽酮比色法[27]测定可溶性糖含量。
-
可溶性糖积累量 (g/m2) = 可溶性糖含量 × 干物质量;
各器官花后可溶性糖转运量 (g/m2) = 齐穗期可溶性糖积累量 - 成熟期可溶性糖积累量;
光合有效辐射量[28](MJ/m2) = 太阳总辐射量 × 0.5 × 光能截获率;
辐射利用率 (g/MJ) = 单位面积地上部干物质量/光合有效辐射;
积温生产效率[g/(m2·℃)] = 单位面积干物重/生育期间有效积温。
-
用Microsoft Excel 2013作图,SPSS 19.0对各指标进行多重比较。
-
由方差分析可知,产量在年份间差异不显著,在处理间差异极显著,在年份与处理间差异不显著。各施肥处理产量显著高于不施肥处理 (N0P0K0)(表3)。当三因素中任意两因素为2水平时,产量随施氮、磷、钾量的增加先增后减,以N2P2K2处理最高。各肥料梯度下4个处理产量间差异显著。当三因素中任一因素为0水平时,产量表现为不施钾 > 不施磷 > 不施氮处理,说明氮肥对寒地粳稻产量影响最大。
表 3 2018和2019年不同氮磷钾肥配施的寒地粳稻产量 (kg/hm2)
Table 3. Yield of japonica rice in cold region under different N, P, K combination in 2018 and 2019
处理 Treatment 2018 2019 N0P0K0 6716.67 i 6433.33 h N0P2K2 7000.00 h 6733.33 g N1P1K2 7250.00 fgh 7066.67 ef N1P2K1 7316.67 fg 7166.67 e N1P2K2 7366.67 efg 7200.00 de N2P0K2 7050.00 h 6866.67 fg N2P1K1 7500.00 ef 7333.33 de N2P1K2 7783.33 d 7733.33 c N2P2K0 7166.67 gh 7050.00 ef N2P2K1 7600.00 de 7450.00 d N2P2K2 8616.67 a 8550.00 a N2P2K3 8116.67 c 7933.33 c N2P3K2 8383.33 b 8283.33 b N3P2K2 8250.00b c 7966.67 c F值 F-value 年份 Year (Y) 1.71 处理 Treatment (T) 76.67** Y × T 0.37 注(Note):同列数字后不同小写字母表示处理间差异达 5% 显著水平 Values followed by different lowercase letters indicate significant differences among treatments at 5% level; *—P < 0.05; **—P < 0.01. -
由方差分析可知,功能叶片可溶性糖积累量在处理间差异极显著,在年份间差异不显著。花前功能叶片可溶性糖积累量在处理与年份间差异极显著。各施肥处理功能叶片可溶性糖积累量均显著高于不施肥处理 (N0P0K0) (表4)。三因素水平均为2或者3的四个组合 (N2P2K2、N2P2K3、N2P3K2、N3P2K2) 功能叶片可溶性糖积累量在5个生育期均排在前4位,显著高于其他组合。四个组合可溶性糖含量的高低互有差异,表明充足的氮磷钾养分供对提高可溶性糖的积累十分重要。
表 4 不同氮磷钾肥配施下寒地粳稻功能叶片可溶性糖积累量 (g/m2)
Table 4. Soluble sugar accumulation in functional leaves of japonica rice in cold region under different N,P,K combination in 2018 and 2019
处理
Treatment分蘖期 Tillering stage 孕穗期 Booting stage 齐穗期 Full heading stage 灌浆期 Grain filling stage 成熟期 Mature stage 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 N0P0K0 4.50 f 5.16 f 13.37 f 11.76 e 15.87 j 16.84 j 34.25 f 36.24 e 8.32 e 9.14 g N0P2K2 5.73 d 5.87 d 15.40 d 15.73 c 17.98 i 18.77 i 39.69 e 41.17 d 9.52 d 10.01 f N1P1K2 5.86 d 5.93 d 15.93 d 16.29 c 19.18 gh 20.26 g 43.41 cde 44.95 bc 9.91 cd 10.65 cde N1P2K1 5.85 d 5.89 d 15.79 d 15.90 c 19.26 fgh 20.28 g 43.03 cde 44.64 c 9.91 cd 10.62 cde N1P2K2 5.92 d 6.03 d 16.35 d 16.60 c 19.60 fg 20.62 fg 45.55 bc 47.00 bc 10.25 c 10.66 cde N2P0K2 5.21 e 5.40 e 14.27 e 14.18 d 18.42 i 19.14 hi 39.98 de 41.62 d 9.71 d 10.12 ef N2P1K1 5.88 d 6.02 d 16.02 d 16.65 c 21.02 e 21.63 e 43.87 cd 45.02 bc 9.92 cd 10.64 cde N2P1K2 6.63 c 6.33 c 17.26 c 16.61 c 21.65 d 22.95 d 44.28 c 46.30 bc 10.41 c 11.05 c N2P2K0 5.83 d 5.88 d 15.50 d 15.74 c 19.01 h 19.85 gh 42.95 cde 44.41 c 9.90 cd 10.41 def N2P2K1 5.90 d 6.03 d 16.31 d 16.68 c 19.75 f 21.07 ef 44.01 c 46.35 bc 9.93 cd 10.92 cd N2P2K2 7.63 ab 7.42 ab 22.05 ab 19.90 ab 30.64 a 31.72 a 52.24 a 54.33 a 12.36 a 12.79 a N2P2K3 7.60 ab 7.36 ab 21.39 b 19.23 b 29.11 b 29.90 b 48.90 ab 51.88 a 12.30 a 12.76 a N2P3K2 7.49 b 7.26 b 21.17 b 19.16 b 25.68 c 27.75 c 46.11 bc 47.81 b 11.17 b 11.99 b N3P2K2 7.89 a 7.49 a 22.61 a 20.40 a 29.49 b 30.40 b 49.89 a 52.28 a 12.24 a 12.78 a F值 F-value 年份 Year (Y) 0.01 1.20 1.01 3.13 3.10 处理 Treatment (T) 129.39** 61.47** 293.50** 32.97** 40.73** Y × T 5.37** 6.93** 1.35 0.10 1.52 注(Note):同列数字后不同小写字母表示处理间差异达 5% 显著水平 Values followed by different lowercase letters indicate significant differences among treatments at 5% level. *—P < 0.05; **—P < 0.01. -
由方差分析可知,各生育时期茎鞘可溶性糖积累量在处理间差异极显著,孕穗期、灌浆期、成熟期茎鞘可溶性糖积累量在年份间、年份与处理间有显著或极显著差异。各施肥处理茎鞘可溶性糖积累量均显著高于不施肥处理 (N0P0K0) (表5)。与功能叶片中的可溶性糖积累量一样,三因素水平均为2或者3的四个组合 (N2P2K2、N2P2K3、N2P3K2、N3P2K2) 茎鞘可溶性糖积累量排在前4位,又以N2P2K2组合始终位于最高量,显著或不显著高于其他3个组合。
表 5 不同氮磷钾肥配施下寒地粳稻茎鞘可溶性糖积累量的影响 (g/m2)
Table 5. Soluble sugar accumulation in stem and sheath of japonica rice in cold region under different NPK combination
处理
Treatment分蘖期 Tillering stage 孕穗期 Booting stage 齐穗期 Full heading stage 灌浆期 Grain filling stage 成熟期 Mature stage 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 N0P0K0 7.69 f 8.14 f 29.90 f 30.44 f 58.08 h 60.03 j 43.14 g 37.51 g 25.32 f 27.24 g N0P2K2 9.15 de 9.67 de 33.74 de 36.21 d 71.49 g 71.93 hi 47.13 f 42.54 ef 28.87 d 31.53 e N1P1K2 9.49 cde 9.84 cde 34.69 cde 36.54 cd 74.53 f 76.45 g 49.95 de 43.17 def 29.49 d 32.24 e N1P2K1 9.45 cde 9.78 de 34.18 cde 36.39 cd 74.90 f 76.18 g 49.20 def 42.67 ef 29.51 d 32.19 e N1P2K2 9.68 cd 10.04 cd 36.13 cd 37.24 cd 81.48 d 82.02 de 51.39 d 44.67 d 33.62 b 35.48 bc N2P0K2 8.97 e 9.53 e 32.79 e 34.65 e 70.28 g 70.79 i 47.08 f 42.37 f 27.48 e 29.58 f N2P1K1 9.59 cd 9.93 cd 36.86 c 38.00 c 75.89 ef 77.87 fg 50.38 de 43.25 def 29.48 d 32.26 e N2P1K2 9.78 c 10.18 c 35.61 cd 37.98 c 83.02 d 85.05 d 50.85 de 44.32 de 31.54 c 34.17 cd N2P2K0 9.37 cde 9.72 de 33.92 de 36.29 d 73.79 f 75.06 gh 48.78 ef 42.59 ef 29.48 d 32.16 e N2P2K1 9.61 cd 10.01 cd 35.21 cde 36.88 cd 77.02 e 81.26 ef 50.81 de 43.31 def 29.58 d 32.73 de N2P2K2 11.49 a 12.00 a 43.16 a 47.32 a 104.63 a 110.27 a 59.98 a 55.45 a 37.10 a 39.80 a N2P2K3 10.85 b 11.24 b 40.17 b 40.49 b 96.32 c 98.32 c 56.42 bc 53.07 b 33.73 b 36.59 b N2P3K2 11.21 ab 11.69 a 41.27 ab 45.95 a 100.83 b 103.88 b 58.32 ab 53.78 ab 36.77 a 39.24 a N3P2K2 11.31 ab 11.75 a 41.46 ab 46.63 a 97.90 c 100.07 c 55.97 c 49.11 c 34.62 b 36.63 b F值 F-value 年份 Year (Y) 3.36 5.75* 0.48 29.97** 10.93** 处理 Treatment (T) 62.82** 34.64** 273.79** 13.27** 29.06** Y × T 0.13 2.49** 1.05 5.37** 12.31** 注(Note):同列数字后不同小写字母表示处理间差异达 5% 显著水平 Values followed by different lowercase letters indicate significant differences among treatments at 5% level. *—P < 0.05; **—P < 0.01. -
