-
磷是作物必需的大量营养元素之一,对提高作物抗旱性、维持产量和提高品质非常重要[1-4],中国是磷肥消费大国,每年P2O5消费量大约达到8.2 × 106 t[5],对有限的磷矿资源形成很大压力。施入土壤中的磷易被土壤固定[6],在石灰性土壤中磷主要与钙结合[7-9],在酸性土壤中磷与铁铝氧化物相结合,形成难溶性磷化合物,影响磷的溶解性和生物有效性,从而使磷肥利用率降低,旱地土壤中一般只有10%~25%[10]。固定到土壤中过量的磷又以溶解态或颗粒态形式进入到附近的河流、湖泊,造成水体富营养化,对水环境质量构成严重威胁[11]。因此如何提高磷的有效性,减少磷肥施用是大家普遍关注的问题。化肥的有机替代是我国调整化肥过量施用的一项重要策略,利用农业生产中的畜禽粪便、秸秆等替代化肥,其养分转化、释放特征如何,需要结合不同类型有机物料进行深入研究。
土壤中的磷以有机磷和无机磷两种形式存在,表土中有机磷占全磷20%~80%[12],主要以肌醇磷酸盐、磷脂、核酸等形式存在,还含有少量的核苷酸和磷酸糖类等[13-14]。不同有机磷化合物因结构、分子大小和稳定性差异,导致其生物有效性差异很大。Bowman等[15]根据有机磷生物有效性将其分为活性、中活性、中稳性和高稳性有机磷4个组分,活性有机磷主要由核酸磷脂类和核糖类化合物组成,其易矿化、易被植物吸收利用;中活性有机磷主要为植酸钙、镁化合物,较易矿化,较易被植物吸收利用;中稳性有机磷主要是富里酸态磷,较难矿化,较难被植物吸收利用;高稳性有机磷主要是胡敏酸态有机磷,很难被矿化,几乎对植物无效[16-17]。土壤中的有机磷经矿化作用转变成有效态磷是土壤中有效磷的主要来源之一[18],而土壤酶尤其是磷酸酶是有机磷矿化过程中的重要催化剂。有研究表明,土壤中磷酸酶活性与有机物料 (马粪、牛粪) 存在极显著的直线正相关关系[19],添加有机物料的土壤通过提高磷酸酶的活性,促进有机磷的有效性。
虽然目前关于有机物料与化学磷肥配合施用对磷素转化、生物有效性的影响有不少研究[20-23],但不同有机物料的磷素含量和组成差异,有机物料本身的供磷特性如何,在磷素供应方面能否替代化肥等尚不清楚[24-27]。为此本研究选择3种类型有机物料 (粪肥类、绿肥类和秸秆类),采用Bowman-Cole方法[15]对有机磷进行分级,比较不同类型有机物料的磷素组成特征,通过盆栽试验研究它们作为磷源在供应小麦磷素营养上的效果,为化肥磷的有机替代奠定理论基础。
-
本试验供试有机物料有三类8种,作物秸秆类 (小麦秸秆、玉米秸秆、油菜秸秆)、绿肥类 (豌豆秸秆、苜蓿秸秆、绿豆秸秆) 和粪肥类 (猪粪、羊粪),有机物料基本理化性质见表1。它们分别采自本校农场和附近农家,化学磷肥选择使用普钙 (宝鸡磷肥厂产,含P2O5 10%)。供试土壤为土,质地粘壤,含有机质11.2 g/kg、CaCO3 53.0 g/kg、pH为8.0、全磷含量0.578 g/kg、有效磷含量4.1 mg/kg。
表 1 供试有机物料化学组成
Table 1. The chemical composition of the organic materials
有机物料 Organic material C (g/kg) N (g/kg) P (g/kg) C/N C/P 小麦秸秆 Wheat straw 449 5.5 0.57 81.6 787.7 玉米秸秆 Maize straw 404 5.1 1.04 44.4 388.5 油菜秸秆 Rape straw 419 11.7 1.07 35.8 391.6 豌豆秸秆 Pea straw 406 10.3 1.19 39.4 341.2 苜蓿秸秆 Alfalfa straw 368 22.2 1.53 16.6 240.5 绿豆秸秆 Mung bean straw 372 21.2 2.59 17.5 143.6 猪粪 Pig manure 381 18.8 5.49 20.3 69.4 羊粪 Sheep manure 268 16.1 5.52 16.6 48.6 -
试验设置10个处理,即分别施用供试的8种有机物料 (秸秆类和绿肥的加入量为2%,粪肥类加入量为1%,调节C∶N为25∶1并于播前一个月施入),另加化学磷肥和对照 (不施磷) 处理,每个处理重复4次。所有处理均以尿素和硫酸钾为底肥,加入量为0.25 g/kg风干土。此外还补充了适量的Zn、B、Fe等微量元素。供试盆钵每盆装土3.5 kg,供试作物为冬小麦,于2018年10月12日播种,2019年3月5日收获。
-
土壤全磷用H2SO4-HClO4消煮,土壤有效磷用0.5 mol/L NaHCO3 (pH 8.5) 提取,钼蓝比色法测定,全氮用凯氏法测定,有机质采用重铬酸钾氧化外加热法测定。
-
有机物料中有机磷分组采用Bowman-Cole方法[15],依据有机磷有效性的高低分为活性有机磷 (LOP)、中活性有机磷 (MLOP)、中稳定性有机磷 (MROP) 和高稳定性有机磷 (HROP) 4个组分 (图1)。活性有机磷为用0.5 mol/L NaHCO3 (pH 8.5) 溶液提取的有机磷;中活性有机磷为用1.0 mol/L H2SO4提取的有机磷和0.5 mol/L NaOH溶液提取的无机磷;中稳定性有机磷 (富里酸磷) 为能溶于0.5 mol/L NaOH溶液,在pH 1.0~1.8的条件下不发生沉淀但难以被植物吸收的磷;高稳定性有机磷 (胡敏酸磷) 为能溶于0.5 mol/L NaOH溶液,在pH 1.0~1.8的条件下发生沉淀又难以被植物吸收的磷。用钼蓝比色法分别测定不同提取液中的全磷和无机磷含量,用差减法求得有机磷含量。
小麦收获后在105℃烘箱中杀青 30 min,60℃条件下烘干至恒重,冷却后测定生物量,植物样经粉粹、过筛后用钒钼黄比色法测定植株磷含量,计算磷吸收量。
-
采用Microsoft Office Excel 2007绘制图表,数据用SPSS 21.0处理分析,采用单因素ANOVE进行方差分析,用Pearson进行相关性分析。
-
