-
设施蔬菜生产作为满足我们北方地区冬春蔬菜供应、促进农民增收的重要产业而得到迅速发展。施用化肥是设施蔬菜生产的重要保障,然而设施蔬菜生产中普遍存在化肥过量使用、有机肥投入不足、可持续生产力下降等问题,长期单一施用化肥容易造成土壤盐分积累、降低土壤酶活性、土壤有机质消耗、蔬菜产量品质下降[1-4]。为此,2015年农业农村部制定了《2020年化肥、农药使用量零增长行动方案》,科技部也随之启动了“十三五”之“双减”重大研发计划,以减少化肥农药的施用量,提质增效,促进设施蔬菜产业的可持续发展。
有机肥应用在设施蔬菜生产中扮演了极其重要的角色,研究表明,有机肥与无机肥配合施用对作物生长的效果较好[5-6],并且有机无机肥料配施可协调平衡养分供应,满足作物整个生育期对养分的需求。孙利萍等[7]研究表明,施用羊粪和鸡粪可以提高番茄产量和品质。赵云霞等[8]研究了在沙培的日光温室条件下,适宜有机肥施用可促进番茄生长,提高果实产量和品质。不同的有机肥替代化肥比例对蔬菜产量和品质、减少农业化肥浪费、改良环境质量均能产生有益的影响[9-11]。前人在有机肥的科学运用上做了大量研究工作,而新建日光温室大棚是由粮田改建而成,由于前期有机肥投入量少,土壤肥力低,一方面需要培肥地力,另一方面需要收获产量,如何在二者之间寻求平衡,如何科学投入适量有机肥则显得尤为重要。在鲁西南潮土新建日光温室开展设施蔬菜有机肥替代化肥技术研究,研究不同有机肥替代比例对蔬菜产量或品质以及节本增效、土壤质量的影响,提出当地生产条件下的适宜有机肥替代比例,以期为设施蔬菜尤其是新建日光温室蔬菜的科学施用有机肥、合理替代化肥提供技术指导。
-
试验地点在山东省郓城县南赵楼村绿禾公司冬暖式大棚,该公司位于山东省菏泽市郓城县城南24 km的位置,东经115°40′~116°08′,北纬35°21′~35°52′,属温带大陆性季风气候,四季分明,年均气温13.3℃,年均无霜期208天,年均日照时数2479.7 h,年均降水量694.7 mm。土壤类型为壤质潮土,成土母质为黄河冲积物。所选大棚均为新建大棚,2017年试验温室大棚为2016年年底新建,2018年试验温室大棚为2017年年底新建,新建前种植作物均为小麦玉米, 所选试验棚0—30 cm土壤的基本理化性质如表1。
表 1 土壤基本理化性质
Table 1. Basic physical and chemical properties of soils
年份
Year全氮
Total N
(g/kg)硝态氮
NO3--N
(mg/kg)铵态氮
NH4+-N
(mg/kg)有效磷
Avail-P
(mg/kg)速效钾
Avail-K
(mg/kg)有机碳
Organic C
(g/kg)pH 盐
Salt
(g/kg)容重
Bulk density
(g/cm3)孔隙度
Porosity
(%)2017 0.53 21.40 0.92 14.72 51.0 4.84 8.40 0.82 1.54 41.12 2018 0.54 22.12 0.95 15.68 45.0 4.68 8.50 0.84 1.55 40.51 -
试验设置6个处理,不施氮肥对照 (CK);100%化肥 (FP);10%、20%、30%和40%的有机肥氮替代化肥氮 (FM10、FM20、FM30、FM40),每个处理3个重复,随机区组排列,共计18个小区,小区面积36.21 m2。供试番茄品种为进口的亚特兰大,种植密度为38655株/hm2。试验共进行了两年,2017年3—6月和2018年3—6月,两年试验设计、肥料种类用量、种植蔬菜、田间管理均一致,表2所述施肥量为每茬番茄的施肥量。FP处理的养分用量为根据当地产量目标水平结合土壤养分测试结果推荐的用量。供试化肥为15-15-15的芭田复合肥和20-10-20的氨基酸水溶肥,供试有机肥为腐熟鸡粪,养分含量 (以干基计) 为N 1.59%、P2O5 3.14%、K2O 1.71%、有机碳26.55%、pH 8.05。在所有处理统一基施腐熟鸡粪36210 kg/hm2基础上,按照各处理氮素投入量的替代比例,计算鸡粪的施用量,此用量加上基础用量的鸡粪和化肥底肥部分在整地移栽前一次性施入。CK处理中不施用氮肥,磷钾肥分别以过磷酸钙 (P2O5 16%) 和硫酸钾 (K2O 50%) 替代,磷钾肥全部底施,生长期间不再追施任何肥料。另外5个处理为两种复合肥交替追施,各追施5次,除追肥外,各小区其他田间管理措施参考当地种植习惯。于3月初移栽定植,5月中旬开始采摘计产,6月底采摘计产结束,每个小区单独计产。各处理具体养分来源和施用量见表2。
表 2 各处理中的有机氮比例及肥料养分用量 (kg/hm2)
Table 2. Organic N replacement ratio and the fertilizer amount of each treatment
有机氮比例 (%)
Organic N处理代码
Code化肥 Compound fertilizer 鸡粪 Chicken manure N P2O5 K2O N P2O5 K2O / CK 0 954.9 1107.9 575.7 1137.0 619.2 / FP 1108.1 955.2 1108.1 575.7 1137.0 619.2 10 FP10 1002.3 849.5 1002.3 654.0 1291.6 703.4 20 FP20 896.6 743.8 896.6 732.3 1446.3 787.6 30 FP30 773.4 673.2 773.4 810.6 1600.9 871.8 40 FP40 667.6 567.6 667.6 888.9 1755.5 956.0 -
种植前和收获后取0—30 cm土壤,用于测定土壤pH及有机碳、水溶性盐、全氮、铵态氮、硝态氮、有效磷、速效钾养分含量;环刀取土壤样品,用于测定土壤容重和孔隙度。测定方法参考土壤农化分析方法[12]。
每次采摘果实计产,产量累积计算,收集生育期内打掉的老叶和收获后植株测定其氮磷钾含量[12]。盛果期取果实测定氮磷钾养分含量和NO3--N、可溶性糖、可滴定酸和维生素C(Vc) 含量。测定方法参考土壤农业化学分析方法[12]。
氮肥效率计算方法[13]如下:
氮素利用率 (NUE,%) = (施氮处理吸氮量 − 未施氮处理吸氮量)/施氮量 × 100;
氮收获指数 (%) = 果实吸氮量/地上部总吸氮量 × 100
肥料氮偏生产力 (kg/kg) = 果实产量/施氮量
-
测定数据利用Microsoft Excel 2016进行数据处理,采用DPS 18.10软件进行统计方差分析。
-
2017、2018两年试验土壤容重和孔隙度的结果表明,FM10降低土壤容重的效果未达显著水平,FM20、FM30和FM40处理的土壤容重显著低于FP处理,3个处理间没有差异;有机肥添加量对土壤孔隙度没有显著影响 (表3)。
表 3 不同施肥处理番茄收获后土壤容重和孔隙度
Table 3. Soil bulk density,soil particle density and porosity under different treatments after potato harvest
处理Treatment 2017 2018 容重 Bulk density (g/cm3) 孔隙度 Porosity (%) 容重 Bulk density (g/cm3) 孔隙度 Porosity (%) FP 1.51 ± 0.01 a 42.37 ± 1.02 a 1.52 ± 0.02 a 42.19 ± 1.06 a FM10 1.46 ± 0.02 abc 44.64 ± 0.85 a 1.46 ± 0.01 abc 43.96 ± 0.87 a FM20 1.45 ± 0.02 bc 44.96 ± 0.90 a 1.44 ± 0.02 bc 44.78 ± 0.91 a FM30 1.44 ± 0.02 c 45.02 ± 0.88 a 1.44 ± 0.01 bc 45.07 ± 0.84 a FM40 1.43 ± 0.01 c 45.26 ± 0.45 a 1.43 ± 0.01 c 45.06 ± 0.34 a CK 1.49 ± 0.02 a 43.63 ± 0.63 a 1.49 ± 0.02 ab 43.50 ± 0.50 a 注(Note):同一列不同字母表示处理间差异达 5% 显著水平 Values followed by different small letters within a column are significantly different among treatments at the 0.05 level. -