表6表明,各施肥处理籽粒可溶性糖积累量显著高于不施肥处理 (N0P0K0)()。三因素水平为2或3的四个组合 (N2P2K2、N2P2K3、N2P3K2、N3P2K2) 籽粒可溶性糖积累量在齐穗期、灌浆期和成熟期3个生育期均高于其他组合处理。而这四个组合相比,齐穗期籽粒可溶性糖积累量以N2P2K2组合显著高于其他三个组合,灌浆期和成熟期籽粒的可溶性糖积累量四个处理之间没有显著差异。因此,施肥对籽粒可溶性糖积累量的影响主要在齐穗期。
表 6 不同氮磷钾肥配施下寒地粳稻籽粒可溶性糖积累量的影响 (g/m2)
Table 6. Soluble sugar content in the rice grain under different NPK combination
处理
Treatment齐穗期 Full heading stage 灌浆期 Grain filling stage 成熟期 Mature stage 2018 2019 2018 2019 2018 2019 N0P0K0 15.94 g 19.73 h 15.15 d 12.51 f 6.94 e 6.09 d N0P2K2 20.24 f 23.22 g 17.16 c 15.84 de 8.25 cd 7.28 c N1P1K2 21.35 ef 24.24 fg 18.02 bc 16.84 cd 8.37 cd 7.39 c N1P2K1 21.38 ef 24.48 f 17.67 bc 16.48 cd 8.34 cd 7.40 c N1P2K2 23.57 cd 26.10 e 18.85 b 18.78 b 9.30 b 8.02 b N2P0K2 20.02 f 23.31 g 17.04 c 15.05 e 7.72 d 7.13 c N2P1K1 21.85 def 24.88 f 18.35 bc 17.05 cd 8.47 bcd 7.39 c N2P1K2 23.69 c 27.21 d 18.69 b 17.57 c 9.04 bc 8.01 b N2P2K0 20.73 ef 24.13 fg 17.57 bc 16.21 de 8.02 d 7.39 c N2P2K1 22.31 cde 25.16 ef 18.49 b 17.12 cd 8.50 bcd 7.40 c N2P2K2 34.98 a 38.46 a 22.43 a 21.03 a 11.16 a 9.93 a N2P2K3 30.41 b 33.50 c 21.16 a 20.27 a 10.93 a 9.78 a N2P3K2 30.94 b 33.96 bc 21.33 a 20.49 a 10.98 a 9.92 a N3P2K2 30.93b 34.63 b 21.88 a 20.87 a 11.06 a 9.88 a F值 F-value 年份 Year (Y) 7.53** 6.70* 12.46** 处理 Treatment (T) 57.92** 53.80** 33.46** Y × T 79.34** 73.88** 10.29** 注(Note):同列数字后不同小写字母表示处理间差异达 5% 显著水平 Values followed by different lowercase letters indicate significant differences among treatments at 5% level. *—P < 0.05; **—P < 0.01. -
由方差分析可知,花前可溶性糖积累量、花后功能叶片和茎鞘可溶性糖转运量在年份间差异不显著,处理间差异极显著。花后功能叶片、茎鞘可溶性糖转运量在年份与处理间差异极显著 (表7)。三因素水平均为2或者3的四个组合 (N2P2K2、N2P2K3、N2P3K2、N3P2K2) 花前可溶性糖积累量、花后可溶性糖转运量显著高于任一因素为0或1的处理。这四个处理中,花前可溶性糖积累量以N3P2K2处理最高,花后功能叶片和茎鞘可溶性糖转运量以N2P2K2处理最高。
表 7 氮磷钾肥配施对寒地粳稻可溶性糖积累转运的影响 (g/m2)
Table 7. Effects of combined application of N,P and K on accumulation and transportation of soluble sugar in japonica rice in cold region
处理
Treatment花前积累量
Accumulation before anthesis花后转运量 Translocation after anthesis 叶 Leaf 茎 Stem 2018 2019 2018 2019 2018 2019 N0P0K0 43.27 i 42.20 i 7.54 h 7.70 i 32.75 h 32.80 h N0P2K2 49.14 gh 51.94 g 8.45 g 8.76 h 42.62 g 40.40 g N1P1K2 50.63 fg 52.83 efg 9.27 ef 9.60 fgh 45.04 efg 44.20 defg N1P2K1 49.97 fg 52.29 fg 9.35 ef 9.66 fgh 45.38 ef 43.99 defg N1P2K2 53.45 de 53.83 def 9.35 ef 9.96 fg 47.87 d 46.54 cde N2P0K2 47.06 h 48.82 h 8.70 fg 9.02 gh 42.80 g 41.21 fg N2P1K1 52.88 de 54.66 d 11.11 d 10.98 de 46.41 def 45.61 def N2P1K2 52.87 de 54.58 de 11.24 d 11.90 d 51.48 c 50.87 c N2P2K0 49.42 fg 52.02 g 9.11 efg 9.44 fgh 44.32 fg 42.90 efg N2P2K1 51.53 ef 53.57 defg 9.82 e 10.15 ef 47.44 de 48.54 cd N2P2K2 65.21 a 67.23 a 18.28 a 18.93 a 67.53 a 70.47 a N2P2K3 61.56 c 59.72 c 16.81 b 17.14 b 62.59 b 61.73 b N2P3K2 62.44 bc 65.11 b 14.51 c 15.77 c 64.06 b 64.64 b N3P2K2 64.07 ab 67.03 a 17.25 b 17.62 b 63.28 b 63.44 b F值 F-value 年份 Year (Y) 0.04 2.28 0.04 处理 Treatment (T) 9.90** 298.34** 161.11** Y×T 1.12 7.91** 6.59** 注(Note):同列数字后不同小写字母表示处理间差异达 5% 显著水平 Values followed by different lowercase letters indicate significant differences among treatments at 5% level. *—P < 0.05; **—P < 0.01. -
由表8可知,N2P2K2、N3P2K2处理生育期最长,两年均比N0P0K0长3天。施肥处理从孕穗期-齐穗期-灌浆期,时间较为一致,但是N2P2K2、N3P2K2处理主要通过延长灌浆到成熟期的天数,延长了整个生育期。
表 8 不同氮磷钾肥配施对寒地粳稻生育期天数的影响 (天)
Table 8. Effects of NPK combinations on growth period of Japonica Rice in cold region(Days)
处理
Treatment播种-分蘖期
Sowing-tillering stage分蘖-孕穗期
Tillering-booting stage孕穗-齐穗期
Booting-full heading stage齐穗-灌浆期
Full heading -grain filling stage灌浆-成熟期
Grain filling–mature stage全生育期
Whole growth period2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 N0P0K0 45 50 47 47 16 18 12 11 23 21 143 147 N0P2K2 45 50 47 47 16 18 12 11 23 21 143 147 N1P1K2 45 50 47 47 16 18 12 11 24 22 144 148 N1P2K1 45 50 47 47 16 18 12 11 24 22 144 148 N1P2K2 45 50 47 47 17 18 11 11 24 21 144 147 N2P0K2 45 50 47 47 16 18 12 11 23 21 143 147 N2P1K2 45 50 47 47 17 18 11 11 24 21 144 147 N2P2K0 45 50 47 47 16 18 12 11 23 21 143 147 N2P2K1 45 50 47 47 16 18 12 11 24 22 144 148 N2P2K2 45 50 47 47 18 19 10 10 26 24 146 150 N2P2K3 45 50 47 47 16 19 12 10 24 23 144 149 N2P3K2 45 50 47 47 17 19 11 10 25 23 145 149 N3P2K2 45 50 47 47 18 19 10 10 26 24 146 150 -
由方差分析可知,光合有效辐射量在年份间差异不显著,在处理间、年份与处理交互作用间差异极显著。辐射利用率、积温生产效率在年份间、处理间、年份与处理交互作用间差异极显著 (表9)。当氮、磷、钾施用水平为2或3时,水稻群体中光合有效辐射量、辐射利用率以及积温生产效率均显著高于任一因素为0或1水平的处理。
表 9 氮磷钾肥配施对寒地粳稻光、温资源利用的影响
Table 9. Effects of NPK combination on utilization of light, temperature during growing season of japonica ricein cold region
处理
Treatment光合有效辐射量 PAR (MJ/m2) 辐射利用率 RUE (g/MJ) 积温生产效率 TPE [g/(m2·℃)] 2018 2019 2018 2019 2018 2019 N0P0K0 625.9 d 645.7 c 2.01 c 2.04 c 0.95 e 1.03 e N0P2K2 631.0 d 648.4 c 2.07 b 2.15 b 0.99 d 1.09 d N1P1K2 639.1 c 660.8 b 2.10 b 2.16 b 1.01 c 1.10 c N1P2K1 644.8 bc 663.7 b 2.10 b 2.15 b 1.02 b 1.10 c N1P2K2 642.9 bc 660.5 b 2.07 b 2.16 b 1.01 c 1.12 b N2P0K2 624.9 d 649.2 c 2.07 b 2.15 b 0.98 d 1.09 d N2P1K1 648.9 b 663.3 b 2.09 b 2.15 b 1.02 b 1.10 c N2P1K2 645.1 bc 660.7 b 2.10 b 2.16 b 1.02 b 1.12 b N2P2K0 628.4 d 649.0 c 2.06 b 2.15 b 0.98 d 1.09 d N2P2K1 647.0 bc 663.7 b 2.10 b 2.17 b 1.02 b 1.11 b N2P2K2 700.8 a 679.2 a 2.15 a 2.28 a 1.13 a 1.20 a N2P2K3 694.0 a 675.8 a 2.15 a 2.28 a 1.12 a 1.19 a N2P3K2 694.4 a 676.0 a 2.15 a 2.28 a 1.12 a 1.19 a N3P2K2 698.6 a 678.8 a 2.14 a 2.27 a 1.12 a 1.19 a F值 F-value 年份 Year (Y) 2.70 45.71** 55.93** 处理 Treatment (T) 20.10** 6.54** 7.31** Y×T 36.16** 6.15** 17.38** 注(Note):PAR—Photosynthetically active radiation;RUE—Radiation use efficiency; TPE—Temperature production efficiency. 同列数字后不同小写字母表示处理间差异达 5% 显著水平 Values followed by different lowercase letters indicate significant differences among treatments at 5% level. **—P < 0.01. -