有机物料除绿豆秸秆外,其余磷素组成以无机磷为主 (图2),无机磷含量占全磷的比例在44.8%~68.7%,总体表现出粪肥类 > 绿肥类 > 秸秆类的顺序。有机磷含量占全磷的比例在31.3%~55.2%,小于无机磷所占比例,表现出绿肥类 > 秸秆类 > 粪肥类。在绿肥类物料中绿豆秸秆的有机磷含量及占全磷比例高于其他物料;在粪肥类中,猪粪、羊粪的有机磷含量相当。
-
不同类型有机物料各组分LOP含量呈现出粪肥类 (平均为175.5 mg/kg) > 绿肥类 (平均为67.03 mg/kg) > 秸秆类 (平均为25.8 mg/kg) 的趋势 (表2);以猪粪、绿豆秸秆的MLOP含量相对较高,苜蓿秸秆和小麦秸秆的MLOP含量相对较低,其他物料的MLOP含量居中;各有机物料MROP含量差异显著,大小顺序为羊粪 > 猪粪 > 苜蓿秸秆 > 绿豆秸秆 > 豌豆秸秆 > 玉米秸秆 > 油菜秸秆 > 小麦秸秆;不同有机物料HROP含量表现为粪肥类显著高于其他类型物料,其中以羊粪HROP含量最高 (408.5 mg/kg),绿肥中苜蓿秸秆HROP含量显著高于其他两种绿肥,而秸秆类的3种物料之间差异不显著。
表 2 有机物料各组分有机磷含量 (mg/kg)
Table 2. Content of different organic phosphorus components in organic materials
有机物料 Organic material 有机磷组分 Organic P fraction 活性有机磷 LOP 中活性有机磷 MLOP 中稳性有机磷 MROP 高稳性有机磷 HROP 小麦秸秆 Wheat straw 22.39 ± 0.26 e 118.14 ± 1.57 d 103.47 ± 1.20 h 2.84 ± 0.03 d 玉米秸秆 Maize straw 32.54 ± 0.49 d 200.82 ± 3.13 c 187.53 ± 2.49 f 8.86 ± 0.14 d 油菜秸秆 Rape straw 22.46 ± 0.39 e 151.37 ± 2.88 d 157.45 ± 3.00 g 4.31 ± 0.06 d 豌豆秸秆 Pea straw 53.37 ± 1.23 c 156.12 ± 2.25 d 231.21 ± 5.07 e 11.43 ± 0.22 d 苜蓿秸秆 Alfalfa straw 51.73 ± 1.04 c 145.48 ± 3.11 d 453.44 ± 10.73 c 26.79 ± 0.48 c 绿豆秸秆 Mung bean straw 95.93 ± 2.11 b 1045.34 ± 24.74 a 287.60 ± 4.82 d 0.33 ± 0.01 d 猪粪 Pig manure 177.14 ± 4.19 a 1068.01 ± 26.51 a 541.75 ± 8.45 b 135.17 ± 1.95 b 羊粪 Sheep manure 173.88 ± 2.91 a 689.41 ± 15.52 b 640.46 ± 15.90 a 408.51 ± 10.85 a 注(Note):LOP—Labile organic P; MLOP—Medium-labile organic P; MROP—Medium-stable organic P; HROP—High-stable organic P. 数值后不同小写字母表示处理间在 0.05 水平差异显著 Values followed by different lowercase letters are significantly different among treatments at the 0.05 level. -
有机物料中4种有机磷组分LOP、MLOP、MROP、HROP占总有机磷的平均比例分别为8.5%、45.2%、41.5%和4.9% (图3),说明MLOP和MROP是有机物料中有机磷的主要组分。3种类型有机物料有机磷各组分占总有机磷比例不尽相同,LOP以豌豆秸秆所占比例最大,高达11.8%,其他物料变化在6.7%~9.2%;MLOP占有机磷的比例以绿豆秸秆所占比例最高 (73.1%),大小顺序为绿豆秸秆 > 猪粪 > 小麦秸秆 > 玉米秸秆 > 油菜秸秆 > 羊粪 > 豌豆秸秆 > 苜蓿秸秆;MROP占有机磷的比例表现为绿肥类 > 秸秆类 > 粪肥类,其中以苜蓿秸秆的占比最高 (66.9%);HROP占有机磷的比例总体较小,其中以羊粪的所占比例最高,绿豆秸秆的最低。
-
图4显示,在小麦播种前,施用作物秸秆类对土壤有效磷含量均无显著性影响,施用绿肥类仅苜蓿秸秆和绿豆秸秆处理土壤有效磷含量较对照有所增长,而施用粪肥类两个处理对土壤有效磷都有显著性影响,其土壤有效磷含量较对照增加2~3倍。小麦收获后,小麦秸秆、豌豆秸秆、绿豆秸秆、磷肥、猪粪、羊粪处理的土壤有效磷含量显著高于对照,其他有机物料处理土壤有效磷水平则与对照相当。
-
与对照相比,施用小麦、油菜、玉米秸秆的处理不仅不增产,反而有不同程度的减产,其减产幅度在20%~44%,差异达显著水平 (图5);施用豌豆秸秆,生物学产量较对照略高,但差异不显著;而施用猪粪、羊粪、绿豆秸秆和苜蓿秸秆4个处理,均有显著的增产效果。小麦吸磷量大小顺序为粪肥类 > 绿肥类 > 磷肥 > 对照 > 秸秆类处理 (图6),其中秸秆类处理都显著低于对照;绿肥类和粪肥类均能促进小麦对磷的吸收。
-
相关分析表明,小麦吸磷量与土壤有效磷含量呈线性正相关关系,与物料C/P呈极显著负相关关系 (图7);土壤有效磷与有机物料C/P呈负相关关系 (图8),说明高C/P的有机物料施入土壤中,会引起土壤有效磷含量降低,且不利于小麦对磷素吸收。土壤有效磷与有机物料的LOP、MLOP、MROP、HROP进行逐步回归分析,土壤有效磷只与LOP有关 (y = 2.953 + 0.016x)。
图 7 小麦吸磷量与土壤有效磷和有机物料C/P的相关关系
Figure 7. The ralationship betweem Wheat P uptake and soil available P and organic material C/P ratio