2017和2018两年试验结果一致 (表4),有机氮替代比例高于20%后,土壤中的全氮量、有机碳含量比FP处理显著增加,FM30和FM40处理的有机碳含量又显著高于FM20处理,而FM30和FM40处理之间没有显著差异。5个施肥处理对土壤氨态氮含量基本无影响,但随有机肥替代化肥比例增加,土壤中硝态氮、有效磷和速效钾含量均下降,FM30和FM40处理的下降幅度较FP处理均达到显著水平。表明当有机替代达到30%以上时,可以有效增加土壤中全氮和有机碳的含量,培肥土壤,降低速效养分的含量,减少土壤盐渍化的速率。
表 4 2017和2018年番茄收获后不同施肥处理土壤养分含量
Table 4. Soil nutrient contents under different fertilization treatments after potato harvest in 2017 and 2018
处理
Treatment全氮 (g/kg)
Total N有机碳 (g/kg)
Organic C硝态氮 (mg/kg)
NO3–-N铵态氮 (mg/kg)
NH4+-N有效磷 (mg/kg)
Avail-P速效钾 (mg/kg)
Avail-K2017 FP 0.84 ± 0.02 a 5.77 ± 0.28 c 70.20 ± 2.11 a 1.28 ± 0.05 a 56.58 ± 1.44 a 137.23 ± 2.06 ab FM10 0.81 ± 0.02 a 6.24 ± 0.13 b 68.38 ± 3.27 a 1.21 ± 0.05 a 54.72 ± 2.18 ab 130.00 ± 1.23 bc FM20 0.77 ± 0.01 b 6.43 ± 0.26 b 57.68 ± 1.23 b 1.30 ± 0.11 a 50.51 ± 1.08 bc 124.313 ± 2.31 cd FM30 0.76 ± 0.02 b 7.04 ± 0.29 a 50.28 ± 2.19 c 1..26 ± 0.05 a 47.15 ± 2.03 cd 119.67 ± 2.61 de FM40 0.74 ± 0.02 b 7.23 ± 0.13 a 45.27 ± 1.37 c 1.28 ± 0.05 a 44.26 ± 1.42 d 112.00 ± 3.00 e CK 0.58 ± 0.02 c 5.34 ± 0.09 d 25.26 ± 0.21 d 1.23 ± 0.08 a 55.81 ± 0.89 a 138.28 ± 0.98 a 2018 FP 0.85 ± 0.01 a 5.76 ± 0.29 c 67.10 ± 2.11 a 1.27 ± 0.06 a 57.67 ± 1.47 a 135.33 ± 3.06 ab FM10 0.82 ± 0.02 a 6.25 ± 0.14 b 64.43 ± 1.27 a 1.20 ± 0.03 ab 53.75 ± 2.78 ab 128.00 ± 1.73 bc FM20 0.77 ± 0.01 b 6.42 ± 0.29 b 54.76 ± 1.01 b 1.35 ± 0.10 a 49.52 ± 1.18 bc 120.33 ± 3.21 cd FM30 0.75 ± 0.02 b 6.97 ± 0.32 a 48.29 ± 3.04 c 1.05 ± 0.01 b 46.75 ± 2.43 cd 116.67 ± 4.73 de FM40 0.73 ± 0.02 b 7.21 ± 0.02 a 42.71 ± 1.89 c 1.33 ± 0.05 a 42.97 ± 1.02 d 111.00 ± 2.00 e CK 0.59 ± 0.01 c 5.35 ± 0.11 d 22.97 ± 0.15 d 1.26 ± 0.09 a 57.83 ± 0.73 a 140.33 ± 0.58 a 注(Note):同一列不同字母表示处理间差异达 5% 显著水平 Values followed by different small letters within a column are significantly different among treatments at the 0.05 level. -
由图1可知,果实含氮量以FP和FM10处理最高,二者显著高于其他处理。当有机肥替代比例为10%~30%时,果实钾含量较高,FM10处理的果实含钾量显著高于FP、FM40和CK处理。4个有机替代处理的果实磷素含量均显著高于FP和CK处理,4个有机替代处理间差异不显著。
-
2017和2018两年数据 (表5) 表明,处理FM10和FP的氮素收获指数没有显著差异,二者均显著高于其他3个处理,其他3个处理间差异不显著。氮肥偏生产力以FM30和FM40处理较高,二者没有显著差异,但均显著高于其他处理,其他3个处理之间的氮肥偏生产力也没有显著差异。氮肥利用率以FM30处理最高,与FM40处理差异不显著, 但显著高于其他处理,比FP处理提高了17.7%。但是,总的来看,两年试验的氮肥利用率均不高,仅有13%~15%。
表 5 不同施肥处理氮素效率
Table 5. Nitrogen efficiency of different fertilization treatments
处理
Treatment2017 2018 氮素收获指数 (%)
N harvest index氮肥偏生产力 (kg/kg)
NPFP氮肥利用率 (%)
NUE氮素收获指数 (%)
N harvest index氮肥偏生产力 (kg/kg)
NPFP氮肥利用率 (%)
NUEFP 32.5 ± 0.16 a 71.0 ± 0.72 d 12.8 ± 0.04 c 32.9 ± 0.17 a 71.6 ± 0.65 d 13.0 ± 0.06 c FM10 33.0 ± 0.12 a 75.0 ± 0.63 c 14.4 ± 0.04 b 33.4 ± 0.14 a 75.2 ± 0.62 c 14.6 ± 0.06 b FM20 31.2 ± 0.20 b 78.3 ± 0.67 b 14.5 ± 0.12 b 31.4 ± 0.15 b 78.5 ± 0.74 b 14.7 ± 0.11 b FM30 31.3 ± 0.12 b 82.8 ± 0.87 a 15.0 ± 0.14 a 31.5 ± 0.12 b 82.4 ± 1.04 a 15.4 ± 0.09 a FM40 30.8 ± 0.14 b 83.0 ± 0.81 a 14.7 ± 0.08 ab 31.0 ± 0.10 b 83.4 ± 0.75 a 14.8 ± 0.07 ab 注(Note):NPFP—Nitrogen partial fertilizer productivity, NUE—Nitrogenous fertilizer utilization efficient. 同一列不同字母表示处理间差异达 5% 显著水平 Values followed by different small letters within a column are significantly different among treatments at the 0.05 level. -
2017、2018两年试验不同处理番茄产量的变化趋势一致,4个有机替代处理的番茄产量均高于FP处理,FM20和FM30处理的产量平均分别为82638和82777 kg/hm2,分别比FP处理增产3.86%、4.03%,均达5%显著水平。FM40处理的番茄产量虽然下降,但与FM30和FM20处理的差异未达显著水平。将产量与有机替代比例进行拟合可看出,获得最高产量的有机替代比例为27%。
-
由表6可知,4个有机替代比例处理均显著降低了番茄NO3--N含量。FM30、FM40处理的番茄NO3--N含量比FP处理均降低了21.17%。FP、FM10和FM20处理的番茄维生素C(Vc) 含量较高,显著高于FM40和CK处理。有机肥替代比例为10%时,番茄总糖含量比FP处理有所增加,但显著高于FM20~FM40,不同有机替代比例间番茄酸度没有显著差异,但FM10的糖酸比显著高于FM20。
表 6 不同施肥处理对番茄果实硝酸盐、Vc和糖酸比的影响 (2018)
Table 6. Effects of different fertilization treatments on Nitrate,Vc and sugar-acid ratio of tomato fruits