由表10可知,各生育时期各器官可溶性糖积累量与光合有效辐射量 (PAR)、辐射利用率 (RUE) 和积温生产效率 (TPE) 极显著正相关。分蘖期和孕穗期功能叶片可溶性糖积累量对PAR、RUE和TPE的影响大于茎鞘。齐穗期、灌浆期和成熟期茎鞘可溶性糖积累量对PAR、RUE和TPE的影响大于功能叶片。成熟期籽粒可溶性糖积累量对PAR、RUE和TPE的影响大于齐穗期和灌浆期。花后茎鞘可溶性糖转运量对PAR、RUE和TPE影响大于功能叶片。因此提高花前功能叶片可溶性糖积累量和花后茎鞘可溶性糖积累量和转运量是提高光温利用率的重要手段。
表 10 可溶性糖转运特性与气象因子的相关分析 (P < 0.01)
Table 10. Relationship between soluble sugar transport characteristics and meteorological factors
生育期 Grow stage 器官 Plant organs 光合有效辐射量 PAR 辐射利用率 RUE 积温生产效率 TPE 分蘖期 Tillering stage 功能叶片 Functional leaf 0.973 0.945 0.981 茎鞘 Stem 0.934 0.920 0.963 孕穗期 Booting stage 功能叶片 Functional leaf 0.982 0.919 0.984 茎鞘 Stem 0.957 0.907 0.971 齐穗期 Full heading stage 功能叶片 Functional leaf 0.949 0.889 0.968 茎鞘 Stem 0.968 0.927 0.970 籽粒 Grain 0.963 0.909 0.975 灌浆期 Grain filling stage 功能叶片 Functional leaf 0.852 0.891 0.886 茎鞘 Stem 0.943 0.934 0.965 籽粒 Grain 0.956 0.912 0.974 成熟期 Mature stage 功能叶片 Functional leaf 0.885 0.847 0.905 茎鞘 Stem 0.927 0.910 0.949 籽粒 Grain 0.965 0.930 0.977 可溶性糖转运 Soluble sugar transport 花前积累量 ABA 0.917 0.909 0.963 功能叶片花后转运量 TFAA 0.916 0.874 0.947 茎鞘花后转运量 TSSPA 0.935 0.942 0.977 注(Note):ABA—Accumulationbeforeanthesis; TFPA—Transported amount from functional leaves postanthesis; TSSPA—Transport amount from stem and sheath post anthesis. -
可溶性糖在水稻生长过程中对调节代谢和产量形成发挥重要作用[29-30]。营养器官碳水化合物的积累转运特征不仅取决于本身的基因型,还取决于环境条件[31-33]。在本研究中,寒地粳稻花前期获得最高的可溶性糖积累量的处理为N3P2K2,可能因为花前期是水稻的营养生长期,需要大量氮素营养,氮素吸收需要消耗大量碳水化合物[34],因此,N2P2K2处理的水稻功能叶片中的可溶性糖含量低于N3P2K2。水稻产量形成与碳水化合物积累转运密切相关[35-38]。在本研究中,茎鞘可溶性糖转运量高于功能叶片。与N0P0K0处理相比,各施肥处理地上部各器官花后可溶性糖转运量均升高,以N2P2K2处理最高。以上结果说明茎鞘花后可溶性糖转运量可作为提高产量的重要指标。因此可通过栽培措施的改变来协调植株可溶性糖积累转运是增产的有效途径。
-
生育期不仅由品种自身决定,还受栽培措施和环境因素的影响[39]。在本研究中,N2P2K2处理较不施肥处理延长了3天。可能因为较好的养分供应还会延迟作物的衰老[40-41]。其中,生育期天数的延长主要是因为灌浆-成熟期天数的延长,可能由于灌浆期-成熟期是水稻籽粒形成和功能叶片可溶性糖向籽粒转运的关键时期。由于生育期天数的延长,功能叶片和茎鞘的可溶性糖向籽粒转运的时间延长,促进了籽粒可溶性糖的积累进而提高产量。光、温资源利用效率受栽培条件影响[42-43]。辐射利用率与生育期有关,也与群体及其构成有关[44]。在本研究中,各施肥处理光、温生产效率均显著高于不施肥处理。其中,N2P2K2处理光合有效辐射量、辐射利用率、积温生产效率最大,高于N3P2K2、N2P3K2、N2P2K3处理 (表9)。由此可见,合理的养分供应可促进水稻群体对光、温资源的捕获,但过量施肥不利于水稻群体结构的形成,进而不利于水稻群体对光能的截获。由于各处理间生育期天数的差异,会对全生育期有效积温和积温生产效率造成差异。产量与光合有效辐射量、辐射利用率和积温生产效率关系密切[45],温光条件是通过植株生长发育特性差异表现对产量的影响[46]。本试验条件下,各生育时期可溶性糖积累量与光合有效辐射量 (PAR)、辐射利用率 (RUE) 和积温生产效率 (TPE) 极显著正相关。分蘖期和孕穗期功能叶片可溶性糖积累量对PAR、RUE和TPE影响大于茎鞘。齐穗期、灌浆期、成熟期茎鞘可溶性糖积累量对PAR、RUE和TPE大于功能叶片。花后茎鞘可溶性糖转运量对PAR、RUE和TPE的影响大于功能叶片 (表10)。因此,提高花前功能叶片可溶性糖积累量和花后茎鞘可溶性糖积累量和转运量可提高光、温资源利用率。
-
寒地粳稻各生育时期各器官可溶性糖积累量与光合有效辐射量 (PAR)、辐射利用率 (RUE) 和积温生产效率 (TPE) 极显著正相关。其中,花前功能叶片可溶性糖积累量对PAR、RUE和TPE的影响大于茎鞘。花后茎鞘可溶性糖积累量和转运量对PAR、RUE和TPE的影响大于功能叶片。充足的氮磷钾肥供应促进了水稻群体对光、温资源的捕获,提高了光、温资源利用率。而且,合理的养分供给还延长了生育后期的天数,延长了功能叶片和茎鞘可溶性糖向籽粒转运的时间,进而提高产量。在本试验中,氮磷钾配比为150-120-80 kg/hm2(N2P2K2) 时,寒地粳稻产量和花后功能叶片、茎鞘可溶性糖运转量均最高,并且主要通过延长灌浆期到成熟期的天数延长整个生育期,进一步提高了光、温资源的利用率。
氮磷钾肥配施对寒地粳稻可溶性糖积累转运、气候资源利用及产量的影响
Incresing accumulation and transportation of soluble sugar and utilization rate of climatic resources of Japonica Rice in cold region through reasonable fertilization
-
摘要:
【目的】 本文研究了氮磷钾肥不同配比对寒地粳稻功能叶片、茎鞘、籽粒可溶性糖积累和转运的影响,及与气候资源利用和产量的关系。 【方法】 大田试验采用“3414”施肥方案,试验寒地粳稻品种为东农427。在水稻分蘖至成熟的5个主要生育期,取样测定了功能叶片、茎鞘和籽粒中的可溶性糖含量,计算了功能叶片、茎鞘、籽粒可溶性糖积累转运量,以及对气候资源的利用率。 【结果】 氮、磷、钾肥配施显著影响着寒地粳稻产量,以N2P2K2处理最高。与N0P0K0处理相比,各施肥处理地上部各器官可溶性糖积累量和运转量均显著升高。功能叶片可溶性糖最高积累量花前为N3P2K2处理,花后为N2P2K2处理。茎鞘和籽粒可溶性糖积累量在各生育时期均以N2P2K2处理最高。功能叶片和茎鞘花后可溶性糖转运量均以N2P2K2处理最高。N2P2K2、N3P2K2处理生育期最长。各施肥处理光合有效辐射量 (PAR)、辐射利用率 (RUE) 和积温生产效率 (TPE) 均高于N0P0K0处理,以N2P2K2处理最高。由相关分析可知,各生育时期各器官可溶性糖积累量与PAR、RUE和TPE极显著正相关。分蘖期和孕穗期功能叶片可溶性糖积累量对PAR、RUE和TPE的影响大于茎鞘。齐穗期、灌浆期和成熟期茎鞘可溶性糖积累量对PAR、RUE和TPE的影响大于功能叶片。成熟期籽粒可溶性糖积累量对PAR、RUE和TPE的影响大于齐穗期和灌浆期。花后茎鞘可溶性糖转运量对PAR、RUE和TPE影响大于功能叶片。 【结论】 寒地粳稻各生育时期各器官可溶性糖积累量与光合有效辐射量 (PAR)、辐射利用率 (RUE) 和积温生产效率 (TPE) 极显著正相关。其中,花前功能叶片可溶性糖积累量对PAR、RUE和TPE的影响大于茎鞘,花后茎鞘可溶性糖积累量和转运量对PAR、RUE和TPE的影响大于功能叶片。充足的氮磷钾肥供应促进了水稻群体对光、温资源的捕获,提高了光、温资源利用率。而且,合理的养分供给还延长了生育后期的天数和功能叶片、茎鞘可溶性糖向籽粒转运的时间,进而提高产量。在本试验中,氮磷钾配比为150-120-80 kg/hm2(N2P2K2) 时,寒地粳稻产量和花后功能叶片、茎鞘可溶性糖运转量均最高,并且主要通过延长灌浆期到成熟期的天数延长整个生育期,进一步提高了光、温资源的利用率。 Abstract:【Objectives】 Fertilization affected the accumulation and transportation of soluble sugar in functional leaves, stem sheath and grain of Japonica Rice in cold region. The relationship between accumulation and transportation of soluble sugar in aboveground organs of Japonica Rice and utilization rate of climatic resources and yield was further studied in this paper. 【Methods】 The "3414" fertilization scheme was used in the field experiment, and the test japonica rice variety in the cold region was Dongnong 427. At five main growth stages from tillering to maturity, the accumulation of soluble sugar (ASS) in functional leaves, stem sheaths and grains of rice were measured, and relationship with climatic resources were calculated. 