图 8 土壤有效磷与有机物料C/P的相关关系
Figure 8. The relationship between soil available P content and organic material C/P ratio
分析小麦吸磷量与有机物料有机磷组分的关系 (图9),发现小麦吸磷量与LOP、MLOP、MROP呈极显著正相关关系,与HROP相关性不显著,说明有机物料活性、中活性、中稳性有机磷组分都与小麦磷素吸收有密切关系。
-
不同类型有机物料中磷素组成存在很大差异,总体看来,粪肥类磷素含量高且以无机磷为主,秸秆类磷素含量低,但是有机磷的比例上升,绿肥类绿豆秸秆有机磷所占比例接近60%,而其他两种则以无机磷为主。有机物料磷素差异与有机物料本身的构成、秸秆的成熟度等有关。
施用不同类型有机物料对土壤有效磷的影响各异,这与有机物料本身的磷含量及磷组分特性有关[28-29]。施用粪肥类及绿肥中的绿豆秸秆能显著增加土壤速效磷含量,这既与有机物料带入磷的多少有关,又与粪肥及绿豆秸秆的C/P值小,有利于磷素矿化释放有关。另外有机物料在腐解过程中产生的有机酸也会促进土壤中磷素释放,从而使土壤磷的有效性增加[30]。本研究还发现,高C/P值的秸秆类物料施入土壤后不仅不能提高有效磷含量,甚至会使土壤有效磷降低,造成这种现象的原因一方面是这类物料本身的磷含量较低,另一方面这类物料C/P值高,导致有机物料在矿化过程中由于微生物的同化作用而引起磷的生物固持[31-32],从而使土壤有效磷含量降低。李博文[19]研究也表明,麦秸提高有效磷含量的程度远不如粪肥,其原因是施用麦秸对磷有一定固持作用。有机物料的有机磷组成对土壤有效磷有重要影响,有研究认为有机磷与有效磷之间存在极显著正相关关系[33],且稳定性较高的有机磷组分向活性较高的有机磷组分转化,并进一步矿化转化为无机磷 (速效磷)[34]。赵少华等[14]研究表明,当加入土壤中的植物残体C/P小于 200 时,植物残体磷进行净矿化,所以低C/P有机物料更能提高土壤有效磷含量。逐步回归分析表明,土壤有效磷主要取决于有机物料活性有机磷组分。
有机物料中的部分有机磷也能作为有效磷源供作物生长,活性越高越容易被利用[35]。本研究发现,不同类型有机物料对小麦吸磷量影响明显不同,绿肥和粪肥类对小麦吸磷量有积极效应,而秸秆类有机物料则降低了小麦对磷的吸收利用;小麦吸磷量与有机物料的LOP、MLOP、MROP均达到极显著正相关关系,而与HROP相关性不显著,说明高稳性有机磷在作物生育期对磷素营养贡献较小;小麦吸磷量与有机物料的C/P值呈极显著负相关 (图7),意味着高C/P值的有机物料不利于有机磷的矿化释放。植株吸磷量与磷、碳的形态[36]及有机物的C/P有关[37],高C/P有机物料会影响作物对磷的吸收。施用粪肥类小麦吸磷量最高,这与粪肥磷含量高且活性和中活性有机磷含量高有关[20-21]。秸秆类物料对土壤供磷能力弱,导致土壤有效磷含量低,从而使小麦产量降低,因此,小麦生物学产量的大小呈现粪肥类 > 绿肥类 > 化学磷肥 > 秸秆类的顺序。
-
有机物料无机磷和有机磷含量呈粪肥类 > 绿肥类 > 秸秆类。不论哪种有机肥,其有机磷的主体成分均为中活性和中稳性有机磷。小麦吸磷量与有机物料活性、中活性、中稳性有机磷组分呈极显著正相关关系,而与C/P呈极显著负相关关系。绿肥类和粪肥类物料活性、中活性有机磷含量较高,C/P值较低,施用后可以显著增加土壤有效磷含量,从而提高小麦生物学产量和吸磷量,因此,可以作为肥料替代一定比例的化学磷肥。而秸秆类有机物料中稳性有机磷比例较高、C/P值也高,因此,施用后不利于小麦对磷的吸收,从而不适宜用于替代化肥。
不同类型有机物料的有机磷组成及生物有效性
The composition of organic phosphorus and bioavailability of different organic materials
-
摘要:
【目的】 研究不同有机物料的有机磷组成及其作为磷源施用后的供磷能力,为化肥磷的有机替代奠定理论基础。 【方法】 供试有机物料包括粪肥类 (猪粪、羊粪)、绿肥类 (豌豆、苜蓿和绿豆)、秸秆类 (小麦秸秆、玉米秸秆和油菜秸秆)。分析了8种有机物料的全磷、有机磷含量和C/P值,采用Bowman-Cole方法测定了有机磷中的活性 (LOP)、中活性 (MLOP)、中稳性 (MROP) 和高稳性有机磷 (HROP) 4个组分的含量。用供试的8种有机物料进行了小麦盆栽试验,分析了土壤速效磷含量、小麦吸磷量与不同有机物料的有机磷组成、碳/磷 (C/P) 值之间的关系。 【结果】 粪肥、绿肥和秸秆中的全磷含量分别为5.49~5.52、1.19~2.59、0.57~1.07 g/kg,有机物料中有机磷含量占全磷的比例在31.3%~55.2%,除绿豆秸秆外,有机磷含量小于无机磷。有机磷中LOP、MLOP、MROP和HROP的平均比例分别为8.5%、45.2%、41.5%和4.9%。LOP平均含量以粪肥类 (175.5 mg/kg) > 绿肥类 (67.03 mg/kg) > 秸秆类 (25.8 mg/kg);以猪粪、绿豆秸秆的MLOP含量相对较高;MROP含量羊粪 > 猪粪 > 苜蓿秸秆 > 绿豆秸秆 > 豌豆秸秆 > 玉米秸秆 > 油菜秸秆 > 小麦秸秆;HROP在粪肥中的含量显著高于其他类型物料。施用绿肥和粪肥显著增加了小麦的吸磷量和生物学产量,而施用秸秆则不同程度降低了小麦的吸磷量和生物学产量。小麦吸磷量与土壤速效磷含量呈线性正相关关系,与有机物料C/P值呈极显著负相关关系,与LOP、MLOP、MROP呈极显著正相关关系,与HROP相关性不显著;土壤速效磷与有机物料C/P值呈负相关关系。 【结论】 供试有机物料中的全磷含量以粪肥类 > 绿肥类 > 秸秆类,无机磷含量均大于有机磷含量 (绿豆秸秆除外),有机磷以中活性和中稳性有机磷为主。绿肥类和粪肥类物料中含磷量高、且C/P值较低,作为肥料使用能显著增加土壤速效磷含量、小麦生物学产量和吸磷量,可以有效替代一定比例的磷肥。