处理 Treatment NO3–-N (mg/kg) VC (mg/kg) 总糖 Total sugars (%) 酸度 Acidity (%) 糖酸比 Sugar-acid ratio FP 72.91 ± 0.65 a 160.33 ± 1.04 a 2.33 ± 0.03 ab 0.37 ± 0.01 ab 6.32 ± 0.33 ab FM10 64.01 ± 0.70 b 161.67 ± 1.71 a 2.49 ± 0.17 a 0.38 ± 0.01 a 6.53 ± 0.41 ab FM20 60.01 ± 1.37 c 153.86 ± 0.99 ab 2.08 ± 0.17 b 0.39 ± 0.02 a 5.30 ± 0.20 c FM30 57.41 ± 2.13 cd 142.98 ± 2.39 bc 2.03 ± 0.17 b 0.36 ± 0.02 ab 5.70 ± 0.34 bc FM40 57.51 ± 1.42 cd 135.14 ± 1.01 c 2.06 ± 0.05 b 0.35 ± 0.02 ab 5.95 ± 0.43 bc CK 56.31 ± 0.54 d 126.70 ± 2.66 c 2.30 ± 0.09 ab 0.33 ± 0.01 b 6.93 ± 0.32 a 注(Note):同一列不同字母表示处理间差异达 5% 显著水平 Values followed by different small letters within a column are significantly different among treatments at the 0.05 level. -
总投入为有机肥 (不包括统一底施的有机肥)、复合肥、水溶肥3种肥料的投入,增加的有机肥同统一底施的有机肥一起施入未考虑因此增加的人工成本,各处理人工劳动成本一致,故经济效益分析中无人工劳动成本的计算。两年经济效益的平均值见表7,由表7可知 FM20处理 (有机肥替代20%化肥) 总投入成本最高,比FP处理成本增加4.5%;而FM30处理 (有机肥替代30%化肥),总投入成本最低,产出最高,净收益最大,增收8189元/hm2,与常规施肥处理FP相比,可节省肥料成本4.3%,增加收入6.9%。
表 7 施肥处理投入和净收益分析 (Yuan/hm2)
Table 7. Analysis of total input and net income
处理
Treatment总投入 Total input 产出 (yuan/hm2)
Output净收益 Net income (yuan/hm2) 变化 (yuan/hm2) 变化 Change FP 41255 – 159137 117882 – FM10 42176 921 162249 120074 2192 FM20 43095 1840 165275 122180 4298 FM30 39485 –1770 165555 126071 8189 FM40 40395 –860 163677 123284 5402 注(Note):复合肥 4 元/kg,水溶肥 13 元/kg,有机肥 0.6 元/kg,番茄 2.0 元/kg Compound fertilizer 4 yuan/kg, water-soluble fertilizer 13 yuan/kg, organic fertilizer 0.6 yuan/kg, tomato 2.0 ¥/kg -
粮田改建的设施大棚土壤有机质和养分含量一般较低,是制约蔬菜生长的主要限制因子。有机肥和化肥配合施用可以显著提高土壤活性有机质和碳库管理指数[14],对于保持土壤养分的基本平衡、提高整体肥力及养分有效性有显著作用[15]。有研究表明,日光温室土壤氮磷钾养分在建棚的1~2年快速积累,3~4年积累速率变缓,一般5~8年达到最大值,之后基本处于平衡状态[16-18]。在本试验的两个新建大棚中,当肥料中有机肥 (鸡粪) 的比例提高到30%以上,一季后土壤有机碳和全氮含量较常规施肥显著提高,而速效养分除铵态氮含量外,显著降低 (表4)。土壤速效磷、钾含量的下降与有机替代比例高的处理中磷钾投入量减少有关。全氮量特别是硝态氮含量的减少应该与果实的吸收带走有关。结合产量的变化,在新建日光温室的第一年,肥料中的有机肥比例应控制在30%以内。
有机肥能够改良土壤结构,降低土壤容重和紧实度,提高土壤总孔隙度[19-21]。据徐明岗等[14]10年长期定位试验表明,土壤中活性有机质和碳库管理指数与土壤有效养分和物理性状及作物产量均呈显著正相关,比总有机质更能客观的反映土壤肥力和土壤质量的变化。本试验中,随有机肥替代比例增加,土壤孔隙度虽然呈增加趋势但是没有显著的变化,但当有机肥比例高于20%时,土壤容重显著低于对照和常规施肥处理 (表3)。因此,新建大棚中,应保证肥料中适宜的有机替代比例,以实现土壤物理和化学性状的同时改善。
-
大量的研究证实了有机肥和化肥配施维持或提高作物产量与品质的效果,如王冰清等[9]、叶景学等[22]研究亦发现化肥减量配施有机肥,提高了黄瓜、茄子、甘蓝和苦瓜的可溶性糖、Vc含量,降低了硝酸盐的含量。周博等[23]在新建日光温室的番茄试验中发现,化肥氮减施16%增施有机肥,对番茄产量无显著影响,而宁建凤等[24]连续4四茬小白菜试验发现,化肥优化减施条件下有机肥替代10%~30%化肥,小白菜产量无显著变化。张国显等[25]、Manna等[26]研究发现,有机肥替代25%化肥时,可以达到化肥减施增产的效果,番茄可增产28%。在本研究中,肥料中有机肥比例影响着有机肥提高番茄产量的效果,有机肥比例为20%~30%时,番茄的产量显著高于常规施肥 (图2),继续增加有机肥比例则会降低番茄的产量。通过产量与有机肥比例的拟合曲线得出,在本试验条件下,获得最高产量的最佳有机肥替代比例为27%。提高肥料中有机肥的比例显著降低了番茄果实中的硝酸盐含量,降幅8%~21%,且没有明显降低Vc、总糖、酸度、糖酸比等品质。
-
大量研究表明,有机无机肥配合施用能明显提高氮肥利用率,提高氮素运转效率,提高作物产量[27-29]。如刘汝亮等[29]研究表明,在宁夏引黄灌区稻田配施有机肥,水稻氮肥利用率可以提高2~5个百分点;高洪军等[30]研究发现,有机肥替代化肥的有机无机配施模式能够提高玉米的氮素积累量,并提高玉米的偏生产力和氮收获指数。蔬菜有机肥养分用量占总养分用量的适宜比例一般为40%~50%,然而在实际蔬菜生产中化肥超量投入,有机肥用量严重不足,这是目前我国蔬菜施肥中存在的主要问题[31]。但是实际中,也有施用有机肥并未显著提高作物氮肥利用率的结果[32-33]。如何传龙[34]研究发现,化肥减施30%下番茄虽然比习惯施肥增产了6.8%,但氮肥利用率也仅为5.65%。可见,有机肥对氮肥利用率的影响在不同施氮量、作物类型、土壤条件和气候条件下差异较大[35-37]。本试验研究发现,肥料中有机氮的比例为30%时,氮肥的利用率最高,比常规施肥提高17.7%,同时收获指数和偏生产力也最高 (表5),但由于本研究中新棚的有机质和氮磷钾较为缺乏,这成为了限制番茄生长的主要障碍因子,导致了整体番茄生产能力下降,所以氮肥的利用率较低,平均只有15%左右。可见新棚土壤整体肥力的缺乏是影响肥料养分利用效率的重要因素,因此,需要进一步研究合理施用有机肥,快速培肥土壤。
-
在新建的蔬菜大棚中,肥料中的有机肥替代比例为30%左右时,可获得较高的番茄产量和品质,氮肥利用率也最高。有机替代比例为30%时,不仅提高了土壤全氮和有机碳含量,还显著降低了土壤容重,改善了土壤肥力。在本试验中,提高有机氮的比例,不同程度的减少了磷钾的投入,但是果实中的磷钾含量反而比单施化肥有了显著的增加,残留在土壤中的速效氮磷钾养分显著下降,表明有机替代可在一定程度上缓解大棚土壤中盐分的积累。
新建大棚番茄施肥适宜的有机肥替代化肥比例及效应
Appropriate proportion of organic fertilizer to replace chemical fertilizer for tomato fertilization in newly-built greenhouse
-
摘要:
【目的】 有机肥替代部分化肥是实现作物高产优质、化肥增效和快速培肥土壤的重要技术途径。研究有机肥与化肥不同比例配施对新建温室中番茄产量、品质、氮肥效率和土壤理化性状的影响,以期为设施蔬菜减肥增效提供理论依据和技术支撑。 【方法】 2017和2018年在鲁西南的两个新建大棚进行了试验,供试番茄品种为亚特兰大。依据当地番茄N-P2O5-K2O推荐量 (1108-955-1108),设置100%化肥 (FP) 和10%、20%、30%、40%的有机肥替代比例 (FM10、FM20、FM30、FM40) 处理,以不施氮肥为对照 (CK),分析了番茄果实及植株氮磷钾含量,番茄NO3--N、维生素C(Vc)、总糖、酸度以及收获后0—30 cm土壤养分含量及容重、孔隙度等物理性状指标,并计算了经济效益。 【结果】 有机肥替代比例在10%~30%内,番茄产量随有机肥替代比例的提高而提高,以FM30处理的番茄产量最高,净收益最大,比FP处理增产4.03%,增收6.9%。FM30和FM40处理的番茄果实的硝酸盐含量比FP处理均降低了21.2%,FM10处理的番茄Vc、糖酸比、糖度最高,随有机肥替代比例增加,番茄Vc、糖酸比和糖度降低。FM30处理的番茄氮素利用率最高,比FP处理提高了17.7%。与FP处理相比,FM30和FM40处理的土壤硝态氮、有效磷和有效钾含量显著降低,土壤容重也显著降低,但土壤全氮和有机碳含量得到显著增加。 【结论】 当有机氮替代30%的化肥氮时,可以显著提高番茄产量和品质,改善土壤肥力,减少速效养分的残留。 Abstract:【Objectives】 Replacing partial of chemical fertilizers with organic fertilizer is the key technical pathway to achieve crop high yield and high quality, fertilizer efficiency and rapid soil fertility. Effects of different proportions of organic fertilizer and chemical fertilizer on tomato yield, quality, nitrogen absorption and soil physicochemical characteristics in newly-built greenhouse were studied in this paper, so as to provide theoretical basis and technical support for greenhouse vegetables fertilizer reduction and efficiency. 【Method】 Experiments were carried out in 2017 and 2018 in two newly-built greenhouses in southwest Shandong Province, the tomato variety was Atlanta. According to the local tomato N-P2O5-K2O recommended amount (1108-955-1108), the experiments designed 100% fertilizer (FP) treatment and 10%, 20%, 30%, 40% organic N replacement proportion treatments (FM10, FM20, FM30, FM40) and no N input control (CK). The contents of N, P and K in tomato fruits and plants, tomato NO3–-N, Vc, total sugar, acidity, soil nutrient content, bulk density and porosity in 0—30 cm soil were analyzed. The economic benefit was also calculated. 【Results】 The yield of tomato increased with the increase of organic N replacement proportion. Compared with FP treatment, the yield and net income of tomato in FM30 treatment were significantly higher, yield increased by 4.03% and net income increased by 6.09%. The NO3–-N contents in tomato fruit of FM30 and FM40 treatments all decreased by 21.2% compared with FP treatment. The contents of Vc, sugar-acid ratio, and total sugar were the highest in FM10 treatment. The contents of VC, sugar-acid ratio and total sugar decreases as the replacement proportion increases. The N utilization rate was the highest in FM30 treatment, which was 17.7% higher than FP treatment. Compared with FP in 0—30 cm soil after the harvest, the soil NO3–-N, available P and K contents in FM30 and FM40 treatments were significantly decreased, the soil bulk density was decreased significantly as well, but the total nitrogen and organic carbon contents were increased significantly. 【Conclusion】 Using partial of organic fertilizer to replace the chemical nitrogen is proved good yield, quality and efficient effects in tomato production, and proper ratio of organic fertilizer could improve soil fertility and slowdown salinization of the soil under facility production. Considering comprehensively, the proportion of organic nitrogen in total nitrogen input should be controlled within 20%~30% for tomato production in newly-built greenhouse. -
表 1 土壤基本理化性质
Table 1. Basic physical and chemical properties of soils
年份
Year全氮
Total N
(g/kg)硝态氮
NO3--N
(mg/kg)铵态氮
NH4+-N
(mg/kg)有效磷
Avail-P
(mg/kg)速效钾
Avail-K
(mg/kg)有机碳
Organic C
(g/kg)pH 盐
Salt
(g/kg)容重
Bulk density
(g/cm3)孔隙度
Porosity
(%)2017 0.53 21.40 0.92 14.72 51.0 4.84 8.40 0.82 1.54 41.12 2018 0.54 22.12 0.95 15.68 45.0 4.68 8.50 0.84 1.55 40.51 表 2 各处理中的有机氮比例及肥料养分用量 (kg/hm2)
Table 2. Organic N replacement ratio and the fertilizer amount of each treatment
有机氮比例 (%)
Organic N处理代码
Code化肥 Compound fertilizer 鸡粪 Chicken manure N P2O5 K2O N P2O5 K2O / CK 0 954.9 1107.9 575.7 1137.0 619.2 / FP 1108.1 955.2 1108.1 575.7 1137.0 619.2 10 FP10 1002.3 849.5 1002.3 654.0 1291.6 703.4 20 FP20 896.6 743.8 896.6 732.3 1446.3 787.6 30 FP30 773.4 673.2 773.4 810.6 1600.9 871.8 40 FP40 667.6 567.6 667.6 888.9 1755.5 956.0 表 3 不同施肥处理番茄收获后土壤容重和孔隙度
Table 3. Soil bulk density,soil particle density and porosity under different treatments after potato harvest