【Results】 The rice yield was significantly affected by the combined application of N, P and K fertilizers, with the highest yield in N2P2K2 treatment. Compared with N0P0K0, the ASS in aboveground organs of all fertilization treatments were significantly increased, with the highest ASS of functional leaves in N3P2K2 treatment before anthesis and in N2P2K2 after anthesis. The ASS in stem sheath and grain were the highest in N2P2K2 treatment at all the five growth stages. The highest transport of soluble sugar in functional leaves and stem sheath was N2P2K2 treatment after anthesis. N2P2K2 and N3P2K2 had the longest growth period. The photosynthetically active radiation (PAR), radiation utilization rate (RUE) and accumulated temperature production efficiency (TPE) of all fertilization treatments were higher than those of N0P0K0 treatment, with all the highest values in N2P2K2 treatment. According to the correlation analysis, the ASS in different organs was significantly positively correlated with PAR, RUE and TPE. The effect of ASS in functional leaves on PAR, RUE and TPE at tillering and booting stages was greater than those in stems and sheaths. The PAR, RUE and TPE were more affected by ASS in stem sheath at full heading stage, grain filling and mature stage than those in functional leaves. The effect of ASS on PAR, RUE and TPE in mature stage was greater than that in full heading and filling stage. The effect of soluble sugar transport from stem and sheath on PAR, RUE and TPE after anthesis was greater than that of functional leaves. 【Conclusions】 Sufficient supply of N, P and K is effective to form rice population that efficiently capture light and temperature resources during the whole growth period of Japonica rice in cold region, and the accumulation of soluble sugar in above ground organs of Japonica rice in cold region is significantly and positively correlated with PAR, RUE and TPE. Moreover, reasonable nutrient supply chold also prolonge the days of growth period, which give longer time for soluble sugar transport from functional leaves and stem sheath to grain. The ratio of N-P-K of 150-120-80 kg/hm2 (N2P2K2) in this experiment is most effective for the accumualtion and transportation of soluble sugar and use of light and tenperterture resorces throught growing stage of Japonica rice in cold region, so could achive the highest yield. -
表 1 试验区0—20 cm耕层土壤基础理化性状
Table 1. Basic physical and chemical properties of 0-20 cm soil in the test area
年份
Year有机质
Organic matter
(g/kg)全氮
Total N
(g/kg)全磷
Total P
(g/kg)缓效钾
Slowly available K
(mg/kg)速效氮
Available N
(mg/kg)速效磷
Available P
(mg/kg)速效钾
Available K
(mg/kg)pH 2018 22.721 1.148 0.435 706.5 129.8 18.407 91.35 6.59 2019 22.050 1.175 0.453 704.2 125.4 17.965 92.41 6.62 表 2 “3414”试验处理施肥量
Table 2. Nutrient input in treatment of "3414" test
处理
Treatment施肥量 Fertilization amount (kg/hm2) N P2O5 K2O N0P0K0 0 0 0 N0P2K2 0 120 80 N1P1K2 75 60 80 N1P2K1 75 120 40 N1P2K2 75 120 80 N2P0K2 150 0 80 N2P1K1 150 60 40 N2P1K2 150 60 80 N2P2K0 150 120 0 N2P2K1 150 120 40 N2P2K2 150 120 80 N2P2K3 150 120 120 N2P3K2 150 180 80 N3P2K2 225 120 80 表 3 2018和2019年不同氮磷钾肥配施的寒地粳稻产量 (kg/hm2)
Table 3. Yield of japonica rice in cold region under different N, P, K combination in 2018 and 2019
处理 Treatment 2018 2019 N0P0K0 6716.67 i 6433.33 h N0P2K2 7000.00 h 6733.33 g N1P1K2 7250.00 fgh 7066.67 ef N1P2K1 7316.67 fg 7166.67 e N1P2K2 7366.67 efg 7200.00 de N2P0K2 7050.00 h 6866.67 fg N2P1K1 7500.00 ef 7333.33 de N2P1K2 7783.33 d 7733.33 c N2P2K0 7166.67 gh 7050.00 ef N2P2K1 7600.00 de 7450.00 d N2P2K2 8616.67 a 8550.00 a N2P2K3 8116.67 c 7933.33 c N2P3K2 8383.33 b 8283.33 b N3P2K2 8250.00b c 7966.67 c F值 F-value 年份 Year (Y) 1.71 处理 Treatment (T) 76.67** Y × T 0.37 注(Note):同列数字后不同小写字母表示处理间差异达 5% 显著水平 Values followed by different lowercase letters indicate significant differences among treatments at 5% level; *—P < 0.05; **—P < 0.01. 表 4 不同氮磷钾肥配施下寒地粳稻功能叶片可溶性糖积累量 (g/m2)
Table 4. Soluble sugar accumulation in functional leaves of japonica rice in cold region under different N,P,K combination in 2018 and 2019
处理
Treatment分蘖期 Tillering stage 孕穗期 Booting stage 齐穗期 Full heading stage 灌浆期 Grain filling stage 成熟期 Mature stage 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 N0P0K0 4.50 f 5.16 f 13.37 f 11.76 e 15.87 j 16.84 j 34.25 f 36.24 e 8.32 e 9.14 g N0P2K2 5.73 d 5.87 d 15.40 d 15.73 c 17.98 i 18.77 i 39.69 e 41.17 d 9.52 d 10.01 f N1P1K2 5.86 d 5.93 d 15.93 d 16.29 c 19.18 gh 20.26 g 43.41 cde 44.95 bc 9.91 cd 10.65 cde N1P2K1 5.85 d 5.89 d 15.79 d 15.90 c 19.26 fgh 20.28 g 43.03 cde 44.64 c 9.91 cd 10.62 cde N1P2K2 5.92 d 6.03 d 16.35 d 16.60 c 19.60 fg 20.62 fg 45.55 bc 47.00 bc 10.25 c 10.66 cde N2P0K2 5.21 e 5.40 e 14.27 e 14.18 d 18.42 i 19.14 hi 39.98 de 41.62 d 9.71 d 10.12 ef N2P1K1 5.88 d 6.02 d 16.02 d 16.65 c 21.02 e 21.63 e 43.87 cd 45.02 bc 9.92 cd 10.64 cde N2P1K2 6.63 c 6.33 c 17.26 c 16.61 c 21.65 d 22.95 d 44.28 c 46.30 bc 10.41 c 11.05 c N2P2K0 5.83 d 5.88 d 15.50 d 15.74 c 19.01 h 19.85 gh 42.95 cde 44.41 c 9.90 cd 10.41 def N2P2K1 5.90 d 6.03 d 16.31 d 16.68 c 19.75 f 21.07 ef 44.01 c 46.35 bc 9.93 cd 10.92 cd N2P2K2 7.63 ab 7.42 ab 22.05 ab 19.90 ab 30.64 a 31.72 a 52.24 a 54.33 a 12.36 a 12.79 a N2P2K3 7.60 ab 7.36 ab 21.39 b 19.23 b 29.11 b 29.90 b 48.90 ab 51.88 a 12.30 a 12.76 a N2P3K2 7.49 b 7.26 b 21.17 b 19.16 b 25.68 c 27.75 c 46.11 bc 47.81 b 11.17 b 11.99 b N3P2K2 7.89 a 7.49 a 22.61 a 20.40 a 29.49 b 30.40 b 49.89 a 52.28 a 12.24 a 12.78 a F值 F-value 年份 Year (Y) 0.01 1.20 1.01 3.13 3.10 处理 Treatment (T) 129.39** 61.47** 293.50** 32.97** 40.73** Y × T 5.37** 6.93** 1.35 0.10 1.52 注(Note):同列数字后不同小写字母表示处理间差异达 5% 显著水平 Values followed by different lowercase letters indicate significant differences among treatments at 5% level. *—P < 0.05; **—P < 0.01. 表 5 不同氮磷钾肥配施下寒地粳稻茎鞘可溶性糖积累量的影响 (g/m2)
