• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稻草紫云英联合还田下不同氮肥施用量对水稻产量和土壤氮素形态的影响

朱强 张静 郭再华 耿明建

引用本文:
Citation:

稻草紫云英联合还田下不同氮肥施用量对水稻产量和土壤氮素形态的影响

    作者简介: 朱强E-mail:zhuqiang@mail.hzau.edu.cn;
    通讯作者: 耿明建, E-mail:mjgeng@mail.hzau.edu.cn
  • 基金项目: 国家绿肥产业技术体系 (CARS-22);公益性行业 (农业) 科研专项经费项目 (201503122)

Effect of different nitrogen inputs on rice yield and soil organic N componants under combining incorporation of rice straw and Chinese milk vetch

    Corresponding author: GENG Ming-jian, E-mail:mjgeng@mail.hzau.edu.cn
  • 摘要:   【目的】  紫云英和稻草还田,其有机成分的分解和释放具有互补性。本文研究了紫云英和稻草联合还田条件下适宜的施氮水平,为稻田绿肥/稻草联合还田后养分管理技术的优化提供依据。  【方法】  两年定位试验位于江汉平原稻区,在稻草全量还田基础上,设置冬季种植并翻压紫云英和冬闲两种模式。水稻季氮肥处理设不施氮 (N0) 和常量施肥量 (N 165 kg/hm2) 的50% (N0)、100% (N100) 和150% (N150) 共4个水平,以不施氮、冬闲和稻草不还田作为空白对照,共9个处理。观测水稻籽粒产量、氮含量及累积量,分析耕层土壤无机氮及有机氮组分。  【结果】  在稻草和紫云英联合还田条件下,减少常规氮肥量的50% (SMN50) 获得的稻谷产量较稻草单独还田的SN50处理高21%~23%,与联合还田或稻草单独还田下的SMN100、SMN150、SN100、SN150处理之间没有显著差异。稻草和紫云英联合还田的SMN0、SMN50、SMN100处理的稻谷氮累积量均显著高于对应的稻草单独还田处理 (SN0、SN50、SN100),增幅分别为65%、27%和22%。水稻收获后各处理间土壤全氮、非酸解性氮含量差异不显著,酸解性氮含量有差异,在N150处理下,稻草单独还田处理 (SN150) 的土壤酸解性氮含量显著高于稻草和紫云英联合还田处理 (SMN150);在酸解性氮组分中,SN150处理的未知酸解态氮成分的含量显著高于稻草单独还田的其他处理和所有稻草和紫云英联合还田处理。  【结论】  稻草全量还田条件下,与紫云英联合还田并减少常规施氮量的50%,可以增加水稻氮素吸收利用、提高水稻产量,而保持常规施氮量和提高施氮量并不能增加水稻的氮素吸收和产量。紫云英与稻草联合还田可以改善土壤氮素的有效性,特别是可以显著降低高施氮量下稻草单独还田带来的酸解性氮组分中的未知态氮的残留量,提高土壤氮素的有效性。
  • 图 1  不同施氮水平下稻草及紫云英还田对稻谷产量的影响

    Figure 1.  Effects of combining incorporation of rice straw and Chinese milk vetch on rice grain yield under different nitrogen application rates in 2016 and 2017

    图 2  不同施氮水平下稻草及紫云英还田对土壤硝态氮和铵态氮含量的影响

    Figure 2.  Effects of combining incorporation of rice straw and Chinese milk vetch on soil NO3-N and NH4+-N concentrations under different nitrogen application rates

    表 1  2017年各处理稻草和紫云英还田带入的养分量以及总养分投入量 (kg/hm2)

    Table 1.  Nutrients amount from the incorporation of rice straw and Chinese milk vetch (CMV) and the total nutrient input in each treatment in 2017

    处理
    Treatment
    化肥 Chemical fertilizer稻草 Rice straw紫云英 CMV总投入量 Total input
    NP2O5K2ONP2O5K2ONNP2O5K2O
    N060.090.060.090.0
    SN060.090.031.07.2137.531.067.2227.5
    SN5082.560.090.041.09.5181.8123.569.5271.8
    SN100165.060.090.048.211.1213.5213.271.1303.5
    SN150247.560.090.044.610.3197.7292.170.3287.7
    SMN060.090.039.09.0173.092.3131.369.0263.0
    SMN5082.560.090.050.411.6223.191.5224.471.6313.1
    SMN100165.060.090.052.212.0231.2107.6324.872.0321.2
    SMN150247.560.090.049.211.4218.097.3394.071.4308.0
    注(Note):处理代码中, 大写字母 S 表示稻草还田, SM 表示稻草和紫云英联合还田 In the treatment codes, the capital letter S represents straw returning, and SM indicates combining incorporation of straw and Chinese milk vetch; 由于紫云英季未施肥, 翻压紫云英带入的养分仅为根瘤固氮量, 固氮率按 66% 计算[9], 其他养分投入看作土壤内部的养分循环 Without any fertilizer application in growing CMV, the nutrient input by the incorporation of CMV was only the biological N fixation with fixation rate of 66%. Other nutrients added by CMV were considered as the nutrient inter-cycle in the soil.
    下载: 导出CSV

    表 2  不同施氮水平下稻草及紫云英还田对水稻氮含量、累积量及氮素利用率的影响

    Table 2.  Effects of combining incorporation of rice straw and Chinese milk vetch on rice nitrogen (N) concentration,accumulation and recovery efficiency under different N application rates