处理Treatment 2017 2018 容重 Bulk density (g/cm3) 孔隙度 Porosity (%) 容重 Bulk density (g/cm3) 孔隙度 Porosity (%) FP 1.51 ± 0.01 a 42.37 ± 1.02 a 1.52 ± 0.02 a 42.19 ± 1.06 a FM10 1.46 ± 0.02 abc 44.64 ± 0.85 a 1.46 ± 0.01 abc 43.96 ± 0.87 a FM20 1.45 ± 0.02 bc 44.96 ± 0.90 a 1.44 ± 0.02 bc 44.78 ± 0.91 a FM30 1.44 ± 0.02 c 45.02 ± 0.88 a 1.44 ± 0.01 bc 45.07 ± 0.84 a FM40 1.43 ± 0.01 c 45.26 ± 0.45 a 1.43 ± 0.01 c 45.06 ± 0.34 a CK 1.49 ± 0.02 a 43.63 ± 0.63 a 1.49 ± 0.02 ab 43.50 ± 0.50 a 注(Note):同一列不同字母表示处理间差异达 5% 显著水平 Values followed by different small letters within a column are significantly different among treatments at the 0.05 level. 表 4 2017和2018年番茄收获后不同施肥处理土壤养分含量
Table 4. Soil nutrient contents under different fertilization treatments after potato harvest in 2017 and 2018
处理
Treatment全氮 (g/kg)
Total N有机碳 (g/kg)
Organic C硝态氮 (mg/kg)
NO3–-N铵态氮 (mg/kg)
NH4+-N有效磷 (mg/kg)
Avail-P速效钾 (mg/kg)
Avail-K2017 FP 0.84 ± 0.02 a 5.77 ± 0.28 c 70.20 ± 2.11 a 1.28 ± 0.05 a 56.58 ± 1.44 a 137.23 ± 2.06 ab FM10 0.81 ± 0.02 a 6.24 ± 0.13 b 68.38 ± 3.27 a 1.21 ± 0.05 a 54.72 ± 2.18 ab 130.00 ± 1.23 bc FM20 0.77 ± 0.01 b 6.43 ± 0.26 b 57.68 ± 1.23 b 1.30 ± 0.11 a 50.51 ± 1.08 bc 124.313 ± 2.31 cd FM30 0.76 ± 0.02 b 7.04 ± 0.29 a 50.28 ± 2.19 c 1..26 ± 0.05 a 47.15 ± 2.03 cd 119.67 ± 2.61 de FM40 0.74 ± 0.02 b 7.23 ± 0.13 a 45.27 ± 1.37 c 1.28 ± 0.05 a 44.26 ± 1.42 d 112.00 ± 3.00 e CK 0.58 ± 0.02 c 5.34 ± 0.09 d 25.26 ± 0.21 d 1.23 ± 0.08 a 55.81 ± 0.89 a 138.28 ± 0.98 a 2018 FP 0.85 ± 0.01 a 5.76 ± 0.29 c 67.10 ± 2.11 a 1.27 ± 0.06 a 57.67 ± 1.47 a 135.33 ± 3.06 ab FM10 0.82 ± 0.02 a 6.25 ± 0.14 b 64.43 ± 1.27 a 1.20 ± 0.03 ab 53.75 ± 2.78 ab 128.00 ± 1.73 bc FM20 0.77 ± 0.01 b 6.42 ± 0.29 b 54.76 ± 1.01 b 1.35 ± 0.10 a 49.52 ± 1.18 bc 120.33 ± 3.21 cd FM30 0.75 ± 0.02 b 6.97 ± 0.32 a 48.29 ± 3.04 c 1.05 ± 0.01 b 46.75 ± 2.43 cd 116.67 ± 4.73 de FM40 0.73 ± 0.02 b 7.21 ± 0.02 a 42.71 ± 1.89 c 1.33 ± 0.05 a 42.97 ± 1.02 d 111.00 ± 2.00 e CK 0.59 ± 0.01 c 5.35 ± 0.11 d 22.97 ± 0.15 d 1.26 ± 0.09 a 57.83 ± 0.73 a 140.33 ± 0.58 a 注(Note):同一列不同字母表示处理间差异达 5% 显著水平 Values followed by different small letters within a column are significantly different among treatments at the 0.05 level. 表 5 不同施肥处理氮素效率
Table 5. Nitrogen efficiency of different fertilization treatments
处理
Treatment2017 2018 氮素收获指数 (%)
N harvest index氮肥偏生产力 (kg/kg)
NPFP氮肥利用率 (%)
NUE氮素收获指数 (%)
N harvest index氮肥偏生产力 (kg/kg)
NPFP氮肥利用率 (%)
NUEFP 32.5 ± 0.16 a 71.0 ± 0.72 d 12.8 ± 0.04 c 32.9 ± 0.17 a 71.6 ± 0.65 d 13.0 ± 0.06 c FM10 33.0 ± 0.12 a 75.0 ± 0.63 c 14.4 ± 0.04 b 33.4 ± 0.14 a 75.2 ± 0.62 c 14.6 ± 0.06 b FM20 31.2 ± 0.20 b 78.3 ± 0.67 b 14.5 ± 0.12 b 31.4 ± 0.15 b 78.5 ± 0.74 b 14.7 ± 0.11 b FM30 31.3 ± 0.12 b 82.8 ± 0.87 a 15.0 ± 0.14 a 31.5 ± 0.12 b 82.4 ± 1.04 a 15.4 ± 0.09 a FM40 30.8 ± 0.14 b 83.0 ± 0.81 a 14.7 ± 0.08 ab 31.0 ± 0.10 b 83.4 ± 0.75 a 14.8 ± 0.07 ab 注(Note):NPFP—Nitrogen partial fertilizer productivity, NUE—Nitrogenous fertilizer utilization efficient. 同一列不同字母表示处理间差异达 5% 显著水平 Values followed by different small letters within a column are significantly different among treatments at the 0.05 level. 表 6 不同施肥处理对番茄果实硝酸盐、Vc和糖酸比的影响 (2018)
Table 6. Effects of different fertilization treatments on Nitrate,Vc and sugar-acid ratio of tomato fruits
处理 Treatment NO3–-N (mg/kg) VC (mg/kg) 总糖 Total sugars (%) 酸度 Acidity (%) 糖酸比 Sugar-acid ratio FP 72.91 ± 0.65 a 160.33 ± 1.04 a 2.33 ± 0.03 ab 0.37 ± 0.01 ab 6.32 ± 0.33 ab FM10 64.01 ± 0.70 b 161.67 ± 1.71 a 2.49 ± 0.17 a 0.38 ± 0.01 a 6.53 ± 0.41 ab FM20 60.01 ± 1.37 c 153.86 ± 0.99 ab 2.08 ± 0.17 b 0.39 ± 0.02 a 5.30 ± 0.20 c FM30 57.41 ± 2.13 cd 142.98 ± 2.39 bc 2.03 ± 0.17 b 0.36 ± 0.02 ab 5.70 ± 0.34 bc FM40 57.51 ± 1.42 cd 135.14 ± 1.01 c 2.06 ± 0.05 b 0.35 ± 0.02 ab 5.95 ± 0.43 bc CK 56.31 ± 0.54 d 126.70 ± 2.66 c 2.30 ± 0.09 ab 0.33 ± 0.01 b 6.93 ± 0.32 a 注(Note):同一列不同字母表示处理间差异达 5% 显著水平 Values followed by different small letters within a column are significantly different among treatments at the 0.05 level. 表 7 施肥处理投入和净收益分析 (Yuan/hm2)