Table 5. Soluble sugar accumulation in stem and sheath of japonica rice in cold region under different NPK combination
处理
Treatment分蘖期 Tillering stage 孕穗期 Booting stage 齐穗期 Full heading stage 灌浆期 Grain filling stage 成熟期 Mature stage 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 N0P0K0 7.69 f 8.14 f 29.90 f 30.44 f 58.08 h 60.03 j 43.14 g 37.51 g 25.32 f 27.24 g N0P2K2 9.15 de 9.67 de 33.74 de 36.21 d 71.49 g 71.93 hi 47.13 f 42.54 ef 28.87 d 31.53 e N1P1K2 9.49 cde 9.84 cde 34.69 cde 36.54 cd 74.53 f 76.45 g 49.95 de 43.17 def 29.49 d 32.24 e N1P2K1 9.45 cde 9.78 de 34.18 cde 36.39 cd 74.90 f 76.18 g 49.20 def 42.67 ef 29.51 d 32.19 e N1P2K2 9.68 cd 10.04 cd 36.13 cd 37.24 cd 81.48 d 82.02 de 51.39 d 44.67 d 33.62 b 35.48 bc N2P0K2 8.97 e 9.53 e 32.79 e 34.65 e 70.28 g 70.79 i 47.08 f 42.37 f 27.48 e 29.58 f N2P1K1 9.59 cd 9.93 cd 36.86 c 38.00 c 75.89 ef 77.87 fg 50.38 de 43.25 def 29.48 d 32.26 e N2P1K2 9.78 c 10.18 c 35.61 cd 37.98 c 83.02 d 85.05 d 50.85 de 44.32 de 31.54 c 34.17 cd N2P2K0 9.37 cde 9.72 de 33.92 de 36.29 d 73.79 f 75.06 gh 48.78 ef 42.59 ef 29.48 d 32.16 e N2P2K1 9.61 cd 10.01 cd 35.21 cde 36.88 cd 77.02 e 81.26 ef 50.81 de 43.31 def 29.58 d 32.73 de N2P2K2 11.49 a 12.00 a 43.16 a 47.32 a 104.63 a 110.27 a 59.98 a 55.45 a 37.10 a 39.80 a N2P2K3 10.85 b 11.24 b 40.17 b 40.49 b 96.32 c 98.32 c 56.42 bc 53.07 b 33.73 b 36.59 b N2P3K2 11.21 ab 11.69 a 41.27 ab 45.95 a 100.83 b 103.88 b 58.32 ab 53.78 ab 36.77 a 39.24 a N3P2K2 11.31 ab 11.75 a 41.46 ab 46.63 a 97.90 c 100.07 c 55.97 c 49.11 c 34.62 b 36.63 b F值 F-value 年份 Year (Y) 3.36 5.75* 0.48 29.97** 10.93** 处理 Treatment (T) 62.82** 34.64** 273.79** 13.27** 29.06** Y × T 0.13 2.49** 1.05 5.37** 12.31** 注(Note):同列数字后不同小写字母表示处理间差异达 5% 显著水平 Values followed by different lowercase letters indicate significant differences among treatments at 5% level. *—P < 0.05; **—P < 0.01. 表 6 不同氮磷钾肥配施下寒地粳稻籽粒可溶性糖积累量的影响 (g/m2)
Table 6. Soluble sugar content in the rice grain under different NPK combination
处理
Treatment齐穗期 Full heading stage 灌浆期 Grain filling stage 成熟期 Mature stage 2018 2019 2018 2019 2018 2019 N0P0K0 15.94 g 19.73 h 15.15 d 12.51 f 6.94 e 6.09 d N0P2K2 20.24 f 23.22 g 17.16 c 15.84 de 8.25 cd 7.28 c N1P1K2 21.35 ef 24.24 fg 18.02 bc 16.84 cd 8.37 cd 7.39 c N1P2K1 21.38 ef 24.48 f 17.67 bc 16.48 cd 8.34 cd 7.40 c N1P2K2 23.57 cd 26.10 e 18.85 b 18.78 b 9.30 b 8.02 b N2P0K2 20.02 f 23.31 g 17.04 c 15.05 e 7.72 d 7.13 c N2P1K1 21.85 def 24.88 f 18.35 bc 17.05 cd 8.47 bcd 7.39 c N2P1K2 23.69 c 27.21 d 18.69 b 17.57 c 9.04 bc 8.01 b N2P2K0 20.73 ef 24.13 fg 17.57 bc 16.21 de 8.02 d 7.39 c N2P2K1 22.31 cde 25.16 ef 18.49 b 17.12 cd 8.50 bcd 7.40 c N2P2K2 34.98 a 38.46 a 22.43 a 21.03 a 11.16 a 9.93 a N2P2K3 30.41 b 33.50 c 21.16 a 20.27 a 10.93 a 9.78 a N2P3K2 30.94 b 33.96 bc 21.33 a 20.49 a 10.98 a 9.92 a N3P2K2 30.93b 34.63 b 21.88 a 20.87 a 11.06 a 9.88 a F值 F-value 年份 Year (Y) 7.53** 6.70* 12.46** 处理 Treatment (T) 57.92** 53.80** 33.46** Y × T 79.34** 73.88** 10.29** 注(Note):同列数字后不同小写字母表示处理间差异达 5% 显著水平 Values followed by different lowercase letters indicate significant differences among treatments at 5% level. *—P < 0.05; **—P < 0.01. 表 7 氮磷钾肥配施对寒地粳稻可溶性糖积累转运的影响 (g/m2)
Table 7. Effects of combined application of N,P and K on accumulation and transportation of soluble sugar in japonica rice in cold region
处理
Treatment花前积累量
Accumulation before anthesis花后转运量 Translocation after anthesis 叶 Leaf 茎 Stem 2018 2019 2018 2019 2018 2019 N0P0K0 43.27 i 42.20 i 7.54 h 7.70 i 32.75 h 32.80 h N0P2K2 49.14 gh 51.94 g 8.45 g 8.76 h 42.62 g 40.40 g N1P1K2 50.63 fg 52.83 efg 9.27 ef 9.60 fgh 45.04 efg 44.20 defg N1P2K1 49.97 fg 52.29 fg 9.35 ef 9.66 fgh 45.38 ef 43.99 defg N1P2K2 53.45 de 53.83 def 9.35 ef 9.96 fg 47.87 d 46.54 cde N2P0K2 47.06 h 48.82 h 8.70 fg 9.02 gh 42.80 g 41.21 fg N2P1K1 52.88 de 54.66 d 11.11 d 10.98 de 46.41 def 45.61 def N2P1K2 52.87 de 54.58 de 11.24 d 11.90 d 51.48 c 50.87 c N2P2K0 49.42 fg 52.02 g 9.11 efg 9.44 fgh 44.32 fg 42.90 efg N2P2K1 51.53 ef 53.57 defg 9.82 e 10.15 ef 47.44 de 48.54 cd N2P2K2 65.21 a 67.23 a 18.28 a 18.93 a 67.53 a 70.47 a N2P2K3 61.56 c 59.72 c 16.81 b 17.14 b 62.59 b 61.73 b N2P3K2 62.44 bc 65.11 b 14.51 c 15.77 c 64.06 b 64.64 b N3P2K2 64.07 ab 67.03 a 17.25 b 17.62 b 63.28 b 63.44 b F值 F-value 年份 Year (Y) 0.04 2.28 0.04 处理 Treatment (T) 9.90** 298.34** 161.11** Y×T 1.12 7.91** 6.59** 注(Note):同列数字后不同小写字母表示处理间差异达 5% 显著水平 Values followed by different lowercase letters indicate significant differences among treatments at 5% level. *—P < 0.05; **—P < 0.01. 表 8 不同氮磷钾肥配施对寒地粳稻生育期天数的影响 (天)
Table 8. Effects of NPK combinations on growth period of Japonica Rice in cold region(Days)
处理
Treatment播种-分蘖期
Sowing-tillering stage分蘖-孕穗期
Tillering-booting stage孕穗-齐穗期
Booting-full heading stage齐穗-灌浆期
Full heading -grain filling stage灌浆-成熟期
Grain filling–mature stage全生育期
