-
绿肥在提高土壤肥力、改善土壤质量、防止水土流失、资源高效利用等方面有重要作用,发展绿肥对于保证粮食安全、建立良好生态环境具有重要意义[1]。在我国南方稻区,利用冬闲田种植紫云英等绿肥作物,能够合理利用光热资源,并为后茬水稻提供大量有机养分,是传统的培肥增产措施[2],“紫云英–早稻–晚稻”或“紫云英–单季稻”模式的减肥、增效作用已得到了广泛认可。
关于稻田冬绿肥对水稻生长和土壤性状的影响及其作用机制已有大量研究。2008年以来,“绿肥作物生产与利用技术集成研究及示范”项目和国家绿肥产业技术体系研发任务相继开展,有关稻田绿肥的研究报道大幅增长[1],并逐年增加[3]。在一系列重大绿肥项目的支撑下,南方稻区有关省、自治区设置统一定位试验,围绕绿肥替代化肥、绿肥–秸秆联合还田效应等开展联合研究。经过多年试验,在绿肥增产、节肥、培肥土壤、提高养分吸收等方面[2, 4-19]取得了一大批数据,在绿肥培育土壤碳库、氮库等方面也有较全面的研究[10, 20-23]。同时,全面开展了稻田冬绿肥的土壤微生物及碳、氮转化特征及作用机制等研究[24-31]。综述近十多年来我国南方稻田中紫云英作冬绿肥的增产、节肥效应,从养分吸收利用、土壤培肥等方面阐述其增产机制,并进一步分析稻田冬绿肥调控土壤微生物和氮转化的机制,以期为今后的科研工作提供借鉴和参考。
-
对2008—2019年位于福建闽侯、安徽池州、湖北通城和荆州、湖南南县、江西丰城、河南信阳、浙江衢州、广西南宁等9个试验点11个联合定位试验的共930个数据进行汇总分析 (图1) ,结果表明,相对于常规施肥处理 (100%化肥),冬种紫云英且配施常规施肥量的100%、80%化肥显著增加水稻产量,平均增产幅度分别为6.53%和4.15% (P < 0.01);紫云英配施60%化肥处理产量与100%化肥处理无显著差异,紫云英配施40%化肥显著降低水稻产量,降幅为5.57% (P < 0.01)。说明冬种紫云英在不减化肥或者减化肥20%条件下水稻增产效果显著,在减施40%化肥时可保障水稻不减产。
图 1 紫云英配施不同比例化肥处理水稻产量相对于常规施肥处理的增产幅度
Figure 1. Increase of rice yield under milk vetch manuring combined with different amounts of chemical fertilizer compared with conventional fertilization
冬种紫云英作绿肥对水稻的增产和节肥作用已得到广泛验证,不同区域增产幅度虽有所差异,但大多证明了种植利用紫云英可以在减少化肥用量20%~40%的条件下保证水稻不减产,并有利于提高水稻的产量稳定性[5, 14, 19, 32-35]。与常规施肥相比,种植翻压紫云英减施20%化肥可以改善水稻生长性状、提高水稻产量[36-42],而减施40%化肥的水稻产量与常规施肥基本持平,且氮肥利用率最高,产量稳定性最好[14, 16, 19, 34],从化肥用量和产量、收益、产投比等综合考虑,在种植紫云英的条件下减施40%化肥是一种适宜的施肥制度[6-16]。另有研究结果表明,若过量减少化肥用量 (40%~60%) 会降低水稻产量[34],而增加紫云英翻压量能增加水稻产量并提高经济效益[34,43]。在紫云英增产节肥的研究中,基于长期定位试验的结果充分证明了多年种植利用紫云英能够更好的提高作物产量并增加土壤肥力[2, 4, 5, 39, 44-47],紫云英的增产和节肥效应随种植年限的增加而增强[4, 44-45, 47]。为进一步验证紫云英的长期效应,分析了设置于福建闽侯、湖北通城、湖南南县、江西丰城和河南信阳等地的5个联合定位试验种植紫云英1~7年的产量数据 (图2)。结果表明,紫云英配施100%、80%、60%和40%化肥处理,在紫云英种植第一年相对常规施肥处理的平均增产幅度分别为5.53%、3.16%、0.87%和−3.80%;至紫云英种植的第7年,各处理增幅分别为13.98%、9.88%、3.98%和0.26%。各处理7年间增产幅度平均增加近6个百分点,冬种紫云英的长期效应凸显。
图 2 紫云英配施不同比例化肥处理水稻产量相对常规施肥处理增产幅度的年际变化
Figure 2. Interannual variation in increase of rice yield under milk vetch manuring combined with different amounts of chemical fertilizer compared with conventional fertilization
近年来,紫云英–稻草联合利用技术在我国南方稻区多个省份的推广应用中表现出了良好的实践效果。该技术创新性地将稻草还田和绿肥种植翻压有机融合,在冬季共存期为稻草腐解和紫云英生长提供良好的土壤环境[17, 48],在翻压后合理调控还田物料碳氮比及养分释放速率[49],发挥了两者的协同作用。汇总江西丰城、湖南祁阳和南县、湖北洪湖和荆州、福建福州、河南信阳等7个试验点2016—2019年共342个监测数据,结果表明,冬种紫云英稻草不还田和单独稻草还田处理相对于冬闲且稻草不还田的对照,增产幅度分别为12.90%和3.99%,紫云英–稻草联合还田处理的增产幅度是15.70%,比单独稻草还田处理增加了11.71% (P < 0.01,图3),与已有报道[17-18, 44, 48, 50-53]结论一致。紫云英–稻草联合利用除了提高水稻产量,其节肥效应也值得关注,相对于常规施肥,紫云英–稻草联合利用在减施20%化肥条件下,能够增加水稻产量和产量稳定性[17-18, 51]。
-
紫云英配施化肥及紫云英–稻草联合利用通过优化水稻产量构成提高水稻产量及产量稳定性,是紫云英作冬绿肥增加水稻产量的主要机制。与单施全量化肥相比,冬种紫云英及配施减量化肥可增加水稻株高、有效穗数、千粒重等产量组成性状[45-46, 54-56],增幅分别为2.8%~6.6%、5.4%~16.1%、1.8%~8.8%[46, 55]。冬种紫云英能够促进水稻的光合作用,通过提高水稻的叶面积指数、光合速率和势粒比,为产量形成提供更多的干物质[55]。紫云英–稻草联合利用可以在减施化肥的前提下增加早、晚稻的有效穗数和每穗实粒数,提高成穗率、总干物质重、成熟期叶面积指数以及抽穗至成熟期的群体生长率,其中群体增长率增幅为4.51%~5.21%[51, 53, 57]。
-
紫云英作冬绿肥节肥的主要机制是促进水稻养分吸收,提高肥料利用率。紫云英通过生物固氮作用固定大气氮素并归还土壤。豆科绿肥具有较低的碳氮比,翻压后一个月内的氮素释放量将近90%[58],在2~4周内土壤无机氮含量达到峰值[49],能够有效促进水稻氮素吸收[54, 58-59]。紫云英配施化肥能够促进水稻对氮、磷、钾养分的吸收,增加水稻养分累积量[8, 40, 46, 55, 60],紫云英配施60%氮肥处理相比常规施肥提高水稻孕穗期和成熟期的吸氮量,增幅分别为6.4%和6.9%[15]。在紫云英–稻草联合利用模式下,两种不同碳氮比物料的混合可以优化还田物料的碳氮比,调控养分释放速率,以更好地匹配后茬水稻的氮素需求,有效增加水稻氮累积量,实现稻田高效减氮[17-18, 48, 59, 61]。
紫云英与化肥氮配施时,不同形态氮素间的交互作用影响水稻对化肥氮的吸收利用。Meng等[59]应用15N双标记法研究得出紫云英配施化肥条件下,29%的化肥氮被水稻吸收,15%残留在土壤中,均大于单独化肥处理 (被水稻吸收10%和残留在土壤中9%),说明冬绿肥可以提高化肥氮的利用率,减少氮素损失。紫云英配施60%~100%化肥处理的氮肥利用率和氮肥农学效率相比常规施肥分别提高了6.6%~31.1%[42, 57]和3.8%~7.0%[57]。
-
紫云英作绿肥对土壤肥力的提升在提高水稻产量及其稳定性中有重要作用,且可通过扩充土壤养分库容,实现节肥增效[2, 5, 18, 47, 62-63]。冬种紫云英对土壤全氮、有机质含量的提升作用显著高于单施化肥[7, 15, 19, 64-69],能够培育土壤碳库和氮库[10, 20-23]。安徽池州2011—2015年的试验结果 (图4),相比单施化肥处理,紫云英配施不同比例化肥均显著增加了土壤有机质含量 (P < 0.05),配施100%、80%、60%和40%化肥处理的增幅分别为1.96%、3.95%、4.15%和5.71%,配施化肥量越少,有机质含量增幅越大。与单施化肥相比,在紫云英配施不同比例化肥中,配施80%和60%化肥明显增加了土壤全氮含量,增幅分别为1.22%和1.74% (P < 0.05)。稻田冬种绿肥不仅提高土壤有机碳含量,同时也有利于土壤有机碳生态功能的稳定[2, 5, 60, 70-73]。紫云英配施化肥显著提高土壤活性有机碳和微生物生物量碳的含量和比例[10, 71, 74],增强土壤碳转化酶的活性[72, 75-76],并通过增加可溶性有机质的量及腐殖化程度,提高其稳定性、氧化还原能力和生物有效性[23, 77]。
图 4 紫云英配施不同比例化肥处理土壤有机质和全氮含量
Figure 4. Soil organic matter and total nitrogen contents under milk vetch manuring combined with differentamounts of chemical fertilizer