而秸秆类有机物料含磷量较低,且C/P值较高,不适宜作为化肥磷的有机替代物料。 Abstract:【Objectives】 This study investigated the organic P composition of different organic materials and their P supply capacity as P sources, providing theoretical and data reference for the organic substitutions of P fertilizer. 【Methods】 A wheat pot experiment was carried out, the used organic materials included manures (pig manure, sheep manure), legumes (pea, alfalfa, mung bean), straws (wheat straw, maize straw, rape straw). The total and organic P contents and the C/P ratio in the eight materials were analyzed, and the organic P was fractioned into labile organic P (LOP), medium-labile organic P (MLOP), medium-stable organic P (MROP) and high-stable organic P (HROP) via the Bowman and Cole methods. The wheat P uptake, soil available P content were determined. 【Results】 The total P content in manures, legumes and straws were 5.49–5.52 g/kg, 1.19–2.59 g/kg and 0.57–1.07 g/kg respectively, the proportion of organic P was in range of 31.3%–55.2%. Except mung bean stalks, the organic P contents in all the tested organic materials were lower than inorganic P contents. In the total organic P, the average proportions of LOP, MLOP, MROP, HROP were 8.5%, 45.2%, 41.5% and 4.9%, respectively. The LOP content was in the order of manures (175.5 mg/kg) > legumes (67.03 mg/kg) > straws (25.8 mg/kg). The MLOP contents were relatively high in pig manure and mung bean straw. The MROP content was significantly different and in order of sheep manure > pig manure > alfalfa > mung bean > pea > maize straw > rape straw > wheat straw; The HROP content in manures was significantly higher than that in the other organic materials. The application of legumes and manures significantly increased the P uptake and biological yield of wheat, but application of straws significantly reduced them. The P uptake of wheat was positively correlated with soil available P content, negatively correlated with the C/P ratio of organic materials, and positively correlated with the LOP, MLOP and MROP of organic materials, not correlated with HROP contents. The content of soil available P was negatively correlated with the C/P of organic materials. 【Conclusions】 In all the tested organic materials in this experiment, the total P content is in order of manures > legumes > straws, and the organic P content is lower than inorganic P, except mung bean stalks. Medium liable and medium stable P (MLOP and MROP) are the two main fractions in the organic P. Legumes and manures have relatively high P content and relatively low C/P ratio, their application could increase soil available P, so can be used to replace a certain ratio of chemical P fertilizer. While straws have low P content and high C/P ratio, so the bioavailability of P is low, not suitable for use as part of P fertilizer. -