    处理
    Treatment
    稻谷 Rice grain稻草 Rice straw氮肥回收率 (%)
    N fertilizer recovery
    efficiency
    总氮回收率 (%)
    Total N recovery
    efficiency
    氮含量 (%)
    N concentration
    氮累积量 (kg/hm2)
    N accumulation
    氮含量 (%)
    N concentration
    氮累积量 (kg/hm2)
    N accumulation
    N00.80 ± 0.04 e42.1 ± 3.8 e0.47 ± 0.03 d27.8 ± 1.6 d
    SN00.85 ± 0.04 de36.2 ± 2.0 e0.57 ± 0.04 bcd28.0 ± 2.1 d
    SN500.98 ± 0.03 bcd62.6 ± 3.5 d0.67 ± 0.05 abc48.9 ± 10.0 bcd57.3 ± 10.8 a33.6 ± 5.9 a
    SN1000.97 ± 0.04 bcd73.8 ± 1.6 cd0.55 ± 0.06 cd47.9 ± 10.8 bcd34.9 ± 5.7 b24.3 ± 3.3 bc
    SN1501.26 ± 0.04 a95.1 ± 6.6 a0.70 ± 0.06 abc53.7 ± 3.4 bc34.2 ± 1.1 b27.0 ± 1.2 ab
    SMN00.91 ± 0.03 cde59.7 ± 4.4 d0.55 ± 0.02 cd33.8 ± 4.0 cd17.9 ± 1.8 c
    SMN501.03 ± 0.04 bc79.3 ± 3.6 bc0.62 ± 0.03 abcd46.2 ± 3.9 bcd38.8 ± 0.6 b24.7 ± 1.0 bc
    SMN1001.11 ± 0.09 b90.3 ± 10.7 ab0.73 ± 0.1 ab61.4 ± 9.8 ab35.3 ± 8.3 b25.2 ± 4.8 bc
    SMN1501.28 ± 0.06 a104.3 ± 0.7 a0.76 ± 0.06 a78.4 ± 3.7 a36.0 ± 1.9 b28.6 ± 0.8 ab
    注(Note):处理代码中, 大写字母S表示稻草还田, SM表示稻草和紫云英联合还田 In the treatment codes, the capital letter S represents straw returning, and SM indicates combining incorporation of straw and Chinese milk vetch; 数据后不同小写字母表示不同处理间在 5% 水平上差异显著 Different lower case letters indicate significant differences among treatments at the 5% level.
    下载: 导出CSV

    表 3  稻草及紫云英还田配施不同水平氮肥下土壤全氮、酸解性氮和非酸解性氮的含量 (mg/kg)

    Table 3.  Concentrations of soil total N,acid-hydrolysable N (AHN) and non-acid-hydrolysable N (NAHN) applied with different nitrogen rates under combining incorporation of rice straw and Chinese milk vetch

    处理 Treatment全氮 Total N酸解性氮 AHN非酸解性氮 NAHN
    N01972 ± 236 a530 ± 44 bc1442 ± 214 a
    SN01568 ± 41 a464 ± 69 c1104 ± 80 a
    SN502101 ± 90 a566 ± 5 ab1535 ± 86 a
    SN1001890 ± 109 a530 ± 22 bc1360 ± 123 a
    SN1501965 ± 48 a629 ± 25 a1335 ± 50 a
    SMN01865 ± 259 a527 ± 21 bc1338 ± 259 a
    SMN502266 ± 228 a474 ± 6 bc1792 ± 225 a
    SMN1001962 ± 53 a516 ± 29 bc1445 ± 67 a
    SMN1502240 ± 123 a513 ± 21 bc1728 ± 142 a
    注(Note):处理代码中, 大写字母 S 表示稻草还田, SM 表示稻草和紫云英联合还田 In the treatment codes, the capital letter S represents straw returning, and SM indicates combining incorporation of straw and Chinese milk vetch; 数据后不同小写字母表示不同处理间在 5% 水平上差异显著 Values followed by different lower case letters indicate significant differences among treatments at the 5% level.
    下载: 导出CSV

    表 4  稻草及紫云英还田配施不同水平氮肥下土壤酸解有机氮组分的含量 (mg/kg)

    Table 4.  Concentrations of soil acid-hydrolysable nitrogen components applied with different nitrogen rates under combining incorporation of rice straw and Chinese milk vetch

    处理
    Treatment
    铵态氮
    Ammonium N
    氨基酸氮
    Amino acid N
    氨基糖氮
    Amino sugar N
    未知酸解态氮
    Acid-hydrolysable unidentified N
    N0205 ± 12 a85 ± 6 a186 ± 42 a54 ± 17 bc
    SN0254 ± 32 a82 ± 9 a112 ± 3 bc17 ± 3 d
    SN50291 ± 16 a72 ± 4 a173 ± 15 ab30 ± 10 bcd
    SN100251 ± 23 a87 ± 0.5 a181 ± 3 a10 ± 2 d
    SN150291 ± 44 a85 ± 9 a94 ± 2 c159 ± 18 a
    SMN0272 ± 11 a80 ± 4 a150 ± 5 abc25 ± 17 bcd
    SMN50237 ± 13 a62 ± 6 a159 ± 16 ab16 ± 5 d
    SMN100230 ± 11 a67 ± 3 a159 ± 25 ab60 ± 3 b
    SMN150258 ± 22 a77 ± 6 a153 ± 10 abc24 ± 7 cd
    注(Note):处理代码中, 大写字母 S 表示稻草还田, SM 表示稻草和紫云英联合还田 In the treatment codes, the capital letter S represents straw returning, and SM indicates combining incorporation of straw and Chinese milk vetch; 数据后不同小写字母表示不同处理间在 5% 水平上差异显著 Values followed by different lower case letters indicate significant differences among treatments at the 5% level.
    下载: 导出CSV
  • [1] 王玄德, 石孝均, 宋光煜. 长期稻草还田对紫色水稻土肥力和生产力的影响[J]. 植物营养与肥料学报, 2005, 11(3): 302–307. Wang X D, Shi X J, Song G Y. Effects of longterm rice straw returning on the fertility and productivity of purplish paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2005, 11(3): 302–307. doi:  10.3321/j.issn:1008-505X.2005.03.003
    [2] 吴建富, 曾研华, 潘晓华, 等. 稻草还田方式对双季水稻产量和土壤碳库管理指数的影响[J]. 应用生态学报, 2013, 24(6): 1572–1578. Wu J F, Zeng Y H, Pan X H, et al. Effects of rice straw returning mode on rice grain yield and soil carbon pool management index in double rice-cropping system[J]. Chinese Journal of Applied Ecology, 2013, 24(6): 1572–1578.
    [3] 刘智杰, 黄丽, 李峰, 等. 秸秆还田对水稻土黏土矿物组成和钾素释放的影响[J]. 土壤通报, 2018, 49(6): 1390–1396.