Whole growth period2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 N0P0K0 45 50 47 47 16 18 12 11 23 21 143 147 N0P2K2 45 50 47 47 16 18 12 11 23 21 143 147 N1P1K2 45 50 47 47 16 18 12 11 24 22 144 148 N1P2K1 45 50 47 47 16 18 12 11 24 22 144 148 N1P2K2 45 50 47 47 17 18 11 11 24 21 144 147 N2P0K2 45 50 47 47 16 18 12 11 23 21 143 147 N2P1K2 45 50 47 47 17 18 11 11 24 21 144 147 N2P2K0 45 50 47 47 16 18 12 11 23 21 143 147 N2P2K1 45 50 47 47 16 18 12 11 24 22 144 148 N2P2K2 45 50 47 47 18 19 10 10 26 24 146 150 N2P2K3 45 50 47 47 16 19 12 10 24 23 144 149 N2P3K2 45 50 47 47 17 19 11 10 25 23 145 149 N3P2K2 45 50 47 47 18 19 10 10 26 24 146 150 表 9 氮磷钾肥配施对寒地粳稻光、温资源利用的影响
Table 9. Effects of NPK combination on utilization of light, temperature during growing season of japonica ricein cold region
处理
Treatment光合有效辐射量 PAR (MJ/m2) 辐射利用率 RUE (g/MJ) 积温生产效率 TPE [g/(m2·℃)] 2018 2019 2018 2019 2018 2019 N0P0K0 625.9 d 645.7 c 2.01 c 2.04 c 0.95 e 1.03 e N0P2K2 631.0 d 648.4 c 2.07 b 2.15 b 0.99 d 1.09 d N1P1K2 639.1 c 660.8 b 2.10 b 2.16 b 1.01 c 1.10 c N1P2K1 644.8 bc 663.7 b 2.10 b 2.15 b 1.02 b 1.10 c N1P2K2 642.9 bc 660.5 b 2.07 b 2.16 b 1.01 c 1.12 b N2P0K2 624.9 d 649.2 c 2.07 b 2.15 b 0.98 d 1.09 d N2P1K1 648.9 b 663.3 b 2.09 b 2.15 b 1.02 b 1.10 c N2P1K2 645.1 bc 660.7 b 2.10 b 2.16 b 1.02 b 1.12 b N2P2K0 628.4 d 649.0 c 2.06 b 2.15 b 0.98 d 1.09 d N2P2K1 647.0 bc 663.7 b 2.10 b 2.17 b 1.02 b 1.11 b N2P2K2 700.8 a 679.2 a 2.15 a 2.28 a 1.13 a 1.20 a N2P2K3 694.0 a 675.8 a 2.15 a 2.28 a 1.12 a 1.19 a N2P3K2 694.4 a 676.0 a 2.15 a 2.28 a 1.12 a 1.19 a N3P2K2 698.6 a 678.8 a 2.14 a 2.27 a 1.12 a 1.19 a F值 F-value 年份 Year (Y) 2.70 45.71** 55.93** 处理 Treatment (T) 20.10** 6.54** 7.31** Y×T 36.16** 6.15** 17.38** 注(Note):PAR—Photosynthetically active radiation;RUE—Radiation use efficiency; TPE—Temperature production efficiency. 同列数字后不同小写字母表示处理间差异达 5% 显著水平 Values followed by different lowercase letters indicate significant differences among treatments at 5% level. **—P < 0.01. 表 10 可溶性糖转运特性与气象因子的相关分析 (P < 0.01)
Table 10. Relationship between soluble sugar transport characteristics and meteorological factors
生育期 Grow stage 器官 Plant organs 光合有效辐射量 PAR 辐射利用率 RUE 积温生产效率 TPE 分蘖期 Tillering stage 功能叶片 Functional leaf 0.973 0.945 0.981 茎鞘 Stem 0.934 0.920 0.963 孕穗期 Booting stage 功能叶片 Functional leaf 0.982 0.919 0.984 茎鞘 Stem 0.957 0.907 0.971 齐穗期 Full heading stage 功能叶片 Functional leaf 0.949 0.889 0.968 茎鞘 Stem 0.968 0.927 0.970 籽粒 Grain 0.963 0.909 0.975 灌浆期 Grain filling stage 功能叶片 Functional leaf 0.852 0.891 0.886 茎鞘 Stem 0.943 0.934 0.965 籽粒 Grain 0.956 0.912 0.974 成熟期 Mature stage 功能叶片 Functional leaf 0.885 0.847 0.905 茎鞘 Stem 0.927 0.910 0.949 籽粒 Grain 0.965 0.930 0.977 可溶性糖转运 Soluble sugar transport 花前积累量 ABA 0.917 0.909 0.963 功能叶片花后转运量 TFAA 0.916 0.874 0.947 茎鞘花后转运量 TSSPA 0.935 0.942 0.977 注(Note):ABA—Accumulationbeforeanthesis; TFPA—Transported amount from functional leaves postanthesis; TSSPA—Transport amount from stem and sheath post anthesis. -
[1] 王莹莹, 张昀, 张广才, 等. 北方典型水稻土有机质及其组分演变特征[J]. 植物营养与肥料学报, 2019, 25(11): 1900–1908. Wang Y Y, Zhang Y, Zhang G C, et al. Evolutionary characteristics of organic matter and its components in typical paddy soils in northern China[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1900–1908. doi: 10.11674/zwyf.18488 [2] 孙永健, 孙园园, 蒋明金, 等. 施肥水平对不同氮效率水稻氮素利用特征及产量的影响[J]. 中国农业科学, 2016, 49(24): 4745–4756. Sun Y J, Sun Y Y, Jiang M J, et al. Effects of fertilizer Levels on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies[J]. Scientia Agricultura Sinica, 2016, 49(24): 4745–4756. doi: 10.3864/j.issn.0578-1752.2016.24.007 [3] Duarah I, Deka M, Saikia N, et al. Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation[J]. 3 Biotech, 2011, 1(4): 227–238. doi: 10.1007/s13205-011-0028-2 [4] 王伟妮, 鲁剑巍, 鲁明星, 等. 湖北省早、中、晚稻施钾增产效应及钾肥利用率研究[J]. 植物营养与肥料学报, 2011, 17(5): 1058–1065. Wang W N, Lu J W, Lu M X, et al. Effects of potassium fertilizer and potassium use efficiency on early-mid-and late-season rice in Hubei province, China[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(5): 1058–1065. [5] Pan J F, Cui K H, Wei D, et al. Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels[J]. Physiologia Plantarum, 2011, 141(4): 321–331. doi: 10.1111/j.1399-3054.2010.01441.x [6] 代新俊, 杨珍平, 陆梅, 等. 不同形态氮肥及其用量对强筋小麦氮素转运、产量和品质的影响[J]. 植物营养与肥料学报, 2019, 25(5): 710–720. Dai X J, Yang Z P, Lu M, et al. Effects of nitrogen forms and amounts on nitrogen teanslocation yield and quality of strong-gluren wheat[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 710–720. doi: 10.11674/zwyf.18220 [7] 王旭东, 于振文, 王东. 钾对小麦茎和叶鞘碳水化合物含量及子粒淀粉积累的影响[J]. 植物营养与肥料学报, 2003, 9(1): 57–62. Wang X D, Yu Z W, Wang D. Effect of potassium on carbohydrate contents in stem and sheath and starch accumulation in kernel of wheat[J]. Journal of Plant Nutrition and Fertilizers, 2003, 9(1): 57–62. doi: 10.3321/j.issn:1008-505X.2003.01.010 [8] 剡斌, 牛俊义, 崔政军, 等. 氮磷用量对胡麻非结构性碳水化合物积累转运及产量的影响[J]. 中国土壤与肥料, 2015, (2): 63–69. Yan B, Niu J Y, Cui Z J, et al. Effect of nitrogen and phosphorus on the accumulation, transportation and yield of non-structural carbohydrates in flax[J]. Soil and Fertilizer Sciences in China, 2015, (2): 63–69. doi: 10.11838/sfsc.20150212 [9] 魏凤桐, 陶洪斌, 王璞. 旱稻297非结构性碳水化合物的生产与产量构成因子的关系[J]. 作物学报, 2010, 36(12): 2135–2142. Wei F T, Tao H B, Wang P. Relationship of non-structure carbohydrate production and yield components of aerobic rice, handao 297[J]. Acta Agronomica Sinica, 2010, 36(12): 2135–2142. [10] 柳洪鹃, 史春余, 柴沙沙, 等. 