Key words:
- organic material /
- total P content /
- C/P ratio /
- organic P fraction /
- P bioavailability
-
表 1 供试有机物料化学组成
Table 1. The chemical composition of the organic materials
有机物料 Organic material C (g/kg) N (g/kg) P (g/kg) C/N C/P 小麦秸秆 Wheat straw 449 5.5 0.57 81.6 787.7 玉米秸秆 Maize straw 404 5.1 1.04 44.4 388.5 油菜秸秆 Rape straw 419 11.7 1.07 35.8 391.6 豌豆秸秆 Pea straw 406 10.3 1.19 39.4 341.2 苜蓿秸秆 Alfalfa straw 368 22.2 1.53 16.6 240.5 绿豆秸秆 Mung bean straw 372 21.2 2.59 17.5 143.6 猪粪 Pig manure 381 18.8 5.49 20.3 69.4 羊粪 Sheep manure 268 16.1 5.52 16.6 48.6 表 2 有机物料各组分有机磷含量 (mg/kg)
Table 2. Content of different organic phosphorus components in organic materials
有机物料 Organic material 有机磷组分 Organic P fraction 活性有机磷 LOP 中活性有机磷 MLOP 中稳性有机磷 MROP 高稳性有机磷 HROP 小麦秸秆 Wheat straw 22.39 ± 0.26 e 118.14 ± 1.57 d 103.47 ± 1.20 h 2.84 ± 0.03 d 玉米秸秆 Maize straw 32.54 ± 0.49 d 200.82 ± 3.13 c 187.53 ± 2.49 f 8.86 ± 0.14 d 油菜秸秆 Rape straw 22.46 ± 0.39 e 151.37 ± 2.88 d 157.45 ± 3.00 g 4.31 ± 0.06 d 豌豆秸秆 Pea straw 53.37 ± 1.23 c 156.12 ± 2.25 d 231.21 ± 5.07 e 11.43 ± 0.22 d 苜蓿秸秆 Alfalfa straw 51.73 ± 1.04 c 145.48 ± 3.11 d 453.44 ± 10.73 c 26.79 ± 0.48 c 绿豆秸秆 Mung bean straw 95.93 ± 2.11 b 1045.34 ± 24.74 a 287.60 ± 4.82 d 0.33 ± 0.01 d 猪粪 Pig manure 177.14 ± 4.19 a 1068.01 ± 26.51 a 541.75 ± 8.45 b 135.17 ± 1.95 b 羊粪 Sheep manure 173.88 ± 2.91 a 689.41 ± 15.52 b 640.46 ± 15.90 a 408.51 ± 10.85 a 注(Note):LOP—Labile organic P; MLOP—Medium-labile organic P; MROP—Medium-stable organic P; HROP—High-stable organic P. 数值后不同小写字母表示处理间在 0.05 水平差异显著 Values followed by different lowercase letters are significantly different among treatments at the 0.05 level. -
[1] Oberson A, Tagmann H U, Langmeier M, et al. Fresh and residual phosphorus uptake by ryegrass from soils with different fertilization histories[J]. Plant and Soil, 2010, 334(1): 391–407. [2] Oberson A, Frossard E, BühlmannC, et al. Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems[J]. Plant and Soil, 2013, 371(1–2): 237–255. [3] Moller K, Oberson A, Bunemann E K, et al. Improved phosphorus recycling in organic farming: Navigating between constraints[J]. Advances in Agronomy, 2018, 147: 159–237. [4] Macintosh K A, Doody D G, Withers P J A, et al. Transforming soil phosphorus fertility management strategies to support the delivery of multiple ecosystem services from agricultural systems[J]. Science