Table 7. Analysis of total input and net income
处理
Treatment总投入 Total input 产出 (yuan/hm2)
Output净收益 Net income (yuan/hm2) 变化 (yuan/hm2) 变化 Change FP 41255 – 159137 117882 – FM10 42176 921 162249 120074 2192 FM20 43095 1840 165275 122180 4298 FM30 39485 –1770 165555 126071 8189 FM40 40395 –860 163677 123284 5402 注(Note):复合肥 4 元/kg,水溶肥 13 元/kg,有机肥 0.6 元/kg,番茄 2.0 元/kg Compound fertilizer 4 yuan/kg, water-soluble fertilizer 13 yuan/kg, organic fertilizer 0.6 yuan/kg, tomato 2.0 ¥/kg -
[1] 朱英, 郭永婷, 田兴武, 等. 施肥对设施番茄生长及土壤化学性质的影响[J]. 农业工程技术, 2018, 38(34): 71–74. Zhu Y, Guo Y T, Tian X W, et al. Effects of fertilization on growth and soil chemical properties of greenhouse tomato[J]. Agricultural Engineering Technology, 2018, 38(34): 71–74. [2] 李熹, 王丽英, 张彦才, 等. 低温胁迫下磷肥对日光温室番茄苗期生长及生理活性的影响[J]. 华北农学报, 2007, (5): 142–146. Li X, Wang L Y, Zhang Y C, et al. Effects of phosphorus fertilizer on growth and physiological activity of tomato in solar greenhouse under low temperature stress[J]. Acta Agriculturae Boreali-Sinica, 2007, (5): 142–146. doi: 10.7668/hbnxb.2007.05.035 [3] 李熹, 王丽英, 张彦才, 等. 日光温室番茄苗期磷肥需求阈值研究[J]. 河北农业科学, 2007, (2): 55–58, 66. Li X, Wang L Y, Zhang Y C, et al. Study on the threshold of phosphorus fertilizer requirement in tomato seedling stage in solar greenhouse[J]. Hebei Agricultural Sciences, 2007, (2): 55–58, 66. doi: 10.3969/j.issn.1088-1631.2007.02.022 [4] 张彦才, 李若楠, 王丽英, 等. 磷肥对日光温室番茄磷营养和产量及土壤酶活性的影响[J]. 植物营养与肥料学报, 2008, 14(6): 193–199. Zhang Y C, Li R N, Wang L Y, et al. Effects of phosphorus fertilizer on phosphorus nutrition, yield and soil enzyme activity of tomato in greenhouse[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(6): 193–199. [5] 梁称福, 陈正法, 彭廷柏, 等. 沼肥与化肥在大白菜、花椰菜上的应用效果比较研究[J]. 生态学杂志, 2004, 23(2): 141–145. Liang C F, Chen Z F, Peng T B. et al Comparative study on application effect of marsh fertilizer and chemical fertilizer on Chinese cabbage and cauliflower[J]. Chinese Journal of Ecology, 2004, 23(2): 141–145. doi: 10.3321/j.issn:1000-4890.2004.02.030 [6] 黄东风, 王果, 李卫华, 等. 不同施肥模式对蔬菜生长、氮肥利用及菜地氮流失的影响[J]. 应用生态学报, 2009, 20(3): 631–638. Huang D F, Wang G, Li W H., et al Effects of different fertilization patterns on vegetable growth, nitrogen utilization and nitrogen loss in vegetable fields[J]. Chinese Journal of Applied Ecology, 2009, 20(3): 631–638. [7] 孙利萍, 赵增寿, 高敏丽, 等. 不同有机肥种类及施用量对番茄产量和品质的影响[J]. 中国瓜菜, 2018, 31(6): 30–32, 60. Sun L P, Zhao Z S, Gao M L, et al. Effects of different organic fertilizer types and application rates on yield and quality of tomato[J]. Chinese Gourd, 2018, 31(6): 30–32, 60. doi: 10.3969/j.issn.1673-2871.2018.06.008 [8] 赵云霞, 崔静英, 谢华, 等. 不同有机肥对沙培番茄生长发育及产质量的影响[J]. 贵州农业科学, 2017, 45(12): 69–71. Zhao Y X, Cui J Y, Xie H, et al. Effects of different organic fertilizers on growth, development, yield and quality of sandy tomato[J]. Guizhou Agricultural Sciences, 2017, 45(12): 69–71. doi: 10.3969/j.issn.1001-3601.2017.12.016 [9] 王冰清, 尹能文, 郑棉海, 等. 化肥减量配施有机肥对蔬菜产量和品质的影响[J]. 中国农学通报, 2012, 28(1): 242–247. Wang B Q, Yin N W, Zheng M H, et al. Effects of reduction of chemical fertilizer and organic manure supplement on vegetables yield and quality[J]. Chinese Agricultural Science Bulletin, 2012, 28(1): 242–247. doi: 10.3969/j.issn.1000-6850.2012.01.047 [10] 李淑仪, 邓许文, 陈发, 等. 有机无机肥配施比例对蔬菜产量和品质及土壤重金属含量的影响[J]. 生态环境, 2007, 16(4): 1125–1134. Li S Y, Deng X W, Chen F, et al. Effects of the quantity and pro–portion of organic and mineral fertilizers on vegetable yield and quality and soil heavy metal contents[J]. Ecology and Environment, 2007, 16(4): 1125–1134. [11] Nguyen T N, Tang L H, Peng Y K, et al. Effects of composite inorganic, organic fertilizer and foliar spray of multi–nutrients on growth, yield and quality of cherry tomato[J]. Journal of Agricultural Science and Technology, 2015, 17: 1781–1788. [12] 鲁如坤. 