    Liu Z J, Huang L, Li F, et al. Effects of straw returning on clay mineral composition and potassium release in paddy soils[J]. Chinese Journal of Soil Science, 2018, 49(6): 1390–1396.
    [4] 田卡, 张丽, 钟旭华, 等. 稻草还田和冬种绿肥对华南双季稻产量及稻田CH4排放的影响[J]. 农业环境科学学报, 2015, 34(3): 592–598. Tian K, Zhang L, Zhong X H, et al. Effects of rice straw and winter green manure incorporations on grain yields and methane emissions of double-season rice (Oryza sativa) field in south China[J]. Journal of Agro-Environment Science, 2015, 34(3): 592–598. doi:  10.11654/jaes.2015.03.024
    [5] 王忍, 黄璜, 伍佳, 等. 稻草还田对土壤养分及水稻生物量和产量的影响[J]. 作物研究, 2020, 34(1): 8–15. Wang R, Huang H, Wu J, et al. Effects of rice straw returning on soil nutrients, rice biomass and yield[J]. Crop Research, 2020, 34(1): 8–15.
    [6] 王慧, 唐杉, 武际, 等. 紫云英翻压条件下氮肥运筹对双季稻产量和肥料利用率的影响[J]. 农业资源与环境学报, 2018, 35(4): 327–333. Wang H, Tang S, Wu J, et al. Effects of nitrogen managements with incorporation of Chinese milk vetch on the yield of double cropping rice and fertilizer use efficiency[J]. Journal of Agricultural Resources and Environment, 2018, 35(4): 327–333.
    [7] 周国朋, 谢志坚, 曹卫东, 等. 稻草高茬—紫云英联合还田改善土壤肥力提高作物产量[J]. 农业工程学报, 2017, 33(23): 157–163. Zhou G P, Xie Z J, Cao W D, et al. Co-incorporation of high rice stubble and Chinese milk vetch improving soil fertility and yield of rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 157–163. doi:  10.11975/j.issn.1002-6819.2017.23.020
    [8] 沈亚强, 程旺大, 张红梅. 绿肥及秸秆还田对水稻生长和产量的影响[J]. 中国稻米, 2011, 17(4): 27–29. Shen Y Q, Cheng W D, Zhang H M. Effect of incorporation of green manure and straw on the growth and yield of rice[J]. China Rice, 2011, 17(4): 27–29. doi:  10.3969/j.issn.1006-8082.2011.04.007
    [9] 赖涛, 李茶苟, 黄庆海, 等. 红壤性水稻土紫云英有机氮素形成特征的研究[J]. 江西农业学报, 2002, 14(2): 14–18. Lai T, Li C G, Huang Q H, et al. Study on sources of organic nitrogen in Chinese milk vetch on red paddy soil[J]. Acta Agriculturae Jiangxi, 2002, 14(2): 14–18. doi:  10.3969/j.issn.1001-8581.2002.02.003
    [10] 鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2008. 265–271.

    Bao S D. Soil and agricultural chemistry analysis (3rd edition)[M]. Beijing: China Agriculture Press, 2008. 265–271.
    [11] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    Lu R K. Soil and agricultural chemistry analysis method[M]. Beijing: China Agricultural Science and Technology Press, 2000.
    [12] Bremner J M. Organic forms of nitrogen. Klute E A, Black C A. Methods of soil analysis[M]. Madison Wisconsin: American Society of Agronomy, 1965.1238–1255.
    [13] 徐明岗, 李冬初, 李菊梅, 等. 化肥有机肥配施对水稻养分吸收和产量的影响[J]. 中国农业科学, 2008, 41(10): 3133–3139. Xu M G, Li D C, Li J M, et al. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China[J]. Scientia Agricultura Sinica, 2008, 41(10): 3133–3139. doi:  10.3864/j.issn.0578-1752.2008.10.029
    [14] 彭娜, 王开峰. 有机肥化肥长期配合施用对稻田土壤团聚性的影响[J]. 江苏农业科学, 2009, (4): 326–328. Peng N, Wang K F. Effect of long term application of manure and fertilizer on soil aggregates[J]. Jiangsu Agricultural Sciences, 2009, (4): 326–328. doi:  10.3969/j.issn.1002-1302.2009.04.133
    [15] 连泽晨. 绿肥和秸秆还田对水稻产量、养分吸收及土壤肥力的影响[D]. 武汉: 华中农业大学硕士学位论文, 2016.

    Lian Z C. Effect of green manure and straw incorporation on rice yield, nutrient uptake and soil fertility[D]. Wuhan: MS Thesis of Huazhong AgriculturalUniversiyt, 2016.
    [16] 王秀斌, 徐新朋, 孙刚, 等. 氮肥用量对双季稻产量和氮肥利用率的影响[J]. 植物营养与肥料学报, 2013, 19(6): 1279–1286. Wang X B, Xu X B, Sun G, et al. Effects of nitrogen fertilization on grain yield and nitrogen use efficiency of double cropping rice[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(6): 1279–1286. doi:  10.11674/zwyf.2013.0601
    [17] 席莹莹. 绿肥种类和种植方式对水稻产量、养分吸收及土壤肥力的影响[D]. 武汉: 华中农业大学硕士学位论文, 2014.