of the Total Environment, 2019, 649: 90–98. doi: 10.1016/j.scitotenv.2018.08.272 [5] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2012. NBSC (National Bureau of Statistics of China). China statistical yearbook[J]. Beijing: China Statistics Press, 2012. [6] Kang J, Amoozegar A, Hesterberg D, Osmond D L. Phosphorus leaching in a sandy soil as affected by organic and inorganic fertilizer sources[J]. Geoderma, 2011, 161(3–4): 194–201. [7] Bolan N S. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants[J]. Plant and Soil, 1991, 134(2): 189–207. doi: 10.1007/BF00012037 [8] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review[J]. Plant and Soil, 2001, 237(2): 173–195. doi: 10.1023/A:1013351617532 [9] Grigatti M, Boanini E, Bolzonella D, et al. Organic wastes as alternative sources of phosphorus for plant nutrition in a calcareous soil[J]. Waste Management, 2019, 93: 34–46. doi: 10.1016/j.wasman.2019.05.028 [10] Khan K, Joergensen R. Compost and phosphorus amendments for stimulating microorganisms and growth of ryegrass in a ferralsol and a luvisol[J]. Journal of Plant Nutrition & Soil Science, 2012, 175(1): 108–114. [11] 周优良, 邓佳, 何为媛, 等. 有机物料对紫色土有机磷含量及植物磷吸收的影响[J]. 水土保持学报, 2015, 29(6): 202–207. Zhou Y L, Deng J, He W Y, et al. Effects of organic materials on organic phosphorus content in purple soil and phosphorus uptake of corn seedlings[J]. Journal of Soil and Water Conservation, 2015, 29(6): 202–207. [12] Zhang Z S, Cao C G, Cai M L, Li C F. Crop yield, P uptake and soil organic phosphorus fractions in response to short-term tillage and fertilization under a rape-rice rotation in central China[J]. Journal of Soil Science & Plant Nutrition, 2013, 13(4): 871–882. [13] Dalal R C, 段平. 土壤有机磷[J]. 土壤学进展, 1980, (4): 15–28. Dalal R C, Duan P. Soil organic phosphorus[J]. Advances in Soil Science, 1980, (4): 15–28. [14] 赵少华, 宇万太, 张璐, 等. 土壤有机磷研究进展[J]. 应用生态学报, 2004, 15(11): 2189–2194. Zhao S H, Yu W T, Zhang L, et al. Advances in soil organic phosphorus research[J]. Chinese Journal of Applied Ecology, 2004, 15(11): 2189–2194. [15] Bowman R A, Cole C V. An exploratory method for fractionation of organic phosphorus from grassland soils[J]. Soil Science, 1978, 125(2): 95–101. doi: 10.1097/00010694-197802000-00006 [16] Bowman R A, Cole C V. Transformations of organic phosphorus substrates in soils as evaluated by NaHCO3 extraction[J]. Soil Science, 1978, 125(1): 49–54. [17] 刘津, 李春越, 邢亚薇, 等. 长期施肥对黄土旱塬农田土壤有机磷组分及小麦产量的影响[J]. 