紫云英–稻草联合利用在改善土壤肥力中同样有优良表现。与紫云英、稻草单独还田相比,联合还田可以同时发挥绿肥和稻草的各自优势,对土壤肥力的提升更为全面[18, 50-52, 62]。紫云英–稻草联合利用较二者单独应用土壤有机碳含量增幅更大[48, 50-51, 78],可达15.7%~20.9%[48]。在增加有机碳的基础上,紫云英–稻草联合还田全面提升了土壤碳库质量,有效提高土壤颗粒态有机碳[79]、活性有机碳、碳库指数、碳库活度指数和碳库管理指数[44, 78]。通过提高参与碳、氮、磷等养分转化的酶活性,增加土壤微生物数量,降低土壤革兰氏阳性细菌与革兰氏阴性细菌的丰度比,改善土壤养分状况[44, 48, 61, 79]。
冬种绿肥对土壤肥力的改善兼具提升土壤质量等长期效应和增加速效养分供应、促进后茬作物吸收的即时效应。冬种紫云英提高了稻田土壤铵态氮含量[15, 19, 60, 64],酸解氮和非酸解氮的含量也显著增加[80]。翻压紫云英还提升了土壤有效磷和速效钾含量[5, 7, 10-11 16, 19, 56, 67, 69, 81],并有补充土壤硫、铁、锌、锰、铜等中微量元素的作用[82]。在双季稻区,水稻收获后紫云英氮在土壤中的残留为29.4%~33.2%,显著高于化肥氮的残留 (14.1%),说明绿肥在养分供应中有较强的后效[58-59, 83],是紫云英还田增加晚稻产量的重要原因[67]。
稻田冬种绿肥对土壤物理性状及土壤结构也有改善作用。冬种绿肥处理下土壤的抗物理退化、养分供应和贮藏、抗生物化学退化的能力都明显强于冬闲及单施化肥处理[84]。紫云英配施化肥能够降低土壤容重[56, 60, 68-69, 74],增加大团聚体组分占比,提高团聚体稳定性,改善土壤结构[10, 20-21, 74, 85]。在种植紫云英的条件下,化肥施用量的减少有利于0.25~2 mm粒级团聚体的形成和积累,并且化肥减施20%~40%时,> 2 mm和0.25~2 mm粒级团聚体内有机碳和全氮含量明显提高[13]。
-
对冬绿肥作用下土壤微生物数量和群落结构的研究有利于阐释其提升土壤肥力、促进作物生长的内在机制。紫云英配施适量化肥有利于土壤微生物的生长繁殖[66, 82, 86],相对于单施化肥处理,紫云英配施化肥处理显著提高细菌总量及真菌、解磷菌和固氮菌的数量[86-87]。长期冬种绿肥改变了土壤中微生物食物网结构,提高了真菌/细菌的值,使土壤微生物结构倾向于真菌主导型[73]。与土壤微生物活性密切相关的土壤酶,如土壤脲酶、酸性磷酸酶、过氧化氢酶等在冬种紫云英的条件下活性显著提高,且增幅随紫云英翻压量的提高而增加[45, 86, 88-89]。
微生物群落结构及功能微生物的改变可以指示土壤环境及养分状况等的变化。土壤底物的种类和有效性 (不同碳源、氮源等) 是影响土壤微生物数量、结构和功能的重要因素[90]。冬种绿肥通过改变土壤养分形态,进而影响土壤微生物群落结构来促进作物生长和提高养分利用率[87]。冬种紫云英改变了土壤根系内生菌的群落结构,增加了根系内生菌的菌群丰富度和多样性[91],一些有益微生物在水稻根际的分布增加,促进了根系对养分的吸收[25]。长期冬种绿肥对稻田土壤中的功能微生物产生显著影响,增加了土壤中甲烷氧化菌、硫还原菌数量,改变了氮转化作用 (固氮、硝化、反硝化作用) 相关功能微生物,进而说明了绿肥影响土壤元素的生物化学循环过程[24]。紫云英–稻草共同还田较稻草单独还田降低稻田土壤产甲烷古菌与甲烷氧化细菌群落丰度比 (mcrA/pmoA),提高Type I与Type II型甲烷氧化细菌群落丰度比[30-31],说明豆科绿肥与稻草合理搭配改变产甲烷古菌、甲烷氧化细菌群落结构和数量,是缓解稻田土壤CH4排放的重要作用机制。
-
土壤氮转化的主要过程是固氮作用、硝化作用和反硝化作用,均由微生物驱动完成,对氮转化微生物的研究可以将土壤性状、物质转化过程及微生物作用相联系[92],是土壤氮循环研究中的重要部分。耕作措施不同及外源有机物料的添加会引起稻田土壤氮素转化过程的剧烈变化,从而影响稻田土壤氮库及氮素供应特征[93]。在紫云英–水稻轮作体系中,紫云英生长过程和翻压还田后均会改变稻田土壤氮素状况,进而引起氮转化过程及相关微生物的变化。
-
盛花期紫云英体内氮素约有78%来源于生物固氮,地上部和根系残体翻压入土后每年可带入土壤的氮约为N 93 kg/hm2[94],水稻体内25%~45%的氮素来源于翻压的豆科绿肥氮[95]。外源有机物料投入及其与化肥配施明显影响紫云英生物固氮。多年田间定位试验结果表明,稻草还田处理生物固氮的比例为59%~68%,明显低于对照处理 (85%),但稻草还田处理提高了紫云英的生物量,因此固氮总量较高[96]。添加稻草后增施氮肥,紫云英的生物固氮比例和固氮量均降低,但添加葡萄糖后不同氮水平之间差异较小,表明紫云英生物固氮对施氮的响应因碳源有效性而异[97]。探索紫云英固氮作用的微生物机制发现,翻压紫云英配施减量化肥提高土壤固氮菌nifH基因丰度,改变了固氮菌的群落结构[6, 26],土壤的碳、氮、磷状况是土壤固氮微生物丰度及群落改变的主要影响因素[26],说明固氮微生物的丰度与土壤养分状况紧密相关。
-
农田生态系统中,硝化作用对土壤氮素有效性和氮损失有重要影响。稻田冬种绿肥可以改善参与氮素循环的微生物群落结构,减少氮素损失[24-25, 64]。近年来,绿肥对硝化作用及硝化微生物的影响研究较为活跃。
不同类型稻田土壤中,硝化能力和其对绿肥的响应有较大差异。多项研究证明碱性水稻土的硝化能力明显强于酸性水稻土,冬种绿肥降低了碱性土壤的硝化强度,但增加了酸性土壤的硝化强度[27-29, 98]。其中,在碱性紫潮泥中,绿肥处理增加了土壤铵态氮含量、降低了土壤硝态氮含量,说明冬种绿肥可以通过调控硝化作用降低硝态氮淋失风险[29]。这些研究为合理调控稻田硝化作用提供了依据。
氨氧化细菌 (AOB) 和氨氧化古菌 (AOA) 的数量和群落结构的变化也因土壤类型而异。在不同类型土壤中,AOA-amoA基因丰度均高于AOB-amoA基因丰度,说明稻田土壤中AOA在数量上占主导地位,且碱性水稻土中AOA和AOB数量均显著高于酸性水稻土[27-29, 98-99]。在红壤稻田中,AOA-amoA中的主要OTU在不同处理间差异较大,而AOB-amoA中的主要OTU受不同处理影响较小,AOA的种群数量和群落结构与土壤理化性状间有更强的相关性,说明AOA在红壤稻田中占主导地位,并对绿肥处理更敏感[27, 99]。
进一步以硝化能力较强的紫潮泥为对象,应用细菌特异性抑制剂明确AOA和AOB在硝化作用中相对贡献的研究结果表明,紫云英配施不同比例化肥直接影响了AOA在硝化作用中的相对贡献,且AOA的群落结构变化直接影响硝化强度,说明AOA群落结构的改变可能是绿肥影响硝化作用的重要机制[28]。
-
经过近十多年的研究,我国南方稻田紫云英作冬绿肥的增产、节肥效应得到了充分验证,其内在机制也不断明晰。在已有研究基础上,今后稻田绿肥的研究应重点围绕以下几方面进行:
1) 绿肥–水稻系统中的养分循环与调控,主要研究绿肥参与碳、氮以及磷、钾、中微量元素等养分物质循环的过程,研发利用绿肥促进养分利用、调控温室效应和缓减面源污染的技术途径。
2) 绿肥培育健康水稻土的作用与强化机制,重点研究绿肥优化稻田食物网、能流、生物多样性及多功能性等作用,研发基于绿肥的水稻土健康提升手段,研究利用绿肥调控土壤重金属等污染物的农艺措施。
3) 绿肥提升稻米品质的效能与调控,深入研究绿肥在水稻发育、稻米品质形成中的贡献与机制,开发绿肥作为主要肥源的高品质稻米生产技术。
南方稻田紫云英作冬绿肥的增产节肥效应与机制
Effects of milk vetch (Astragalus sinicus) as winter green manure on rice yield and rate of fertilizer application in rice paddies in south China
-
摘要: 本文对我国南方稻田紫云英作冬绿肥以及紫云英与稻草共同利用的增产和节肥效应及其植物营养学、土壤微生物学等相关作用机制进行综述。2008—2019年间开展的11个联合定位试验结果 (n = 930) 表明,冬种紫云英在不减肥或者减肥20%条件下增产效果显著,水稻产量增加幅度分别为6.53%和4.15%;在减施40%化肥时可保障水稻与常规施肥相比不减产。紫云英的增产和节肥效应随种植年限的增加而增强,5个联合定位试验连续7年的监测结果表明,冬种紫云英减施40%化肥条件下,紫云英种植第一年相对常规施肥增产0.87%,至种植第7年增幅为3.98%。紫云英与稻草联合利用是近些年稻区推行的重要技术模式,2016—2019年间开展的7个联合定位试验结果 (n = 342) 表明,紫云英–稻草联合还田相对于单独稻草还田,水稻产量增加了11.71%。本文分别从优化水稻产量构成、促进水稻养分吸收、提升土壤肥力3方面阐释了紫云英作冬绿肥的增产、节肥机制。稻田冬种紫云英可增加水稻有效穗数和每穗实粒数,优化了产量构成。与常规施肥相比,紫云英配施减量化肥的水稻吸氮量增加了6.4%~6.9%,氮肥利用率提高了6.6%~31.1%。稻田种植紫云英使土壤碳、氮库得到培育,土壤活性有机碳含量和碳转化酶活性提高,土壤速效养分、土壤物理性状明显改善。以有机质和全氮为例,相比常规施肥处理,种植翻压紫云英后减施20%和40%化肥处理的土壤有机质含量分别增加3.95%和4.15%,土壤全氮含量分别增加1.22%和1.74%。在紫云英调控土壤微生物及氮转化机制方面,冬种绿肥有利于土壤微生物的生长繁殖,增强与微生物活性密切相关的土壤酶活性,并通过改变土壤微生物的群落结构及功能微生物影响土壤养分循环。