    Xi Y Y. Effect of green manure species and planting methods on on rice yield, nutrient uptake and soil fertility[D]. Wuhan: MS Thesis of Huazhong Agricultural Universiyt, 2014.
    [18] 姜慧敏, 李树山, 张建峰, 等. 外源化肥氮素在土壤有机氮库中的转化及关系[J]. 植物营养与肥料学报, 2014, 20(6): 1421–1430. Jiang H M, Li S S, Zhang J F, et al. Transformation of external chemical nitrogen in soil organic nitrogen fractions and their relationship[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(6): 1421–1430. doi:  10.11674/zwyf.2014.0612
    [19] 宗海英, 王凯荣, 谢小立. 长期施肥对红壤性水稻土有机氮组分的影响[J]. 应用生态学报, 2008, 19(8): 1721–1726. Zong H Y, Wang K R, Xie X L. Effects of long-term fertilization on soil organic nitrogen components in paddy soil derived from red earth[J]. Chinese Journal of Applied Ecolog, 2008, 19(8): 1721–1726.
    [20] Zhao X, Wang S Q, Xing G X. Maintaining rice yield and reducing N pollution by substituting winter legume for wheat in a heavily-fertilized rice-based cropping system of southeast China[J]. Agriculture, Ecosystems and Environment, 2015, 202: 79–89.
    [21] Morvan T, Nicolardot B. Role of organic fractions on C decomposition and N mineralization of animal wastes in soil[J]. Biology and Fertility of Soils, 2009, 45(5): 477–486.
  • [1] 侯云鹏孔丽丽尹彩侠李前王立春徐新朋 . 覆膜滴灌下氮肥与种植密度互作对东北春玉米产量、群体养分吸收与转运的调控效应. 植物营养与肥料学报, doi: 10.11674/zwyf.20233
    [2] 张凯凯陈慧杰赵佳淼江泾管志勇房伟民陈发棣赵爽 . 稻草还田对设施切花菊品质及连作土壤养分的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.18209
    [3] 霍文敏邹茸王丽迟克宇范洪黎 . 不同氮肥水平下玉米与龙葵竞争吸收镉的差异性研究. 植物营养与肥料学报, doi: 10.11674/zwyf.18101
    [4] 王震李金秀张彬冯浩李金榜 . 小麦玉米一体化氮肥运筹对小麦产量和氮素利用的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.17274
    [5] 刘波魏全全鲁剑巍李小坤丛日环吴礼树徐维明杨运清任涛 . 苗期渍水和氮肥用量对直播冬油菜产量及氮肥利用率的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.16047
    [6] 宋大利习向银黄绍敏张水清袁秀梅黄伏森刘阳王秀斌 . 秸秆生物炭配施氮肥对潮土土壤碳氮含量及作物产量的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.16399
    [7] 曾研华范呈根吴建富曾勇军周春火谭雪明潘晓华石庆华 . 等养分条件下稻草还田替代双季早稻氮钾肥比例的研究. 植物营养与肥料学报, doi: 10.11674/zwyf.16297
    [8] 张刚王德建俞元春王灿庄锦贵 . 秸秆全量还田与氮肥用量对水稻产量、 氮肥利用率及氮素损失的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.15169
    [9] 徐新朋周卫梁国庆孙静文王秀斌何萍徐芳森余喜初 . 氮肥用量和密度对双季稻产量及氮肥利用率的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2015.0324
    [10] 王姗娜黄庆海徐明岗段英华柳开楼 . 长期不同施肥条件下红壤性水稻土双季稻氮肥回收率的变化特征. 植物营养与肥料学报, doi: 10.11674/zwyf.2013.0204
    [11] 刘大会朱端卫郭兰萍刘伟左智天金航杨雁 . 氮肥用量对药用菊花生长及其药用品质的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2012.11175
    [12] 单鹤翔卢昌艾张金涛王金洲徐明岗 . 不同肥力土壤下施氮与玉米秸秆还田对冬小麦氮素吸收利用的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2012.11227
    [13] 苏伟鲁剑巍周广生李小坤李云春刘晓伟 . 稻草还田对油菜生长、土壤温度及湿度的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2011.0287
    [14] 段英华徐明岗*王伯仁黄晶 . 红壤长期不同施肥对玉米氮肥回收率的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2010.0510
    [15] 谷永丽杨恒山刘艳红张瑞富梁怀宇 . 不同氮肥用量对绿芦笋产量及营养品质的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2009.0321
    [16] 李虹儒许景钢徐明岗李淑芹张文菊高静 . 我国典型农田长期施肥小麦氮肥回收率的变化特征 . 植物营养与肥料学报, doi: 10.11674/zwyf.2009.0213
    [17] 陈竹君王益权许安民张立波周建斌 . 施用不同种类氮肥对日光温室土壤溶液离子组成的影响 . 植物营养与肥料学报, doi: 10.11674/zwyf.2008.0514
    [18] 王胜佳陈义王家玉赵秉强张夫道 . 应用15N示踪技术研究化肥和稻草氮的长期利用效率. 植物营养与肥料学报,
    [19] 王朝辉李生秀田霄鸿 . 不同氮肥用量对蔬菜硝态氮累积的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.1998.0104
    [20] 张维理田哲旭张宁李晓齐 . 我国北方农用氮肥造成地下水硝酸盐污染的调查. 植物营养与肥料学报, doi: 10.11674/zwyf.1995.0212
  • 加载中
WeChat 点击查看大图
图(2)表(4)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10