不同时期施钾对甘薯光合产物运转动力的调控[J]. 植物营养与肥料学报, 2015, 21(1): 171–180. Liu H J, Shi C Y, Chai S S, et al. Effect of different potassium application time on the vigor of photosynthate transportations of edible sweet potato (Ipomoea Batata L.)[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 171–180. doi: 10.11674/zwyf.2015.0119 [11] 张军, 李运祥, 刘娟, 等. 施氮处理对水稻颖果淀粉积累和相关酶活性的影响[J]. 作物学报, 2008, 34(12): 2168–2175. Zhang J, Li Y X, Liu J, et al. Effects of nitrogen on starch accumulation and activities of enzymes involved in starch synthesis in rice caryopsis[J]. Acta Agronomica Sinica, 2008, 34(12): 2168–2175. [12] 刘艳阳, 张洪程, 戴其根, 等. 不同地力水平下施氮量对水稻淀粉RVA谱特征的影响[J]. 中国水稻科学, 2006, (5): 529–534. Liu Y Y, Zhang H C, Dai Q G, et al. Effects of nitrogen application on rva profile characters under different soil fertility levels[J]. China Journal of Rice Science, 2006, (5): 529–534. doi: 10.3321/j.issn:1001-7216.2006.05.013 [13] 姜宗庆, 封超年, 刘萍, 等. 施磷量对不同类型专用小麦产量及剑叶相关生理特性的影响[J]. 江苏农业科学, 2013, 41(1): 76–80. Jiang Z Q, Feng C N, Liu P, et al. Effect of phosphorus application on yield and physiological characteristics of flag leaf of different types of special wheat[J]. Jiangsu Agricultural Science, 2013, 41(1): 76–80. doi: 10.3969/j.issn.1002-1302.2013.01.027 [14] 罗新宁. 钾肥对水稻品质和产量的影响[D]. 雅安: 四川农业大学硕士学位论文, 2003. Luo X N. Effects of potassium on rice quality and yield[D]. Ya'an: MS Thesis of Sichuan Agricultural University, 2003. [15] 辛柳, 赵宏伟, 雷万钧, 等. 施钾量对寒地粳稻抗倒伏能力的影响[J]. 中国土壤与肥料, 2015, (4): 93–100. Xin L, Zhao H W, Lei W J, et al. Effect of potassium application on Lodging Resistance of Japonica Rice in cold region[J]. Soil and Fertilizer Sciences in China, 2015, (4): 93–100. [16] 朱相成, 汤亮, 张文宇, 等. 不同品种和栽培条件下水稻冠层光合有效辐射传输特征[J]. 中国农业科学, 2012, 45(01): 34–43. Zhu X C, Tang L, Zhang W Y, et al. Transfer characteristics of canopy photo-synthetically active radiationin different rice cultivars under different cultural conditions[J]. Scientia Agricultura Sinica, 2012, 45(01): 34–43. doi: 10.3864/j.issn.0578-1752.2012.01.005 [17] 李迪秦, 唐启源, 翟玉光, 等. 氮肥施用模式对中籼超级稻产量及辐射利用率的影响[J]. 湖南农业大学学报(自然科学版), 2010, 36(5): 489–494. Li D Q, Tang Q Y, Zhai Y G, et al. Effect of different nitrogen management patterns on grain yield andradiation use efficiency of middle-season indica super hybrid rice[J]. Journal of Hunan Agricultural University (Natural Sciences), 2010, 36(5): 489–494. [18] 张凯, 陈年来, 顾群英. 不同水氮水平下小麦品种对光、水和氮利用效率的权衡[J]. 应用生态学报, 2016, 27(7): 2273–2282. Zhang K, Chen N L, Gu Q Y. Trade-offs among light, water and nitrogen use efficiencies of wheat cultivars under differentwater and nitrogen application levels[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2273–2282. [19] 彭华. “3414”配方施肥对马铃薯经济性状和产量的影响[J]. 安徽农业科学, 2015, 43(9): 73–74. Peng H. Effects of “3414” fertilization experiment on economic character and yield of potato[J]. Journal of Anhui Agricultural Sciences, 2015, 43(9): 73–74. doi: 10.3969/j.issn.0517-6611.2015.09.031 [20] 李明福, 李鹏林, 朱艳娇, 等. 马铃薯“3414”配方施肥效应试验研究[J]. 陕西农业科学, 2017, 63(12): 42–46. Li M F, Li P L, Zhu Y J, et al. Experimental study on fertilizer application effect of potato "3414" formula[J]. Shaanxi Journal of Agricultural Sciences, 2017, 63(12): 42–46. doi: 10.3969/j.issn.0488-5368.2017.12.015 [21] 戢林, 张锡洲, 李廷轩. 基于“3414”试验的川中丘陵区水稻测土配方施肥指标体系构建[J]. 中国农业科学, 2011, 44 (1): 84–92. Ji L, Zhang X Z, Li T X. Index system construction of rice soil testing and formula fertilization in hilly area of central Sichuan Based on "3414" experiment[J]. China Agricultural Science, 2011, 44 (1): 84–92. doi: 10.3864/j.issn.0578-1752.2011.01.010 [22] 董作珍, 吴良欢, 柴婕, 等. 不同氮磷钾处理对中浙优1号水稻产量、品质、养分吸收利用及经济效益的影响[J]. 中国水稻科学, 2015, 29(04): 399–407. Dong Z Z, Wu L H, Chai J, et al. Effects of different nitrogen, phosphorus and potassium trearments on rice yield, quality, nutrient absorption-utilization and economic benefit of Zhongzheyou 1 in central Zhejiang Province, China[J]. China Journal of Rice Science, 2015, 29(04): 399–407. doi: 10.3969/j.issn.1001-7216.2015.04.009 [23] 郑网宇, 陈功磊, 吴迪, 等. 不同肥力水平土壤小麦的氮磷钾肥料效应及养分吸收利用研究—以太湖流域丹阳市为例[J]. 江苏农业科学, 2019, 47(23): 96–101. Zheng W Y, Chen G L, Wu D, et al. Effects of N, P, K fertilizer and nutrient absorption and utilization of wheat in different fertility levels: a case study of Danyang City in Taihu Lake Basin[J]. Jiangsu Agricultural Science, 2019, 47(23): 96–101. [24] 孙义祥, 郭跃升, 于舜章, 等. 应用“3414”试验建立冬小麦测土配方施肥指标体系[J]. 植物营养与肥料学报, 2009, 15(1): 197–203. Sun Y X, Guo Y S, Yu S Z, et al. Establishing phosphorus and potassium fertilization recommendation index based on the “3414” field experiments[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(1): 197–203. doi: 10.3321/j.issn:1008-505X.2009.01.029 [25] 李文彪, 刘荣乐, 郑海春, 等. 内蒙古河套灌区春玉米推荐施肥指标体系研究[J]. 中国农业科学, 2012, 45(1): 93–101. Li W B, Liu R L, Zheng H C, et al. Study on index system of optimal fertilizer recommendation for spring corn in Hetao Irrigation Area of Inner Mongolia[J]. Scientia Agricultura Sinica, 2012, 45(1): 93–101. doi: 10.3864/j.issn.0578-1752.2012.01.011 [26] 王伟妮, 鲁剑巍, 何予卿, 等. 氮、磷、钾肥对水稻产量、品质及养分吸收利用的影响[J]. 中国水稻科学, 2011, 25(06): 645–653. Wang W N, Lu J W, He Y Q, et al. Effcets of N, P, K fertilizer application on grain yield, quality, nutrient uptake and utilization of rice[J]. China Journal of Rice Science, 2011, 25(06): 645–653. doi: 10.3969/j.issn.1001-7216.2011.06.012 [27] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. Li H S. Principles and techniques of plant physiological and biochemical experiments[M]. Beijing: Higher Education Press, 2000. [28] 谢小兵, 王玉梅, 黄敏, 等. 