紫云英配施减量化肥可提高土壤固氮菌丰度,通过合理的调控措施可优化紫云英的生物固氮作用。硝化作用对冬绿肥的响应在不同类型土壤中有较大差异,碱性水稻土中冬种绿肥可通过抑制硝化作用降低氮素淋失风险,氨氧化微生物群落结构的变化是冬绿肥影响硝化作用的重要机制。通过近十多年来的研究,逐渐明晰了我国南方稻田冬种紫云英的增产、节肥效应及其机制,为今后稻田绿肥的效应与机制研究提供了重要借鉴和参考。Abstract: In this paper, we collected data from previous investigations on milk vetch (Astragalus sinicus) as winter green manure, and co-incorporation of milk vetch and rice straw in rice paddy fields in south China to study the effects of milk vetch green manure on rice yield and chemical fertilizer application, and the mechanisms of plant nutrition and microbial ecology. Thus, a total of 930 datasets obtained from 11 joint experiments conducted from 2008 to 2019 were analyzed to address this objective. The results showed that incorporation of milk vetch together with application of 100% and 80% of conventional amounts of chemical fertilizer significantly increased rice yield by 6.53% and 4.15%, respectively. The incorporation of milk vetch into paddy fields also prevented decrease in the rice yield at 40% reduction in conventional chemical fertilizer application. The positive effects of milk vetch incorporation on rice yield and chemical fertilizer application increased with the planting years of milk vetch. For instance, a 7-year results of 5 joint experiments showed that milk vetch plants combined with 40% reduction of conventional chemical fertilizer increased rice yield by 0.87% in the first year, compared with conventional fertilization, and the increase rate reached 3.98% in the 7th year. Co-incorporation of milk vetch and rice straw was also an important management practice in rice-planting regions, and widely promoted in south China. A total of 342 datasets obtained from 7 joint experiments conducted from 2016 to 2019 showed that co-incorporation of milk vetch and rice straw increased rice yield by 11.71%, compared with rice straw incorporation alone. We also analyzed the data of rice yield composition, rice nutrient absorption, soil fertility and microbial ecology to understand the mechanisms underlying the increase in rice yield and reduction in chemical fertilizer due to milk vetch green manure. Winter planting of milk vetch increased the effective panicle number and number of grains per panicle, thus optimized rice yield composition. Compared with conventional fertilization, milk vetch combined with reduced chemical fertilizer increased rice N absorption by 6.4%–6.9%, and increased N use efficiency by 6.6%–31.1%. Planting of milk vetch increased soil carbon (C) and nitrogen (N) pool, promoted soil labile organic C contents and enzymatic activities in C transformation, increased soil available nutrients contents and improved soil structure. For example, incorporation of milk vetch combined with 20% and 40% of conventional chemical fertilizer reduction increased soil organic matter by 3.95% and 4.15%, respectively, and soil total N by 1.22% and 1.74%, respectively. The results also showed milk vetch incorporation regulated soil microbes and N transformation. Incorporation of milk vetch influenced soil nutrient cycling by promoting the growth of soil microorganisms and enzymatic activities associated with soil microorganisms, and changing the community structures and functional microbes. Milk vetch combined with reduced amount of chemical fertilizer increased the abundance of azotobacter, and the N fixation process of milk vetch could be optimized through reasonable regulation methods. Responses of nitrification to winter green manuring varied a lot in different soil types. For example, in alkaline paddy soil, winter green manuring inhibited nitrification potential thus reduced the risk of nitrate leaching, and the community changes in ammonia oxidizers was the important mechanisms. Overall, the incorporation of milk vetch as winter green manure has showed reliable effects in increasing rice yield and reducing chemical fertilizer application. The mechanism study also serves as an important reference for further studies on impacts of green manures in rice fields.