土壤农化分析[M] . 北京: 中国农业出版社, 1999. Lu R K. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 1999. [13] 李燕青, 温延臣, 林治安. 不同有机肥与化肥配施对氮素利用率和土壤肥力的影响[J]. 植物营养与肥料学报, 2019, 25(10): 1669–1678. Li Y Q, Wen Y C, Lin Z A. Effects of different organic manures combined with chemical fertilizer on nitrogen use efficiency and soil fertility[J]. Journal of Plant Nutrition and Fertilizers., 2019, 25(10): 1669–1678. doi: 10.11674/zwyf.18417 [14] 徐明岗, 于荣, 王伯仁. 长期不同施肥下红壤活性有机质与碳库管理指数变化[J]. 土壤学报, 2006, 43(5): 723–729. Xu M G, Yu R, Wang B R. Labile organic matter and carbon management in red soil under long–term fertilization[J]. Acta Pedologica Sinica, 2006, 43(5): 723–729. doi: 10.3321/j.issn:0564-3929.2006.05.003 [15] 张康宁, 俞巧岗, 叶静, 等. 有机替代对农田土壤肥力及氮磷流失的影响[J]. 浙江农业科学, 2019, 60(7): 1154–1158. Zhang K N, Yu Q G, Ye J, et al. Effects of organic substitution on soil fertility and nitrogen and phosphorus loss in farmland[J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(7): 1154–1158. [16] 曹齐卫. 济南地区日光温室土壤养分分布状况与累积特征[D]. 山东泰安: 山东农业大学硕士学位论文, 2012. Cao Q W. Study on the change and characteristics of accumulation of soil nutrient in Jinan greenhouse[D]. Tai'an, Shandong: MS Thesis of Shandong Agricultural University, 2012. [17] 陈之群. 环渤海湾日光温室蔬菜土壤质量现状分析[D]. 北京: 中国农业大学博士学位论文, 2016. Chen Z Q. Analysis of vegetable soil quality status in solar greenhouses in round–bohai bay–region[D]. Beijing: PhD Dissertation of China Agricultural University, 2016. [18] 曾路生, 崔德杰, 李俊良, 等. 寿光大棚菜地土壤呼吸强度、酶活性、pH与EC的变化研究[J]. 植物营养与肥料学报, 2009, 15(4): 865–870. Zeng L S, Cui D J, Li J L, et al. Changes of respiration, enzyme activities, pH and EC in greenhouse vegetable soils in shouguang[J]. Journal of Plant Nutrient and Fertilizers, 2009, 15(4): 865–870. doi: 10.3321/j.issn:1008-505X.2009.04.019 [19] 赵红, 袁培民, 吕贻忠, 等. 施用有机肥对土壤团聚体稳定性的影响[J]. 土壤, 2011, 43(2): 306–311. Zhao H, Yuan P M, Lü Y Z, et al. Effects of organic manure application on stability of soil aggregates[J]. Soils, 2011, 43(2): 306–311. [20] Bittman S, Forge T A, Kowalenko C G. Responses of the bacterial and fungal biomass in a grassland soil to multi–year applications of dairy manure slurry and fertilizer[J]. Soil Biology and Biochemistry, 2005, 37(4): 613–623. doi: 10.1016/j.soilbio.2004.07.038 [21] Li J T, Zhang B. Paddy soil stability and mechanical properties as affected by long–term application of chemical fertilizer and animal manure in subtropical China[J]. Pedosphere, 2007, 17(5): 568–579. doi: 10.1016/S1002-0160(07)60067-8 [22] 叶景学, 吴春燕, 沈凌凌, 等. 有机肥与化肥配施对结球白莱产量和品质的影响[J]. 吉林农业大学学报, 2004, 26(2): 155–157. Ye J X, Wu C Y, Shen L L, et al. Effects of organic fertilizer and chemical fertilizer on yield and quality of white rice[J]. Journal of Jilin Agricultural University, 2004, 26(2): 155–157. doi: 10.3969/j.issn.1000-5684.2004.02.011 [23] 周博, 袁秀平, 雷琼. 有机肥对新建日光温室番茄产量及土壤养分质量分数的影响[J]. 西北农业学报, 2015, 24(6): 155–161. Zhou B, Yuan X P, Lei Q. Effect of organic manure on tomatoes yield and soil nutrient in new sunlight greenhouse[J]. Acta Agricultural Boreali-Occidentalis Sincica, 2015, 24(6): 155–161. doi: 10.7606/j.issn.1004-1389.2015.06.025 [24] 宁建风, 艾绍英, 李萌军, 等. 化肥减量配合有机替代对赤红壤常年菜地蔬菜生长及土壤氮平衡的影响[J]. 热带作物学报, 2019, 40(5): 1008–1014. Ning J F, Ai S Y, Li M J, et al. Impacts of reduced fertilizer application with organic N on vegetable growth and soil N balance in vegetable fields in latosolic red soil zones[J]. Chinese Journal of Tropical Crops, 2019, 40(5): 1008–1014. doi: 10.3969/j.issn.1000-2561.2019.05.025 [25] 张国显, 范永怀, 赵凤艳, 等. 化肥减量配施有机物料对设施番茄生长、光合特性、产量及品质的影响[J]. 