稻草紫云英联合还田下不同氮肥施用量对水稻产量和土壤氮素形态的影响

  • 基金项目: 国家绿肥产业技术体系 (CARS-22);公益性行业 (农业) 科研专项经费项目 (201503122)
  • 摘要:   【目的】  紫云英和稻草还田,其有机成分的分解和释放具有互补性。本文研究了紫云英和稻草联合还田条件下适宜的施氮水平,为稻田绿肥/稻草联合还田后养分管理技术的优化提供依据。  【方法】  两年定位试验位于江汉平原稻区,在稻草全量还田基础上,设置冬季种植并翻压紫云英和冬闲两种模式。水稻季氮肥处理设不施氮 (N0) 和常量施肥量 (N 165 kg/hm2) 的50% (N0)、100% (N100) 和150% (N150) 共4个水平,以不施氮、冬闲和稻草不还田作为空白对照,共9个处理。观测水稻籽粒产量、氮含量及累积量,分析耕层土壤无机氮及有机氮组分。  【结果】  在稻草和紫云英联合还田条件下,减少常规氮肥量的50% (SMN50) 获得的稻谷产量较稻草单独还田的SN50处理高21%~23%,与联合还田或稻草单独还田下的SMN100、SMN150、SN100、SN150处理之间没有显著差异。稻草和紫云英联合还田的SMN0、SMN50、SMN100处理的稻谷氮累积量均显著高于对应的稻草单独还田处理 (SN0、SN50、SN100),增幅分别为65%、27%和22%。水稻收获后各处理间土壤全氮、非酸解性氮含量差异不显著,酸解性氮含量有差异,在N150处理下,稻草单独还田处理 (SN150) 的土壤酸解性氮含量显著高于稻草和紫云英联合还田处理 (SMN150);在酸解性氮组分中,SN150处理的未知酸解态氮成分的含量显著高于稻草单独还田的其他处理和所有稻草和紫云英联合还田处理。  【结论】  稻草全量还田条件下,与紫云英联合还田并减少常规施氮量的50%,可以增加水稻氮素吸收利用、提高水稻产量,而保持常规施氮量和提高施氮量并不能增加水稻的氮素吸收和产量。紫云英与稻草联合还田可以改善土壤氮素的有效性,特别是可以显著降低高施氮量下稻草单独还田带来的酸解性氮组分中的未知态氮的残留量,提高土壤氮素的有效性。

    English Abstract

    • 稻草还田可以有效增加土壤有机质含量,减少土壤养分流失,是当前稻草资源合理利用的主要途径[1-3],但稻草碳氮比值和木质素含量高,在土壤中分解缓慢,供氮性能较差。稻草还田初期会促进土壤微生物对无机氮的固定,导致与作物争氮,并增加稻田甲烷的排放量[4-5]。紫云英通过生物固氮、轮作倒茬等功能在化肥农药减量施用方面发挥重要作用[6-7],其碳氮比值、木质素含量较低,供氮能力强,腐解速度和腐解率均较高。稻田中翻压紫云英与稻草还田技术联合应用,利用两种有机物料的成分互补特性,协调还田物质的碳氮比值,具有提高稻田培肥效率、增加土壤供肥保肥性的潜力。沈亚强等[8]的研究结果表明,紫云英与稻草配合还田,要比二者单独还田更能使水稻稳产增产,但翻压紫云英如何调控稻草还田模式下土壤的供氮能力仍待进一步探讨。本研究采用田间定位试验,研究紫云英种植利用配施不同数量氮肥对稻草还田下水稻产量、氮素吸收以及土壤氮素形态的影响,探讨其对氮肥低量和过量施用的调控效应,通过分析两者的配合效应,以期进一步完善以“碳氮互济”为核心的稻田绿肥/稻草联合还田措施的技术参数和理论体系,更好地服务于我国农业绿色发展。

      • 田间试验在湖北省荆州市荆州区太湖管理区新风大队罗台队进行 (N30°22′1″,E112°2′57″,海拔44.6 m),当地年平均气温16.3℃、降水量1200 mm,近年来的习惯种植模式为单季中稻-冬闲。供试土壤为长江冲积母质发育的水稻土,耕层 (20 cm) 土壤pH为7.6、有机质22 g/kg、全氮2.0 g/kg、速效磷11 mg/kg、速效钾156 mg/kg。

      • 定位试验于2015年9月开始,设置9个处理:1) 稻草不还田 + 冬闲 + 不施氮肥 (N0);2) 稻草还田 + 冬闲 + 不施氮肥 (SN0);3) 稻草还田 + 冬闲 + 50%常量氮肥 (SN50);4) 稻草还田 + 冬闲 + 常量氮肥 (SN100);5) 稻草还田 + 冬闲 + 150%常量氮肥 (SN150);6) 稻草还田 + 紫云英 + 不施氮肥 (SMN0);7) 稻草还田 + 紫云英 + 50%常量氮肥 (SMN50);8) 稻草还田 + 紫云英 + 常量氮肥 (SMN100);9) 稻草还田 + 紫云英 + 150%常量氮肥 (SMN150)。

        每个处理重复3次,采用随机区组排列,小区面积为20 m2 (4 m × 5 m),各小区间用宽30 cm、高30 cm的田埂隔开。水稻收获后,先对紫云英种植处理撒播紫云英 (弋江种) 30 kg/hm2,然后,稻草还田的处理将脱粒后的稻草全部原地覆盖于地表。紫云英生长期间各处理均不施肥,在盛花期 (4月20日前后) 原地翻压还田。2017年各处理因翻压紫云英或稻草还田投入的养分量见表1。紫云英还田30天后,水稻插秧 (品种为黄华占),秧苗行距为25 cm、株距为20 cm。水稻季常量施肥量为N 165 kg/hm2、P2O5 60 kg/hm2、K2O 90 kg/hm2,供试化肥分别为尿素 (N 46%)、过磷酸钙 (P2O5 12%) 和氯化钾 (K2O 60%)。氮肥的70%作基肥,20%作分蘖肥,10%作粒肥,磷、钾肥全部作基肥施用。

        表 1  2017年各处理稻草和紫云英还田带入的养分量以及总养分投入量 (kg/hm2)