-
Key words:
- rice paddy /
- milk vetch /
- yield increase /
- chemical fertilizer reduction /
- soil carbon and nitrogen
-
-
[1] 曹卫东, 包兴国, 徐昌旭, 等. 中国绿肥科研60年回顾与未来展望[J]. 植物营养与肥料学报, 2017, 23(6): 1450–1461. Cao W D, Bao X G, Xu C X, et al. Reviews and prospects on science and technology of green manure in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1450–1461. doi: 10.11674/zwyf.17291 [2] 高菊生, 曹卫东, 李冬初, 等. 长期双季稻绿肥轮作对水稻产量及稻田土壤有机质的影响[J]. 生态学报, 2011, 31(16): 4542–4548. Gao J S, Cao W D, Li D C, et al. Effects of long-term double-rice and green manure rotation on rice yield and soil organic matter in paddy field[J]. Acta Ecologica Sinica, 2011, 31(16): 4542–4548. [3] 李忠义, 何铁光, 唐红琴, 等. 中国绿肥研究知识图谱——基于CiteSpace的可视化分析[J]. 中国农机化学报, 2019, 40(7): 157–164. Li Z Y, He T G, Tang H Q, et al. Knowledge mapping analysis of green manure research based on CiteSpace[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(7): 157–164. [4] 高菊生, 曹卫东, 董春华, 等. 长期稻-稻-绿肥轮作对水稻产量的影响[J]. 中国水稻科学, 2010, 24(6): 672–676. Gao J S, Cao W D, Dong C H, et al. Effects of long-term rice-rice-green manure rotation on rice yield[J]. Chinese Journal of Rice Science, 2010, 24(6): 672–676. [5] 高菊生, 徐明岗, 董春华, 等. 长期稻-稻绿肥轮作对水稻产量及土壤肥力的影响[J]. 作物学报, 2013, 39(2): 343–349. Gao J S, Xu M G, Dong C H, et al. Effects of long-term rice-rice-green manure cropping rotation on rice yield and soil fertility[J]. Acta Agronomica Sinica, 2013, 39(2): 343–349. doi: 10.3724/SP.J.1006.2013.00343 [6] 方宇, 王飞, 贾宪波, 等. 绿肥配施减量化肥对土壤固氮菌群落的影响[J]. 农业环境科学学报, 2018, 37(9): 1933–1941. Fang Y, Wang F, Jia X B, et al. Effect of green manure and reduced chemical fertilizer load on the community of soil nitrogen-fixing bacteria[J]. Journal of Agro-Environment Science, 2018, 37(9): 1933–1941. doi: 10.11654/jaes.2018-0509 [7] 颜志雷, 方宇, 陈济琛, 等. 连年翻压紫云英对稻田土壤养分和微生物学特性的影响[J]. 植物营养与肥料学报, 2014, 20(5): 1152–1161. Yan Z L, Fang Y, Chen J C, et al. Effect of turning over Chinese milk vetch (Astragalus sinicus L.) on soil nutrients and microbial properties in paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1152–1161. [8] 王飞, 林诚, 林新坚, 等. 连续翻压紫云英对福建单季稻产量与化肥氮素吸收、分配及残留的影响[J]. 植物营养与肥料学报, 2014, 20(4): 896–904. Wang F, Lin C, Lin X J, et al. Effects of continuous turnover of Astragalus sinicus on rice yield and N absorption, distribution and residue in single-cropping rice regions of Fujian Province[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(4): 896–904. doi: 10.11674/zwyf.2014.0411 [9] 李昱, 何春梅, 刘志华, 等. 相同紫云英翻压量化肥减量条件下水稻合理施肥方法研究[J]. 江西农业学报, 2011, 23(11): 128–131. Li Y, He C M, Liu Z H, et al. Study on rational fertilization method for rice under conditions of overturning same amount of Astragalus sinicus and reducing application rate of chemical fertilizer[J]. Acta Agriculturae Jiangxi, 2011, 23(11): 128–131. doi: 10.3969/j.issn.1001-8581.2011.11.040 [10] 刘春增, 常单娜, 李本银, 等. 种植翻压紫云英配施化肥对稻田土壤活性有机碳氮的影响[J]. 土壤学报, 2017, 54(3): 656–668. Liu C Z, Chang D N, Li B Y, et al. Effects of planting and incorporation of Chinese milk vetch coupled with application of chemical fertilizer on active organic carbon and nitrogen in paddy soil[J]. Acta Pedologica Sinica, 2017, 54(3): 656–668. [11] 王琴, 张丽霞, 吕玉虎, 等. 紫云英与化肥配施对水稻产量和土壤养分含量的影响[J]. 草业学报, 2012, 29(1): 92–96. Wang Q, Zhang L X, Lü Y H, et al. Effects of application of Chinese milk vetch and fertilizer on rice yield and soil nutrient content[J]. Acta Prataculturae Sinica, 2012, 29(1): 92–96. [12] 王琴, 郭晓彦, 张丽霞, 等. 紫云英配施不同量化肥对水稻产量及经济效益的影响[J]. 河南农业科学, 2013, 42(5): 77–81. Wang Q, Guo X Y, Zhang L X, et al. Effects of combined application of Astragalus sinicus with different amount of chemical fertilizer on rice yield and economic efficiency[J]. Journal of Henan Agricultural Sciences, 2013, 42(5): 77–81. doi: 10.3969/j.issn.1004-3268.2013.05.018 [13] 刘春增, 刘小粉, 李本银, 等. 紫云英配施不同用量化肥对土壤养分、团聚性及水稻产量的影响[J]. 土壤通报, 2013, 44(2): 409–413. Liu C Z, Liu X F, Li B Y, et al. Effects of applying Chinese milk vetch with different amounts of chemical fertilizer on soil nutrients, aggregation and rice yield[J]. Chinese Journal of Soil Science, 2013, 44(2): 409–413. [14] 张璐, 黄晶, 高菊生, 等. 长期绿肥与氮肥减量配施对水稻产量和土壤养分含量的影响[J]. 农业工程学报, 2020, 36(5): 106–112. Zhang L, Huang J, Gao J S, et al. Effects of long-term green manure and reducing nitrogen applications on rice yield and soil nutrient content[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 106–112. doi: 10.11975/j.issn.1002-6819.2020.05.012 [15] 杨滨娟, 黄国勤, 陈洪俊, 等. 利于水稻氮素吸收的绿肥翻压量和施氮水平研究[J]. 植物营养与肥料学报, 2016, 22(5): 1187–1195. Yang B J, Huang G Q, Chen H J, et al. Optimum combination of winter green manure plowed and nitrogen application levels for high nitrogen uptake and utilization in rice[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(5): 1187–1195. doi: 10.11674/zwyf.15389 [16] 刘春增, 李本银, 吕玉虎, 等. 紫云英还田对土壤肥力、水稻产量及其经济效益的影响[J]. 河南农业科学, 2011, 40(5): 96–99. Liu C Z, Li B Y, Lü Y H, et al. Effect of incorporation of Astragalus sinicus on soil fertility, rice yield and economic efficiency[J]. Journal of Henan Agricultural Sciences, 2011, 40(5): 96–99. doi: 10.3969/j.issn.1004-3268.2011.05.024 [17] Zhou X, Liao Y L, Lu Y H, et al. Management of rice straw with relay cropping of Chinese milk vetch improved double-rice cropping system production in southern China[J]. Journal of Integrative Agriculture, 2020, 19(8): 2–14. [18] Yang L, Zhou X, Liao Y, et al. Co-incorporation of rice straw and green manure benefits rice yield and nutrient uptake[J]. Crop Science, 2019, 59(2): 749–759. doi: 10.2135/cropsci2018.07.0427 [19] Xie Z J, Tu S X, Shah F, et al. Substitution of fertilizer-N by green manure improves the sustainability of yield in double-rice cropping system in south China[J]. Field Crops Research, 2016, 188: 142–149. doi: 10.1016/j.fcr.2016.01.006 [20] Yang Z P, Xu M G, Zheng S X, et al. Effects of long-term winter planted green manure on physical properties of reddish paddy soil under a double-rice cropping system[J]. Journal of Integrative Agriculture, 2012, 11(4): 655–664. doi: 10.1016/S2095-3119(12)60053-7 [21] Yang Z P, Zheng S X, Nie J, et al. Effects of long-term winter planting green manure on distribution and storage of organic carbon and nitrogen in water-stable aggregates of reddish paddy soil under a double-rice cropping system[J]. Journal of Integrative Agriculture, 2014, 13(8): 1772–1781. doi: 10.1016/S2095-3119(13)60565-1 [22] Hong X, Ma C, Gao J S, et al. Effects of different green manure treatments on soil apparent N and P balance under a 34-year double-rice cropping system[J]. Journal of Soils and Sediments, 2019, 19(1): 73–80. doi: 10.1007/s11368-018-2049-5 [23] 周国朋, 曹卫东, 白金顺, 等. 多年紫云英–双季稻下不同施肥水平对两类水稻土有机质及DOM的影响[J]. 中国农业科学, 2016, 49(21): 4096–4106. Zhou G P, Cao W D, Bai J S, et al. Effects of different fertilization levels on soil organic matter and dissolved organic matter in two paddy soils after multi-years’ rotation of Chinese milk vetch and double-cropping rice[J]. Scientia Agricultura Sinica, 2016, 49(21): 4096–4106. doi: 10.3864/j.issn.0578-1752.2016.21.004 [24] Gao S J, Zhang R G, Cao W D, et al. Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in south China[J]. Journal of Integrative Agriculture, 2015, 14(12): 2512–2520. doi: 10.1016/S2095-3119(15)61230-8 [25] Zhang X X, Zhang R J, Gao J S, et al. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria[J]. Soil Biology & Biochemistry, 2017, 104: 208–217. [26] Yang L, Bai J S, Zeng N H, et al. Diazotroph abundance and community structure are reshaped by straw return and mineral fertilizer in rice-rice–green manure rotation[J]. Applied Soil Ecology, 2019, 136: 11–20. doi: 10.1016/j.apsoil.2018.12.015 [27] Gao S J, Chang D N, Zou C Q, et al. Archaea are the predominant and responsive ammonium oxidizing prokaryotes in a red paddy soil receiving green manures[J]. European Journal of Soil Biology, 2018, 88: 27–35. doi: 10.1016/j.ejsobi.2018.05.008 [28] Gao S J, Zhou G P, Liao Y L, et al. Contributions of ammonia-oxidising bacteria and archaea to nitrification under long-term application of green manure in alkaline paddy soil[J]. Geoderma, 2020, 374: 114419. doi: 10.1016/j.geoderma.2020.114419 [29] Gao S J, Zhou G P, Rees R M, et al. Green manuring inhibits nitrification in a typical paddy soil by changing the contributions of ammonia-oxidizing archaea and bacteria[J]. Applied Soil Ecology, 2020, 156: 103698. doi: 10.1016/j.apsoil.2020.103698 [30] Zhou G P, Gao S J, Xu C X, et al. Rational utilization of leguminous green manure to mitigate methane emissions by influencing methanogenic and methanotrophic communities[J]. Geoderma, 2020, 361: 114071. doi: 10.1016/j.geoderma.2019.114071 [31] Zhou G P, Gao S J, Xu C X, et al. Co-incorporation of Chinese milk vetch (Astragalus sinicus L.) and rice (Oryza sativa L.) straw minimizes CH4 emissions by changing the methanogenic and methanotrophic communities in a paddy soil[J]. European Journal of Soil Science, 2020, 71: 924–939. doi: 10.1111/ejss.12930 [32] 万水霞, 唐杉, 蒋光月, 等. 紫云英与化肥配施对土壤微生物特征和作物产量的影响[J]. 草业学报, 2016, 25: 109–117. Wan S X, Tang S, Jiang G Y, et al. Effects of Chinese milk vetch manure and fertilizer on soil microbial characteristics and yield of rice[J]. Acta Prataculturae Sinica, 2016, 25: 109–117. doi: 10.11686/cyxb2016030 [33] 刘春增, 刘小粉, 王守刚, 等. 种植紫云英不还田对水稻农艺性状、产量和经济效益的影响[J]. 中国土壤与肥料, 2014, (3): 68–71. Liu C Z, Liu X F, Wang S G, et al. Effects of planting Chinese milk vetch without straw return on rice agronomic traits, yield, and economic efficiency[J]. Soil and Fertilizer Sciences in China, 2014, (3): 68–71. doi: 10.11838/sfsc.20140314 [34] 徐昌旭, 谢志坚, 曹卫东, 等. 翻压绿肥后不同施肥方法对水稻养分吸收及产量的影响[J]. 中国土壤与肥料, 2011, (3): 35–39. Xu C X, Xie Z J, Cao W D, et al. Effects of different fertilizing methods on absorption and utilization of nutrient of rice plants under reducing the amount of mineral fertilizer after turning over Chinese milk vetch[J]. Soil and Fertilizer Sciences in China, 2011, (3): 35–39. doi: 10.3969/j.issn.1673-6257.2011.03.007 [35] 刘小粉, 刘春增, 潘兹亮, 等. 施用绿肥条件下减施化肥对土壤养分及持水供水能力的影响[J]. 中国土壤与肥料, 2017, (3): 75–79. Liu X F, Liu C Z, Pan Z L, et al. Effect of reducing chemical fertilizer when the green manure applied on soil nutrients, water retention and supply capacities[J]. Soil and Fertilizer Sciences in China, 2017, (3): 75–79. doi: 10.11838/sfsc.20170313 [36] 周兴, 李再明, 谢坚, 等. 紫云英利用后减施化肥对水稻产量和产值及土壤碳氮含量的影响[J]. 湖南农业大学学报(自然科学版), 2014, 40(3): 225–230. Zhou X, Li Z M, Xie J, et al. Effect of reducing chemical fertilizer on rice yield, output value, content of soil carbon and nitrogen after utilizing the milk vetch[J]. Journal of Hunan Agricultural University (Natural Sciences Edition), 2014, 40(3): 225–230. [37] 李双来, 李登荣, 胡诚, 等. 减施化肥条件下翻压不同量紫云英对双季稻生长和产量的影响[J]. 中国土壤与肥料, 2012, (1): 69–73. Li S L, Li D R, Hu C, et al. Impacts of reducing chemical fertilizer combined with Chinese milk vetch on growth and yield of double cropping rice[J]. Soil and Fertilizer Sciences in China, 2012, (1): 69–73. doi: 10.3969/j.issn.1673-6257.2012.01.013 [38] 李双来, 陈云峰, 李四斌, 等. 水稻相同紫云英翻压量下化肥的合理用量试验[J]. 湖北农业科学, 2009, 48(7): 1592–1593. Li S L, Chen Y F, Li S B, et al. Experiment on the appropriate usage of chemical fertilizer under the same amount of Astragalus sinicus L. in rice field[J]. Hubei Agricultural Sciences, 2009, 48(7): 1592–1593. doi: 10.3969/j.issn.0439-8114.2009.07.020 [39] 曾庆利, 龚春华, 徐永士, 等. 紫云英不同翻压量对水稻产量和产值的影响[J]. 湖南农业科学, 2009, (6): 76–78. Zeng Q L, Gong C H, Xu Y S, et al. Effects of different turnover amount of Chinese milk vetch on rice yield and production value[J]. Hunan Agricultural Sciences, 2009, (6): 76–78. doi: 10.3969/j.issn.1006-060X.2009.06.025 [40] 黄晶, 高菊生, 刘淑军, 等. 