中国科技论文, 2018, 13(6): 698–703. Zhang G X, Fan Y H, Zhao F Y, et al. Effects of organic materials combined application with mineral fertilizer on the growth, photo synthesis, yield and quality of tomato in greenhouse[J]. China Science Paper, 2018, 13(6): 698–703. doi: 10.3969/j.issn.2095-2783.2018.06.016 [26] Manna M C, Swarup A, Wanjari R H, et al. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub–humid and semi–arid tropical[J]. India Field Crops Research, 2005, 93: 264–280. doi: 10.1016/j.fcr.2004.10.006 [27] Shisanya C A, Mucheru M W, Mugendi D N, et al. Effect of organic and inorganic nutrient sources on soil mineral nitrogen and maize yields in central highlands of Kenya[J]. Soil & Tillage Research, 2009, 103: 239–246. [28] 王艳博, 黄启为, 孟琳, 等. 有机无机肥料配施对菠菜生长和土壤供氮特性的影响[J]. 南京农业大学学报, 2006, 29(3): 44–48. Wang Y B, Huang Q W, Meng L, et al. Effects of combined application of organic and inorganic fertilization application on growth of spinach and soil nitrogen supply[J]. Journal of Nanjing Agricultural University, 2006, 29(3): 44–48. [29] 刘汝亮, 张爱平, 李友宏, 等. 长期配施有机肥对宁夏引黄灌区水稻产量和稻田氮素淋失及平衡特征的影响[J]. 农业环境科学学报, 2015, 4(5): 947–954. Liu R L, Zhang A P, Li Y H, et al. Rice yield, nitrogen use efficiency (NUE) and nitrogen leaching losses as affected by long–term combined applications of manure and chemical fertilizers in Yellow River irrigated region of Ningxia[J]. Journal of Agro–Environment Science, 2015, 4(5): 947–954. doi: 10.11654/jaes.2015.05.018 [30] 高洪军, 朱平, 彭畅, 等. 等氮条件下长期有机无机配施对春玉米的氮素吸收利用和土壤无机氮的影响[J]. 植物营养与肥料学报, 2015, 21(2): 318–325. Gao H J, Zhu P, Peng C, et al. Effects of partially replacement of inorganic N with organic materials on nitrogen efficiency of spring maize and soil inorganic nitrogen content under the same N input[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(2): 318–325. doi: 10.11674/zwyf.2015.0205 [31] 黄绍文, 唐继伟, 李春花, 等. 我国蔬菜化肥减施潜力与科学施用对策[J]. 植物营养与肥料学报, 2017, 23(6): 1480–1493. Huang S W, Tang J W, Li C H, et al. Reducing potential of chemical fertilizers and scientific fertilization countermeasure in vegetable production in China[J]. Journal of Plant Nutrient and Fertilizers, 2017, 23(6): 1480–1493. doi: 10.11674/zwyf.17366 [32] Dawe D, Dobermann A, Ladha J K, et al. Do organic amendments improve yield trends and profitability in intensive rice systems[J]. Field Crops Research, 2003, 83(2): 191–213. doi: 10.1016/S0378-4290(03)00074-1 [33] 刘占军, 谢佳贵, 张宽, 等. 不同氮肥管理对吉林春玉米生长发育和养分吸收的影响[J]. 植物营养与肥料学报, 2011, 17(1): 38–47. Liu Z J, Xie J G, Zhang K, et al. Maize growth and nutrient uptake as influenced by nitrogen management in Jilin Province[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(1): 38–47. doi: 10.11674/zwyf.2011.0106 [34] 何传龙, 马友华, 于红梅, 等. 减量施肥对保护地土壤养分淋失及番茄产量的影响[J]. 植物营养与肥料学报, 2010, 16(4): 846–851. He C L, Ma Y H, Yu H M, et al. Effects of reducing fertilizer application on soil nutrient leaching loss and tomato yield in plastic house[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(4): 846–851. doi: 10.11674/zwyf.2010.0410 [35] 李虹儒, 许景钢, 徐明岗, 等. 我国典型农田长期施肥小麦氮肥回收率的变化特征[J]. 植物营养与肥料学报, 2009, 15(2): 336–343. Li H R, Xu J G, Xu M G, et al. Change characteristic of nitrogen recovery efficiency of wheat in typical farmland of China under long–term fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(2): 336–343. doi: 10.3321/j.issn:1008-505X.2009.02.013 [36] 闫鸿媛, 段英华, 徐明岗, 等. 长期施肥下中国典型农田小麦氮肥利用率的时空演变[J]. 中国农业科学, 2011, 44(7): 1399–1407. Yan H Y, Duan Y H, Xu M G, et al. Nitrogen use efficiency of wheat as affected by long–term fertilization in the typical soil of China[J]. Scientia Agricultura Sinica, 2011, 44(7): 1399–1407. doi: 10.3864/j.issn.0578-1752.2011.07.012 [37] 郭李萍, 王兴仁, 张福锁, 等. 不同年份施肥对作物增产效应及肥料利用率的影响[J]. 中国农业气象, 1999, (4): 21–24. Guo L P, Wang X R, Zhang F S, et al. Effect of fertilizer application in different years on crop yields and fertilizer recovery[J]. Agricultural Meteorology, 1999, (4): 21–24. -