        Table 1.  Nutrients amount from the incorporation of rice straw and Chinese milk vetch (CMV) and the total nutrient input in each treatment in 2017

        处理
        Treatment
        化肥 Chemical fertilizer稻草 Rice straw紫云英 CMV总投入量 Total input
        NP2O5K2ONP2O5K2ONNP2O5K2O
        N060.090.060.090.0
        SN060.090.031.07.2137.531.067.2227.5
        SN5082.560.090.041.09.5181.8123.569.5271.8
        SN100165.060.090.048.211.1213.5213.271.1303.5
        SN150247.560.090.044.610.3197.7292.170.3287.7
        SMN060.090.039.09.0173.092.3131.369.0263.0
        SMN5082.560.090.050.411.6223.191.5224.471.6313.1
        SMN100165.060.090.052.212.0231.2107.6324.872.0321.2
        SMN150247.560.090.049.211.4218.097.3394.071.4308.0
        注(Note):处理代码中, 大写字母 S 表示稻草还田, SM 表示稻草和紫云英联合还田 In the treatment codes, the capital letter S represents straw returning, and SM indicates combining incorporation of straw and Chinese milk vetch; 由于紫云英季未施肥, 翻压紫云英带入的养分仅为根瘤固氮量, 固氮率按 66% 计算[9], 其他养分投入看作土壤内部的养分循环 Without any fertilizer application in growing CMV, the nutrient input by the incorporation of CMV was only the biological N fixation with fixation rate of 66%. Other nutrients added by CMV were considered as the nutrient inter-cycle in the soil.
      • 水稻收获时,各小区水稻全部收割,风干后测定稻谷、稻草重量,并在每小区取6穴稻谷、稻草样品用于测定氮磷钾养分含量。2017年水稻收获后采集耕层 (0—20 cm) 土壤样品,每小区取5个样点混匀,其中一部分鲜土 (保存在4℃冰箱中) 用于测定土壤硝态氮、铵态氮含量,剩余土壤风干研磨后过150 μm筛,用于测定土壤全氮和有机态氮组分。

      • 植物样品经H2SO4-H2O2消煮后,用半微量开氏法测定氮含量[10]。土壤硝态氮、铵态氮经2 mol/L KCl浸提 (液土比5∶1),分别采用酚二磺酸比色法、靛酚兰比色法测定[11]。土壤全氮采用开氏定氮法测定。土壤有机氮组分按照Bremner[12]酸解法分级,称取10.0 g过150 μm风干土样与20 mL 6 mol/L HCl混匀,进行回流酸解12 h后,分别采用水蒸汽蒸馏—凯氏定氮法测定酸解性全氮;采用MgO-蒸汽蒸馏法测定酸解铵态氮;采用柠檬酸-茚三酮氧化、磷酸盐-硼酸盐缓冲溶液水蒸汽蒸馏法测定氨基酸态氮;采用磷酸盐-硼酸盐缓冲溶液 (pH 11.2) 水蒸汽蒸馏法测定铵及氨基糖氮总含量,采用差减法计算氨基糖氮、未知酸解态氮和非酸解性全氮[11]

      • 稻谷或稻草氮累积量 (kg/hm2) = 干物质量 (kg/hm2) × 氮含量 (%)。

        氮肥当季回收率 (%) = (施氮肥处理的氮累积总量 – 相同还田模式下不施氮肥处理的氮累积总量) / 施氮量 × 100。

        总氮回收率 (%) = (添加氮素处理的氮累积总量 – 未添加氮素处理 (N0) 的氮累积总量) / 总氮投入量 × 100。

        试验数据采用 SAS 9.4软件进行方差分析,并经Duncan多重比较检验P < 0.05水平上的差异显著性。

      • SN0和N0处理的稻谷产量在两年内均没有显著差异 (图1)。SMN0处理的稻谷产量在2016年显著高于N0处理,但与SN0处理之间差异不显著,而在2017年,其产量显著高于SN0和N0处理。SMN50处理的稻谷产量较SN50处理高21%~23%,在2017年达到显著水平,而在两年内,SMN50处理与N100、N150施氮量下的联合还田或稻草单独还田处理之间差异均不显著。

        图  1  不同施氮水平下稻草及紫云英还田对稻谷产量的影响

        Figure 1.  Effects of combining incorporation of rice straw and Chinese milk vetch on rice grain yield under different nitrogen application rates in 2016 and 2017

      • 相同的施氮水平下,稻草和紫云英联合还田与稻草单独还田处理相比,稻谷的氮含量没有显著差异,除N100处理外,稻草的氮含量也没有显著差异 (表2)。施氮量为N0、N50、N100时,联合还田处理的稻谷氮累积量均显著高于稻草单独还田处理,增幅分别为65%、27%和22%。施氮量为N100时,稻草和紫云英联合还田处理的稻谷氮累积量与SN150和SMN150处理之间差异不显著。不施氮肥的条件下,无论稻草和紫云英联合还田还是稻草单独还田处理,均未对稻草氮累积量产生显著影响。施氮量为N50和N100时,联合还田与单独还田处理下的稻草氮累积量仍没有显著差异,但当施氮量为N150时,联合还田处理的稻草氮累积量显著高于稻草单独还田处理。

        表 2  不同施氮水平下稻草及紫云英还田对水稻氮含量、累积量及氮素利用率的影响

        Table 2.  Effects of combining incorporation of rice straw and Chinese milk vetch on rice nitrogen (N) concentration,accumulation and recovery efficiency under different N application rates