冬种紫云英对水稻产量及其养分吸收的影响[J]. 中国土壤与肥料, 2013, (1): 88–92. Huang J, Gao J S, Liu S J, et al. Effect of Chinese milk vetch in winter on rice yield and its nutrient uptake[J]. Soil and Fertilizer Sciences in China, 2013, (1): 88–92. [41] 周兵. 紫云英翻压对水稻产量及稻田土壤性状的影响[J]. 现代农业科技, 2017, (8): 5–7. Zhou B. Effects of Chinese milk vetch incorporation on rice yield and soil properties[J]. Modern Agricultural Sciences, 2017, (8): 5–7. doi: 10.3969/j.issn.1007-5739.2017.08.003 [42] Qaswar M, Huang J, Ahmed W, et al. Substitution of inorganic nitrogen fertilizer with green manure (GM) increased yield stability by improving C input and nitrogen recovery efficiency in rice based cropping system[J]. Agronomy Journal, 2019, 9: 609. doi: 10.3390/agronomy9100609 [43] 王建红, 曹凯, 张贤. 紫云英还田配施化肥对单季晚稻养分利用和产量的影响[J]. 土壤学报, 2014, 51(4): 888–896. Wang J H, Cao K, Zhang X. Effects of incorporation of Chinese milk vetch coupled with application of chemical fertilizer on nutrition use efficiency and yield of single-cropping late rice[J]. Acta Pedologica Sinica, 2014, 51(4): 888–896. [44] 刘威, 耿明建, 秦自果, 等. 种植绿肥与稻秸协同还田对单季稻田土壤有机碳库和酶活性的影响[J]. 农业工程学报, 2020, 36(7): 125–133. Liu W, Geng M J, Qin Z G, et al. Effects of co-incorporation of green manure planting and rice straw on soil organic carbon pool and soil enzyme activity in a mono-rice cropping system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 125–133. doi: 10.11975/j.issn.1002-6819.2020.07.014 [45] 万水霞, 朱宏斌, 唐杉, 等. 紫云英与化肥配施对安徽沿江双季稻区土壤生物学特性的影响[J]. 植物营养与肥料学报, 2015, 21(2): 389–397. Wan S X, Zhu H B, Tang S, et al. Effects of Astragalus sinicus manure and fertilizer combined application on biological properties of soil in Anhui double cropping rice areas along the Yangtze River[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(2): 389–397. [46] 刘威, 王晓雨, 朱德雄, 等. 紫云英与化肥配比施用对早稻养分吸收及产量的影响[J]. 湖北农业科学, 2017, 56(8): 1348–1444. Liu W, Wang X Y, Zhu D X, et al. Effects of combining application of Astragalus sinicus and chemical fertilizer on nutrient absorption and yield of early rice[J]. Hubei Agricultural Sciences, 2017, 56(8): 1348–1444. [47] 唐杉, 王允青, 赵决建, 等. 紫云英还田对双季稻产量及稳定性的影响[J]. 生态学杂志, 2015, 34(11): 3086–3093. Tang S, Wang Y Q, Zhao J J, et al. Effects of milk vetch application on double cropping rice yield and yield stability[J]. Chinese Journal of Ecology, 2015, 34(11): 3086–3093. [48] Zhou G P, Gao S J, Lu Y H, et al. Co-incorporation of green manure and rice straw improves rice production, soil chemical, biochemical and microbiological properties in a typical paddy field in southern China[J]. Soil & Tillage Research, 2020, 197: 104–115. [49] Zhou G P, Cao W D, Bai J S, et al. Non-additive responses of soil C and N to rice straw and hairy vetch (Vicia villosa Roth L.) mixtures in a paddy soil[J]. Plant and Soil, 2019, 436: 229–244. doi: 10.1007/s11104-018-03926-6 [50] Liu W, Hussain S, Wu L S, et al. Greenhouse gas emissions, soil quality, and crop productivity from a mono-rice cultivation system as influenced by fallow season straw management[J]. Environmental Science and Pollution Research, 2016, 23(1): 315–328. doi: 10.1007/s11356-015-5227-7 [51] 周兴, 廖育林, 鲁艳红, 等. 减量施肥下紫云英与稻草协同利用对双季稻产量和经济效益的影响[J]. 湖南农业大学学报 (自然科学版), 2017, 43(5): 469–474. Zhou X, Liao Y L, Lu Y H, et al. Effects of Chinese milk vetch and rice straw synergistic dispatching on grain yield and economic benefit of double cropping rice system under fertilizer reduction[J]. Journal of Hunan Agricultural University (Natural Sciences Edition), 2017, 43(5): 469–474. [52] 高菊生, 黄晶, 杨志长, 等. 绿肥和稻草联合还田提高土壤有机质含量并稳定氮素供应[J]. 植物营养与肥料学报, 2020, 26(3): 472–480. Gao J S, Huang J, Yang Z C, et al. Improving organic matter content and nitrogen supply stability of double cropping rice field through co-incorporation of green manure and rice straw[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 472–480. [53] 才硕, 时红, 潘晓华, 等. 绿肥与稻草联合还田对机插双季稻生长和产量的影响[J]. 江西农业大学学报, 2019, 41(4): 631–640. Cai S, Shi H, Pan X H, et al. Influence of the combination of returning green manure cultivation and rice straw on the growth and yield formation of machine-transplanted early-late season double-cropping rice[J]. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41(4): 631–640. [54] 王建红, 曹凯, 张贤. 紫云英翻压量对单季晚稻养分吸收和产量的影响[J]. 植物营养与肥料学报, 2014, 20(1): 156–163. Wang J H, Cao K, Zhang X. Effects of incorporation amounts of Chinese milk vetch on nutrient uptake and yield of single cropping late rice[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(1): 156–163. doi: 10.11674/zwyf.2014.0117 [55] Zhou C H, Zhao Z K, Pan X H, et al. Integration of growing milk vetch in winter and reducing nitrogen fertilizer application can improve rice yield in double-rice cropping system[J]. Rice Science, 2016, 23(3): 132–143. doi: 10.1016/j.rsci.2015.11.003 [56] 程秀洲, 邢潇晨, 胡林彬, 等. 潢川地区紫云英绿肥翻压对土壤肥力、水稻产量及经济效益的影响[J]. 中国农学通报, 2018, 34(11): 74–80. Cheng X Z, Xing X C, Hu L B, et al. Effect of incorporation of Astragalus sinicus on soil fertility, rice yield and economic benefits in Huangchuan County[J]. Chinese Agricultural Science Bulletin, 2018, 34(11): 74–80. doi: 10.11924/j.issn.1000-6850.casb17060054 [57] Nie J W, Li L X, Hu H H, et al. Leguminous cover crop Astragalus sinicus enhances grain yields and nitrogen use efficiency through increased tillering in an intensive double-cropping rice system in Southern China[J]. Agronomy, 2019, 9: 554–564. doi: 10.3390/agronomy9090554 [58] Zhu B, Yi LX, Hu YG, et al. Nitrogen release from incorporated 15N-labelled Chinese milk vetch (Astragalus sinicus L.) residue and its dynamics in a double rice cropping system[J]. Plant and Soil, 2014, 374: 331–344. doi: 10.1007/s11104-013-1808-8 [59] Meng X T, Li Y Y, Zhang Y, et al. Green manure application improves rice growth and urea nitrogen use efficiency assessed using 15N labeling[J]. Soil Science and Plant Nutrition, 2019, 65: 511–518. doi: 10.1080/00380768.2019.1635872 [60] Zhu B, Yi L X, Guo L M, et al. Performance of two winter cover crops and their impacts on soil properties and two subsequent rice crops in Dongting Lake Plain, Hunan, China[J]. Soil & Tillage Research, 2012, 124: 95–101. [61] Li T, Gao J S, Bai L Y, et al. Influence of green manure and rice straw management on soil organic carbon, enzyme activities, and rice yield in red paddy soil[J]. Soil & Tillage Research, 2019, 195: 104428. [62] 李继明, 黄庆海, 袁天佑, 等. 