应用生态学报, 2020, 31(1): 157–164. Liu J, Li C Y, Xing Y W, et al. Effects of long-term fertilization on soil organic phosphorus components and wheat yield in farmland of Loess Plateau[J]. Chinese Journal of Applied Ecology, 2020, 31(1): 157–164. [18] 秦胜金, 刘景双, 王国平. 影响土壤磷有效性变化作用机理[J]. 土壤通报, 2006, 37(5): 1012–1016. Qin S J, Liu J S, Wang G P. Mechanism of phosphorus availability in soil[J]. Chinese Journal of Soil Science, 2006, 37(5): 1012–1016. [19] 李博文. 有机物料和有机磷组分对潮土磷酸酶活性的影响[J]. 河北农业大学学报, 1994, 17(4): 54–58. Li B W. The correlation of phosphatase activity and organic phosphorus fractions and the effect of organic materials on it in chao soil[J]. Journal of Agricultural University of Hebei, 1994, 17(4): 54–58. [20] 张建军, 樊廷录, 赵刚, 等. 不同有机物料与部分化肥长期定位配合施用对土壤养分的调控效应[J]. 中国土壤与肥料, 2018, (3): 85–91. Zhang J J, Fan T L, Zhao G, et al. Effect of long-term fixed application of different material replacing partly chemical nitrogenous fertilizer on soil nutrition in dry land of eastern Gansu Province[J]. Soils and Fertilizers Sciences in China, 2018, (3): 85–91. [21] 李蕴慧. 增施有机物料黑土磷素形态转化规律研究[D]. 吉林: 吉林农业大学硕士学位论文, 2017. Li Y H. The changes of phosphorous fractions in black soil applied organic materials[D]. Changchun: MS Thesis of Jilin Agricultural University, 2017. [22] Vanden Nest T, Vandecasteele B, Ruysschaert G, et al. Effect of organic and mineral fertilizers on soil P and C levels, crop yield and P leaching in a long–term trial on a silt loam soil[J]. Agriculture, Ecosystems and Environment, 2014, 197: 309–317. doi: 10.1016/j.agee.2014.07.019 [23] Ramphisa P D, Collins P H, Bair E K, Davenport R J. Corn biomass, uptake and fractionation of soil phosphorus in five soils amended with organic wastes as P fertilizers[J]. Journal of Plant Nutrition, 2020, 43(3): 335–353. doi: 10.1080/01904167.2019.1683194 [24] Wei Y Q, Zhao Y, Xi B D, et al. Changes in phosphorus fractions during organic wastes composting from different sources[J]. Bioresource Technology, 2015, 189: 349–356. doi: 10.1016/j.biortech.2015.04.031 [25] 莫淑勋. 有机肥料中磷及其与土壤磷素肥力的关系[J]. 土壤学进展, 1992, (3): 1–9. Mo S X. Phosphorus in organic fertilizer and its relationship with soil phosphorus fertility[J]. Advances in Soil Science, 1992, (3): 1–9. [26] 王旭东, 胡田田, 李全新, 等. 有机肥料的磷素组成及供磷能力评价[J]. 西北农业学报, 2001, 10(3): 63–66. Wang X D, Hu T T, Li Q X, et al. An evaluation on the phosphorus component of organic materials and its phosphorus supply capacity[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2001, 10(3): 63–66. [27] Li G, Li H, Leffelaar P A, et al. Characterization of phosphorus in animal manures collected from three (dairy, swine, and broiler) farms in China[J]. PLoS ONE, 2014, 9(7): e102698. doi: 10.1371/journal.pone.0102698 [28] Hu J, Wu J G, Qu X J. Decomposition characteristics of organic materials and their effects on labile and recalcitrant organic carbon fractions in a semi-arid soil under plastic mulch and drip irrigation[J]. Journal of Arid Land, 2018, 10(1): 115–128. doi: 10.1007/s40333-017-0035-1 [29] 沈其荣, 沈振国, 史瑞和. 