单本密植机插对杂交稻生长和产量的影响[J]. 作物学报, 2016, 42(6): 924–931. Xie X B, Wang Y M, Huang M, et al. Effect of mechanized transplanting with high hill density and single seedlingper hill on growth and grain yield in hybrid rice[J]. Acta Agronomica Sinica, 2016, 42(6): 924–931. doi: 10.3724/SP.J.1006.2016.00924 [29] 潘俊峰, 李国辉, 崔克辉. 水稻茎鞘非结构性碳水化合物再分配及其在稳产和抗逆中的作用[J]. 中国水稻科学, 2014, 28(4): 335–342. Pan J F, Li G H, Cui K H, et al. Re-partitioning of non-structural carbohydrates in rice stems and their roles in yield stability and stress tolerance[J]. China Journal of Rice Science, 2014, 28(4): 335–342. doi: 10.3969/j.issn.1001-7216.2014.04.001 [30] 薛欣欣, 鲁剑巍, 李小坤, 等. 不同施氮量下缺钾对水稻叶片营养及生理性状的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1494–1502. Xue X X, Lu J W, Li X K, et al. Nutritional and physiological characters of rice leaves exposure to potassium deficiency under different nitrogen rates[J]. Plant Nutrition and Fertilizer Science, 2016, 22(6): 1494–1502. doi: 10.11674/zwyf.15496 [31] 许蓓蓓, 尤翠翠, 丁艳锋, 等. 源库调节对常规粳稻花后营养器官碳水化合物及氮磷钾转运的影响[J]. 中国农业科学, 2016, 49(4): 643–656. Xu B B, You C C, Ding Y F, et al. Effect of source-sink manipulation on translocation of carbohydrate and nitrogen, phosphors, potassium in vegetative organs of conventional japonica rice after anthesis[J]. Scientia Agricultura Sinica, 2016, 49(4): 643–656. doi: 10.3864/j.issn.0578-1752.2016.04.004 [32] 潘俊峰, 王博, 崔克辉, 等. 氮肥对水稻节间和叶鞘非结构性碳水化合物积累转运特征的影响[J]. 中国水稻科学, 2016, 30(3): 273–282. Pan J F, Wang B, Cui K H, et al. Effcet of nitrogen application on accumulation and translocation of non-structual carbohydrates in internodes and sheaths of rice[J]. China Journal of Rice Science, 2016, 30(3): 273–282. [33] Yang J C, Liu L J, Wang Z Q, et al. Rice: carbon remobilization and grain filling in Japonica/Indica hybrid rice subjected to postanthesis water deficits[J]. Agronomy Journal, 2002, 94(1): 102–109. doi: 10.2134/agronj2002.0102 [34] Winkel A, Colmer T D, Ismail A M, et al. Internal aeration of paddy field rice (Oryza sativa) during complete submergence-importance of light and floodwater O2 [J]. New Phytologist, 2013, 197(4): 1193–1203. doi: 10.1111/nph.12048 [35] Zhang J, Li G H, Huang Q Y, et al. Effects of culm carbohydrate partitioning on basal stem strength in a high-yielding rice population[J]. The Crop Journal, 2017, 5(6): 478–487. doi: 10.1016/j.cj.2017.08.008 [36] Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during the development of rice endosperm[J]. Plant Science, 1992, 82(1): 15–20. doi: 10.1016/0168-9452(92)90003-5 [37] Takai T, Matsuura S, NishioT, et al. Rice yield potential is closely related to crop growth rate during late reproductive period[J]. Field Crops Research, 2006, 96(2–3): 328–335. doi: 10.1016/j.fcr.2005.08.001 [38] 王惠芝, 尤娟, 王绍华, 等. 迟熟中粳稻穗茎生长与每穗颖花数的关系[J]. 作物学报, 2007, 33(5): 820–825. Wang H Z, You J, Wang S H, et al. Relationship between panicle and stem growth and spikelets per panicle in late-maturing medium Japonica Rice[J]. Acta Agronomica Sinica, 2007, 33(5): 820–825. doi: 10.3321/j.issn:0496-3490.2007.05.019 [39] 张伟梅. 不同施氮水平与种植密度对甬优1540产量及群体结构的影响[J]. 中国稻米, 2020, 26(2): 91–93. Zhang W M. Effects of different nitrogen application rates and densities on yield and population structureof yongyou 1540[J]. China Rice, 2020, 26(2): 91–93. doi: 10.3969/j.issn.1006-8082.2020.02.022 [40] 杜宇笑, 李鑫格, 张羽, 等. 不同产量水平下稻茬小麦的氮素营养指标特征[J]. 植物营养与肥料学报, 2020, 26(8): 1420–1429. Du Y X, Li X G, Zhang Y, et al. Variation in nitrogen status indicators with grain yield level for winter wheat after rice[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1420–1429. doi: 10.11674/zwyf.19498 [41] Yang J D, Michael U. Senescence and nitrogen use efficiency in perennial grasses for forage and biofuel production[J]. Journal of Experimental Botany, 2018, 69(4): 855–865. doi: 10.1093/jxb/erx241 [42] 周宝元, 王志敏, 岳阳, 等. 冬小麦–夏玉米与双季玉米种植模式产量及光温资源利用特征比较[J]. 作物学报, 2015, 41(9): 1393–1405. Zhou B Y, Wang Z M, Yue Y, et al. Comparison of yield and light-temperature resource use efficiency between wheat–maize and maize–maize cropping systems[J]. Acta Agronomica Sinica, 2015, 41(9): 1393–1405. doi: 10.3724/SP.J.1006.2015.01393 [43] Wang Y, Lu J W, Ren T, et al. Effects of nitrogen and tiller type on grain yield and physiological responses in rice[J]. AoB Plants, 2017, 9(2): plx012. [44] 魏金连, 潘晓华, 邓强辉. 不同生育阶段夜温升高对双季水稻产量的影响[J]. 应用生态学报, 2010, 21(2): 331–337. Wei J L, Pan X H, Deng Q H, et al. Effects of night time temperature increase at different growth stages on double season ricegrain yield[J]. Chinese Journal of Applied Ecology, 2010, 21(2): 331–337. [45] Liu K, Yang R, Deng J, et al. High radiation use efficiency improves yield in the recently developed elite hybrid rice Y-liangyou 900[J]. Field Crops Research, 2020, 253: 207804. [46] 徐春梅, 袁立伦, 陈松, 等. 长江下游不同生态区双季优质晚稻生长特性和温光利用差异[J]. 中国水稻科学, 2020, 34(5): 457–469. Xu C M, Yuan L L, Chen S, et al. Difference of growth characteristics, utilization of temperature and illumination of double-cropping high quality late rice in different ecological regions of the lower reaches of Yangtze river[J]. China Journal of Rice Science, 2020, 34(5): 457–469. -