长期施用绿肥对红壤稻田水稻产量和土壤养分的影响[J]. 植物营养与肥料学报, 2011, 17(3): 563–570. Li J M, Huang Q H, Yuan T Y, et al. Effects of long-term green manure application on rice yield and soil nutrients in paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(3): 563–570. doi: 10.11674/zwyf.2011.0359 [63] 杨滨娟, 黄国勤, 王超, 等. 稻田冬种绿肥对水稻产量和土壤肥力的影响[J]. 中国生态农业学报, 2013, 21(10): 1209–1216. Yang B J, Huang G Q, Wang C, et al. Effects of winter green manure cultivation on rice yield and soil fertility in paddy field[J]. Chinese Journal of Eco-Agriculture, 2013, 21(10): 1209–1216. doi: 10.3724/SP.J.1011.2013.01209 [64] Xie Z J, Shah F, Tu S X, et al. Chinese milk vetch as green manure mitigates nitrous oxide emission from monocropped rice system in south China[J]. PLoS ONE, 2016, 11(12): e0168134. doi: 10.1371/journal.pone.0168134 [65] 黄晶, 刘淑军, 张会民, 等. 水稻产量对双季稻-不同冬绿肥轮作及环境的响应[J]. 生态环境学报, 2016, 25(8): 1271–1276. Huang J, Liu S J, Zhang H M, et al. The response of rice yields on long-term double cropping rice with different winter green manure rotation and environment[J]. Ecology and Environmental Sciences, 2016, 25(8): 1271–1276. [66] 张珺穜, 曹卫东, 徐昌旭, 等. 种植利用紫云英对稻田土壤微生物及酶活性的影响[J]. 中国土壤与肥料, 2012, (1): 19–25. Zhang J T, Cao W D, Xu C X, et al. Effects of incorporation of milk vetch (Astragalus sinicus) on microbial populations and enzyme activities of paddy soil in Jiangxi[J]. Soil and Fertilizer Sciences in China, 2012, (1): 19–25. doi: 10.3969/j.issn.1673-6257.2012.01.004 [67] 廖育林, 鲁艳红, 谢坚, 等. 紫云英配施控释氮肥对早稻产量及氮素吸收利用的影响[J]. 水土保持学报, 2015, 29(3): 190–201. Liao Y L, Lu Y H, Xie J, et al. Effects of combined application of controlled release nitrogen fertilizer and Chinese milk vetch on yield and nitrogen nutrient uptake of early rice[J]. Journal of Soil and Water Conservation, 2015, 29(3): 190–201. [68] 张世昌. 稻田持续3年种植绿肥对土壤肥力影响[J]. 福建热作科技, 2016, 41(4): 11–15. Zhang S C. Changes of soil fertility by 3 years’ application of green manure[J]. Fujian Science & Technology of Tropical Crops, 2016, 41(4): 11–15. doi: 10.3969/j.issn.1006-2327.2016.04.004 [69] 张世昌, 黄功标, 廖文强. 福建稻田持续3年秸秆还田与绿肥种植的效果对比研究[J]. 中国农技推广, 2016, 32(9): 53–56. Zhang S C, Huang G B, Liao W Q. The comparative study of green manure plantation and rice straw return in Paddy soil of Fujian for 3 years[J]. China Agricultural Technology Extension, 2016, 32(9): 53–56. doi: 10.3969/j.issn.1002-381X.2016.09.023 [70] 夏文建, 秦文婧, 刘佳, 等. 长期绿肥利用下红壤性水稻土有机碳和可溶性有机碳的垂直分布特征[J]. 浙江农业学报, 2020, 32(5): 879–886. Xia W J, Qin W J, Liu J, et al. Vertical distribution of soil organic carbon and dissolved organic carbon in reddish paddy soil under long-term green manure utilization[J]. Acta Agriculturae Zhejiangensis, 2020, 32(5): 879–886. [71] Zhou X, Lu Y H, Liao Y L, et al. Substitution of chemical fertilizer by Chinese milk vetch improves the sustainability of yield and accumulation of soil organic carbon in a double-rice cropping system[J]. Journal of Integrative Agriculture, 2018, 17: 60345–60357. [72] 高嵩涓, 曹卫东, 白金顺, 等. 长期冬种绿肥改变红壤稻田土壤微生物生物量特性[J]. 土壤学报, 2015, 52(4): 902–910. Gao S J, Cao W D, Bai J S, et al. Long-term application of winter green manures changed the soil microbial biomass properties in red paddy soil[J]. Acta Pedologica Sinica, 2015, 52(4): 902–910. [73] Chen Y F, Hu N, Zhang Q Z, et al. Impacts of green manure amendment on detritus micro-food web in a double-rice cropping system[J]. Applied Soil Ecology, 2019, 138: 32–36. doi: 10.1016/j.apsoil.2019.02.013 [74] 何春梅, 钟少杰, 李清华, 等. 种植翻压紫云英对耕层土壤结构性能及有机碳含量的影响[J]. 江西农业学报, 2014, 226(12): 32–34. He C M, Zhong S J, Li Q H, et al. Effects of planting and overturning milk vetch on properties of surface soil structure and content of organic carbon[J]. Acta Agriculturae Jiangxi, 2014, 226(12): 32–34. doi: 10.3969/j.issn.1001-8581.2014.12.008 [75] 张钦, 于恩江, 林海波, 等. 连续种植不同绿肥的土壤团聚体碳分布及其固持特征[J]. 中国土壤与肥料, 2019, (1): 71–78. Zhang Q, Yu E J, Lin H B, et al. Distribution and sequestration of aggregate organic carbon affected by continuous different kind of green manure cultivation[J]. Soil and Fertilizer Sciences in China, 2019, (1): 71–78. [76] 李增强, 张贤, 王建红, 等. 化肥减施对紫云英还田土壤活性有机碳和碳转化酶活性的影响[J]. 植物营养与肥料学报, 2019, 25(4): 525–534. Li Z Q, Zhang X, Wang J H, et al. Effect of chemical fertilizer reduction with return of Chinese milk vetch (Astragalus sinicus L.) on soil labile organic carbon and carbon conversion enzyme activities[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 525–534. doi: 10.11674/zwyf.18121 [77] Gao S J, Gao J S, Cao W D, et al. Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil[J]. Journal of Integrative Agriculture, 2018, 17(8): 1852–1860. doi: 10.1016/S2095-3119(17)61901-4 [78] 周国朋, 谢志坚, 曹卫东, 等. 稻草高茬-紫云英联合还田改善土壤肥力提高作物产量[J]. 农业工程学报, 2017, 33(23): 157–163. Zhou G P, Xie Z J, Cao W D, et al. Co-incorporation of high rice stubble and Chinese milk vetch improving soil fertility and yield of rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 157–163. doi: 10.11975/j.issn.1002-6819.2017.23.020 [79] 李峰, 周方亮, 黄雅楠, 等. 减施化肥下紫云英和秸秆还田对土壤养分及活性有机碳的影响[J]. 