        处理
        Treatment
        稻谷 Rice grain稻草 Rice straw氮肥回收率 (%)
        N fertilizer recovery
        efficiency
        总氮回收率 (%)
        Total N recovery
        efficiency
        氮含量 (%)
        N concentration
        氮累积量 (kg/hm2)
        N accumulation
        氮含量 (%)
        N concentration
        氮累积量 (kg/hm2)
        N accumulation
        N00.80 ± 0.04 e42.1 ± 3.8 e0.47 ± 0.03 d27.8 ± 1.6 d
        SN00.85 ± 0.04 de36.2 ± 2.0 e0.57 ± 0.04 bcd28.0 ± 2.1 d
        SN500.98 ± 0.03 bcd62.6 ± 3.5 d0.67 ± 0.05 abc48.9 ± 10.0 bcd57.3 ± 10.8 a33.6 ± 5.9 a
        SN1000.97 ± 0.04 bcd73.8 ± 1.6 cd0.55 ± 0.06 cd47.9 ± 10.8 bcd34.9 ± 5.7 b24.3 ± 3.3 bc
        SN1501.26 ± 0.04 a95.1 ± 6.6 a0.70 ± 0.06 abc53.7 ± 3.4 bc34.2 ± 1.1 b27.0 ± 1.2 ab
        SMN00.91 ± 0.03 cde59.7 ± 4.4 d0.55 ± 0.02 cd33.8 ± 4.0 cd17.9 ± 1.8 c
        SMN501.03 ± 0.04 bc79.3 ± 3.6 bc0.62 ± 0.03 abcd46.2 ± 3.9 bcd38.8 ± 0.6 b24.7 ± 1.0 bc
        SMN1001.11 ± 0.09 b90.3 ± 10.7 ab0.73 ± 0.1 ab61.4 ± 9.8 ab35.3 ± 8.3 b25.2 ± 4.8 bc
        SMN1501.28 ± 0.06 a104.3 ± 0.7 a0.76 ± 0.06 a78.4 ± 3.7 a36.0 ± 1.9 b28.6 ± 0.8 ab
        注(Note):处理代码中, 大写字母S表示稻草还田, SM表示稻草和紫云英联合还田 In the treatment codes, the capital letter S represents straw returning, and SM indicates combining incorporation of straw and Chinese milk vetch; 数据后不同小写字母表示不同处理间在 5% 水平上差异显著 Different lower case letters indicate significant differences among treatments at the 5% level.

        N50施肥水平下,稻草单独还田处理的氮肥当季回收率显著高于稻草和紫云英联合还田处理 (表2)。SN100、SN150、SMN100、SMN150处理之间的氮肥回收率没有显著差异,平均回收率为35%。由于SN0处理的水稻氮素累积总量低于N0处理,因此SN0处理的总氮回收率为负值,而添加紫云英的SMN0处理的总氮回收率为18%。SN50处理的总氮回收率显著高于SMN50处理,而处理SN100、SN150、SMN100、SMN150之间的总氮回收率依然没有显著差异,平均回收率为26%。

      • 施氮量为N100处理时,稻草单独还田处理的土壤硝态氮含量显著高于稻草和紫云英联合还田处理,而在其他施氮水平下,两种还田模式之间的差异不显著 (图2)。SMN0处理的铵态氮含量显著高于其他处理,从硝态氮和铵态氮两者之和来看,SMN0处理显著高于SN0,在其他施氮水平下两种还田模式之间的差异不显著。

        图  2  不同施氮水平下稻草及紫云英还田对土壤硝态氮和铵态氮含量的影响

        Figure 2.  Effects of combining incorporation of rice straw and Chinese milk vetch on soil NO3-N and NH4+-N concentrations under different nitrogen application rates

        水稻收获后各处理土壤全氮、非酸解性氮含量之间的差异未达到显著水平 (表3)。施氮量为N0、N50、N100时,两种还田模式下的酸解性氮含量差异不显著,但当施氮量为N150时,稻草单独还田处理的酸解性氮含量显著高于稻草和紫云英联合还田处理。稻草和紫云英联合还田模式下,不同施氮量处理之间的酸解性氮含量差异不显著。

        表 3  稻草及紫云英还田配施不同水平氮肥下土壤全氮、酸解性氮和非酸解性氮的含量 (mg/kg)

        Table 3.  Concentrations of soil total N,acid-hydrolysable N (AHN) and non-acid-hydrolysable N (NAHN) applied with different nitrogen rates under combining incorporation of rice straw and Chinese milk vetch

        处理 Treatment全氮 Total N酸解性氮 AHN非酸解性氮 NAHN
        N01972 ± 236 a530 ± 44 bc1442 ± 214 a
        SN01568 ± 41 a464 ± 69 c1104 ± 80 a
        SN502101 ± 90 a566 ± 5 ab1535 ± 86 a
        SN1001890 ± 109 a530 ± 22 bc1360 ± 123 a
        SN1501965 ± 48 a629 ± 25 a1335 ± 50 a
        SMN01865 ± 259 a527 ± 21 bc1338 ± 259 a
        SMN502266 ± 228 a474 ± 6 bc1792 ± 225 a
        SMN1001962 ± 53 a516 ± 29 bc1445 ± 67 a
        SMN1502240 ± 123 a513 ± 21 bc1728 ± 142 a
        注(Note):处理代码中, 大写字母 S 表示稻草还田, SM 表示稻草和紫云英联合还田 In the treatment codes, the capital letter S represents straw returning, and SM indicates combining incorporation of straw and Chinese milk vetch; 数据后不同小写字母表示不同处理间在 5% 水平上差异显著 Values followed by different lower case letters indicate significant differences among treatments at the 5% level.