有机肥氮素的矿化特征及与其化学组成的关系[J]. 南京农业大学学报, 1992, 15(1): 59–64. Shen Q R, Shen Z G, Shi R H. The characteristics of mineralization of nitrogen in organic manure and its relationship to chemical composition of organic manure[J]. Journal of Nanjing Agricultural University, 1992, 15(1): 59–64. [30] 朱林, 彭宇, 袁飞, 张春兰. 施用稻草等有机物料对黄瓜连作土壤速效养分的影响[J]. 中国农学通报, 2001, 17(2): 30–33. Zhu L, Peng Y, Yuan F, Zhang C L. The effect of the rice straw and other organic materials application on available nutrient of the soil[J]. Chinese Agricultural Science Bulletin, 2001, 17(2): 30–33. [31] Pascault N, Cécillon L, Mathieu O. In situ dynamics of microbial communities during decomposition of wheat, rape, and alfalfa residues[J]. Microbial Ecology, 2010, 60(4): 816–828. doi: 10.1007/s00248-010-9705-7 [32] Wang X Y, Sun B, Mao J D, et al. Structural convergence of maize and wheat straw during two-year decomposition under different climate conditions[J]. Environmental Science & Technology, 2012, 46(13): 7159–7165. [33] 黄庆海, 赖涛, 吴强, 等. 长期施肥对红壤性水稻土有机磷组分的影响[J]. 植物营养与肥料学报, 2003, 9(1): 63–66. Huang Q H, Lai T, Wu Q, et al. Effect of long-term fertilization on the forms of organic phosphorus in paddy soil derived from red earth[J]. Journal of Plant Nutrition and Fertilizers, 2003, 9(1): 63–66. [34] 赵晶晶, 郭颖, 陈欣, 等. 有机物料对土壤有机磷组分及其矿化进程的影响[J]. 土壤, 2006, 38(6): 740–744. Zhao J J, Guo Y, Chen X, et al. Influences of organic materials on organic phosphorus fractions and mineralization processes in soils[J]. Acta Pedologica Sinica, 2006, 38(6): 740–744. [35] 陈欣, 赵晶晶, 鲁彩艳, 等. 有机物料中磷素研究进展[J]. 河南大学学报 (自然科学版), 2007, 37(1): 56–60. Chen X, Zhao J J, Lu C Y, et al. Review of the study of phosphorus in organic material[J]. Journal of Henan University (Natural Science Edition), 2007, 37(1): 56–60. [36] Mackay J E, Macdonald L M, Smernik R J, Cavagnaro T R. Organic amendments as phosphorus fertilizers: Chemical analyses, biological processes and plant P uptake[J]. Soil Biology and Biochemistry, 2017, 107: 50–59. doi: 10.1016/j.soilbio.2016.12.008 [37] Takeda M, Nakamoto T, Miyazawa K, Murayama T. Phosphorus transformation in a soybean-cropping system in andosol: Effects of winter cover cropping and compost application[J]. Nutrient Cycling in Agroecosystems, 2009, 85(3): 287–297. doi: 10.1007/s10705-009-9267-6 -