华中农业大学学报, 2020, 39(1): 67–75. Li F, Zhou F L, Huang Y N, et al. Effects of Chinese milk vetch and straw returning on soil nutrient and active organic carbon under reduced application of chemical fertilizer[J]. Journal of Huazhong Agricultural University, 2020, 39(1): 67–75. [80] Xie Z J, Zhou C H, Shah F, et al. The role of Chinese milk vetch as cover crop in complex soil nitrogen dynamics in rice rotation system of South China[J]. Scientific Reports, 2018, 8: 12061. doi: 10.1038/s41598-018-30239-6 [81] 吕玉虎, 刘春增, 潘兹亮, 等. 紫云英不同翻压时期对土壤养分和水稻产量的影响[J]. 中国土壤与肥料, 2013, (1): 85–87. Lü Y H, Liu C Z, Pan Z L, et al. Soil nutrients and rice yield as affected by different incorporation periods of Chinese milk vetch[J]. Soil and Fertilizer Sciences in China, 2013, (1): 85–87. [82] 邹长明, 王允青, 杨杰, 等. 化肥配施紫云英对稻田土壤微生物及养分的影响[J]. 中国土壤与肥料, 2013, (6): 28–31. Zou C M, Wang Y Q, Yang J, et al. Effects of combined application of chemical fertilizer and Chinese milk vetch (Astragalus sinicus) on the microorganism and nutrients of paddy soil[J]. Soil and Fertilizer Sciences in China, 2013, (6): 28–31. doi: 10.11838/sfsc.20130606 [83] 张颖睿, 杨滨娟, 黄国勤, 等. 紫云英翻压量与不同施氮量对水稻生长和氮素吸收利用的影响[J]. 生态学杂志, 2018, 37(2): 430–437. Zhang Y R, Yang B J, Huang G Q, et al. Effects of Chinese milk vetch as a green manure and nitrogen fertilization on rice growth and nitrogen absorption and utilization of rice[J]. Chinese Journal of Ecology, 2018, 37(2): 430–437. [84] 杨曾平, 徐明岗, 聂军, 等. 长期冬种绿肥对双季稻种植下红壤性水稻土质量的影响及其评价[J]. 水土保持学报, 2011, 25(3): 92–102. Yang Z P, Xu M G, Nie J, et al. Effect of long-term winter planting-green manure on reddish paddy soil quality and its comprehensive evaluation under double-rice cropping system[J]. Journal of Soil and Water Conservation, 2011, 25(3): 92–102. [85] 刘春增, 刘小粉, 李本银, 等. 紫云英还田对水稻产量、土壤团聚性及其有机碳和全氮分布的影响[J]. 华北农学报, 2012, 27(6): 224–228. Liu C Z, Liu X F, Li B Y, et al. Effects of planting Chinese milk vetch on rice yield, soil aggregation and distributions of its carbon and total nitrogen[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(6): 224–228. doi: 10.3969/j.issn.1000-7091.2012.06.043 [86] 万水霞, 唐杉, 王允青. 等 紫云英还田量对稻田土壤微生物数量及活度的影响[J]. 中国土壤与肥料, 2013, (4): 39–42. Wan S X, Tang S, Wang Y Q, et al. Effect of returning quantity of Astragalus sinicus to soil on quantity and activity of microbial in paddy soil[J]. Soil and Fertilizer Sciences in China, 2013, (4): 39–42. [87] Xie Z J, He Y Q, Tu S X, et al. Chinese milk vetch improves plant growth, development and 15N recovery in the rice-based rotation system of south China[J]. Scientific Reports, 2017, 7: 3577. doi: 10.1038/s41598-017-03919-y [88] 郭乾坤, 梁国庆, 周卫, 等. 长期有机培肥提高红壤性水稻土生物学特性及水稻产量的微生物学机制[J]. 植物营养与肥料学报, 2020, 26(3): 492–501. Guo Q K, Liang G Q, Zhou W, et al. Microbiological mechanism of long-term organic fertilization on improving soil biological properties and double rice yields in red paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 492–501. [89] 杨曾平, 高菊生, 郑圣先, 等. 长期冬种绿肥对红壤性水稻土微生物特性及酶活性的影响[J]. 土壤, 2012, 43(4): 576–583. Yang Z P, Gao J S, Zheng S X, et al. Effects of long-term winter planting-green manure on microbial properties and enzyme activities in reddish paddy soil[J]. Soils, 2012, 43(4): 576–583. doi: 10.3969/j.issn.0253-9829.2012.04.008 [90] Sofo A, Ricciuti P, Fausto C, et al. The metabolic and genetic diversity of soil bacterial communities depends on the soil management system and C/N dynamics: The case of sustainable and conventional olive groves[J]. Applied Soil Ecology, 2019, 137: 21–28. doi: 10.1016/j.apsoil.2018.12.022 [91] Zhang X X, Gao J S, Cao Y H, et al. Long-term rice and green manure rotation alters the endophytic bacterial communities of the rice root[J]. Microbial Ecology, 2013, 66: 917–926. doi: 10.1007/s00248-013-0293-1 [92] Levy-Booth D J, Prescott C E, Grayston S J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems[J]. Soil Biology & Biochemistry, 2014, 75: 11–25. [93] Wang J, Zhuang S, Zhu Z. Soil organic nitrogen composition and mineralization of paddy soils in a cultivation chronosequence in China[J]. Journal of Soils and Sediments, 2017, 17: 1588–1598. doi: 10.1007/s11368-016-1629-5 [94] Cai S, Pittelkow C M, Zhao X, et al. Winter legume-rice rotations can reduce nitrogen pollution and carbon footprint while maintaining net ecosystem economic benefits[J]. Journal of Cleaner Production, 2018, 19: 289–300. [95] Singh Y, Singh B, Timsina J. Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the tropics[J]. Advances in Agronomy, 2005: 269–407. [96] 杨璐. 紫云英种植及与稻草协同利用的减肥效应和紫云英固氮调控机制[D]. 北京: 中国农业科学院博士学位论文, 2019. Yang L. Effects of Chinese milk vetch planting and co-incorporation with rice straw on fertilizer reduction and their regulating mechanisms of biological nitrogen fixation[D]. Beijing: PhD Dissertation of Chinese Academy of Agricultural Sciences, 2019. [97] 杨璐, 曾闹华, 白金顺, 等. 紫云英季土壤固氮微生物对外源碳氮投入的响应[J]. 中国农业科学, 2020, 53(1): 105–116. Yang L, Zeng N H, Bai J S, et al. Responses of soil diazotroph community to rice straw, glucose and nitrogen addition during Chinese milk vetch growth[J]. Scientia Agricultura Sinica, 2020, 53(1): 105–116. doi: 10.3864/j.issn.0578-1752.2020.01.010 [98] 王艳秋, 高嵩涓, 曹卫东, 等. 多年冬种紫云英对两种典型双季稻田土壤肥力及硝化特征的影响[J]. 草业学报, 2017, 26(2): 180–189. Wang Y Q, Gao S J, Cao W D, et al. Fertility and nitrification characteristics of two typical paddy soils after application of milk vetch (Astragalus sinicus) for 8 years[J]. Acta Prataculturae Sinica, 2017, 26(2): 180–189. doi: 10.11686/cyxb2016281 [99] Gao S J, Cao W D, Zou C Q, et al. Ammonia-oxidizing archaea are more sensitive than ammonia-oxidizing bacteria to long-term application of green manure in red paddy soil[J]. Applied Soil Ecology, 2018, (124): 185–193. -