        土壤酸解氮组分中,酸解铵态氮和氨基酸氮的含量在各处理之间差异不显著 (表4)。当施氮量一致时,两种还田模式下的氨基糖氮含量未受显著影响。SN150处理下的氨基糖氮含量显著低于N0、SN100和SN50处理,而稻草和紫云英联合还田模式下各处理之间的氨基糖氮含量差异不显著。此外,SN150处理的未知酸解态氮的含量显著高于其他处理。

        表 4  稻草及紫云英还田配施不同水平氮肥下土壤酸解有机氮组分的含量 (mg/kg)

        Table 4.  Concentrations of soil acid-hydrolysable nitrogen components applied with different nitrogen rates under combining incorporation of rice straw and Chinese milk vetch

        处理
        Treatment
        铵态氮
        Ammonium N
        氨基酸氮
        Amino acid N
        氨基糖氮
        Amino sugar N
        未知酸解态氮
        Acid-hydrolysable unidentified N
        N0205 ± 12 a85 ± 6 a186 ± 42 a54 ± 17 bc
        SN0254 ± 32 a82 ± 9 a112 ± 3 bc17 ± 3 d
        SN50291 ± 16 a72 ± 4 a173 ± 15 ab30 ± 10 bcd
        SN100251 ± 23 a87 ± 0.5 a181 ± 3 a10 ± 2 d
        SN150291 ± 44 a85 ± 9 a94 ± 2 c159 ± 18 a
        SMN0272 ± 11 a80 ± 4 a150 ± 5 abc25 ± 17 bcd
        SMN50237 ± 13 a62 ± 6 a159 ± 16 ab16 ± 5 d
        SMN100230 ± 11 a67 ± 3 a159 ± 25 ab60 ± 3 b
        SMN150258 ± 22 a77 ± 6 a153 ± 10 abc24 ± 7 cd
        注(Note):处理代码中, 大写字母 S 表示稻草还田, SM 表示稻草和紫云英联合还田 In the treatment codes, the capital letter S represents straw returning, and SM indicates combining incorporation of straw and Chinese milk vetch; 数据后不同小写字母表示不同处理间在 5% 水平上差异显著 Values followed by different lower case letters indicate significant differences among treatments at the 5% level.
      • 有机肥和无机肥配合施用可以提高农作物产量,增加土壤肥力[13-14]。研究表明,在南方稻田中种植紫云英可以替代部分化肥[15]。本试验中,在不添加外源氮肥的情况下,稻草和紫云英联合还田处理的稻谷产量在2017年显著高于稻草单独还田处理,而且水稻收获后,SMN0处理的土壤无机态氮含量显著高于SN0,证实了翻压紫云英可以为水稻生长提供部分氮养分。SMN0处理的铵态氮含量最高,一方面是由于紫云英提供的有机氮的矿化,另一方面该处理下水稻的氮累积量较低,残留了部分氮素。稻草和紫云英联合还田模式下,施氮量为常量的50%时稻谷产量即达到峰值,此时氮养分投入总量 (化肥 + 紫云英固氮 + 稻草) 为N 224 kg/hm2。由此看出虽然氮肥减量50%,但通过翻压紫云英,其有机体经矿化后补充土壤氮源,因此能维持较高的水稻产量,增产效果优于稻草单独还田处理。王秀斌等[16]的试验结果显示,双季稻高产田适宜施氮量为N 240 kg/hm2,之后稻谷产量不随施氮量的增加而有显著变化。本试验与此结论一致,SMN100以及SMN150处理并未因施氮量的增多而增加稻谷产量。

        席莹莹[17]的研究结果显示,翻压紫云英可以显著提高水稻地上部氮养分累积量。本试验结果也表明在施氮量 < 247.5 kg/hm2 (N150) 时,稻草和紫云英联合还田处理的稻谷氮养分累积量高于稻草单独还田处理。由于翻压紫云英提供了部分氮养分,导致SMN50处理的氮肥当季回收率以及总氮回收率低于仅有稻草还田的SN50处理。

        连泽晨[15]在紫云英和稻草还田试验中,发现两者联合还田比稻草单独还田对土壤肥力的提升效果更好。在本试验中,稻草和紫云英联合还田与稻草单独还田处理并未对水稻收获后的土壤全氮含量产生显著影响,说明两年的定位试验不足以影响土壤残余全氮含量。姜慧敏等[18]的试验结果显示,单施氮肥处理将会使土壤中酸解性氮含量有所降低。宗海英等[19]的研究发现紫云英和稻草等有机物料的添加不仅能使土壤中非酸解性氮含量升高,而且还能使酸解性氮的形态构成和含量发生明显的变化。本试验表明,SN150处理的酸解性氮含量显著高于SMN150处理,其中增加的主要组分为未知酸解态氮。土壤酸解性氮组分的变化与土壤微生物区系的变化息息相关[19],稻草和紫云英联合还田处理调控土壤的碳氮比,改变了土壤的微生物区系,从而使土壤氨基糖氮含量维持在较高水平,且不受外源氮肥的影响。紫云英是氮含量极其丰富的一种绿肥,其在盛花期翻压入田,一部分氮素被植物带走或通过其他途径损失后,仍剩余部分氮素,并对后季作物具有一定作用[20]。另外稻草与紫云英联合还田模式促进作物生长,并促进根系分泌物的分泌量和土壤中的残茬量,从而使得土壤微生物量和活性有所增加[21]

      • 江汉平原稻区两年定位试验显示,施氮量为常规用量的50%时,稻草与紫云英联合还田的稻谷产量较稻草单独还田增加21%~23%,随着氮肥用量增加至常量或150%常量时,联合还田处理的稻谷产量并没有显著增加。施氮量为常量的0%、50%、100%时,联合还田处理的稻谷氮累积量较稻草单独还田处理显著提高,增幅达22%~65%。紫云英种植利用对稻草还田条件下水稻收获后土壤全氮、非酸解性氮总量无显著影响,保持土壤氨基糖氮含量相对稳定,并降低150%常量施氮水平下土壤未知酸解态氮含量。稻草还田后种植利用紫云英,可以调控土壤氮素供应能力,增加水稻对氮素的吸收,提高和稳定水稻产量,减少氮肥投入。

    参考文献 (21)
    WeChat 关注分享

    返回顶部

    目录

      /

      返回文章
      返回