• ISSN 1008-505X
  • CN 11-3996/S

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同缓/控释尿素对小麦生长及氮素利用的影响

王茂莹 漆增连 代兴龙 贺明荣 董元杰

引用本文:
Citation:

不同缓/控释尿素对小麦生长及氮素利用的影响

    作者简介: 王茂莹 E-mail:1664256996@qq.com;
    通讯作者: 董元杰, E-mail:yuanjiedong@163.com
  • 基金项目: 国家重点研发计划项目(2017YFD0201705);山东省农业重大应用技术创新项目(SD2019ZZ021)

Effects of different slow/controlled release of urea on wheat growth and nitrogen utilization

    Corresponding author: DONG Yuan-jie, E-mail:yuanjiedong@163.com
  • 摘要:   【目的】   本文通过大田试验筛选了山东省适宜于小麦生长的缓/控释尿素,并初步研究了其氮素高效利用的机制。   【方法】   选用的肥料产品有4种,包括树脂包膜尿素 (PCU)、多肽尿素 (PPU)、脲甲醛尿素 (UF) 和本实验室制备的树脂包膜与脲酶抑制剂结合型控释尿素 (CHQ),以普通尿素和不施氮肥为对照,分别在山东潍坊和泰安进行田间试验,供试小麦品种为‘济麦22号’,普通尿素按1∶1比例基施和追施,缓/控释肥均一次性基施。分析了小麦不同时期的株高和单株分蘖数、花前花后干物质积累与转运、产量及其构成因素、氮肥利用率以及土壤无机氮含量和脲酶活性的变化。   【结果】   施用4种缓/控释尿素均降低了小麦越冬期的土壤脲酶活性,减缓尿素水解,降低土壤无机氮含量;成熟期,在潍坊试验区仅CHQ的土壤无机氮含量高于尿素,在泰安试验点4种缓/控释尿素的土壤无机氮含量均高于尿素,以CHQ的无机氮含量最高,CHQ的土壤无机氮含量在泰安和潍坊2个试验点较尿素分别增加了81.86%和6.20%。与尿素相比,在泰安试验点施用4种缓/控释尿素均可促进小麦生长,提高小麦花前干物质转运与花后干物质生产量,有利于小麦的群体构建和产量形成,增强小麦对氮素的吸收利用能力,提高氮肥利用率,以CHQ表现最优;而在潍坊试验点,仅CHQ肥效优于尿素。CHQ在泰安和潍坊的小麦产量分别为6966.67 kg/hm2和10342.22 kg/hm2,较尿素处理分别增加了38.69%和11.07%;氮素生产效率分别为18.83 kg/kg和26.72 kg/kg,较尿素分别增加了38.66%和11.06%。潍坊试验点小麦产量和氮素生产效率整体高于泰安,CHQ较尿素的增幅也低于泰安试验点。   【结论】   土壤肥力影响缓/控释尿素对小麦的增产效果,在高肥力的壤土 (潍坊) 上,只有既控制尿素释放速度又控制其在土壤中的水解速度的树脂包膜与脲酶抑制剂结合型控释尿素可有效促进小麦生长及其对氮素的吸收利用,在低肥力砂壤土 (泰安) 上,4种缓/控释尿素在小麦生长后期均可维持土壤中较高的氮素供应,肥效均好于普通尿素。综合来讲,在山东省建议优先选择树脂包膜与脲酶抑制剂结合型控释尿素。
  • 图 1  不同缓/控释尿素处理的土壤无机氮含量

    Figure 1.  Soil inorganic nitrogen content treated with different slow/controlled release urea

    图 2  不同缓/控释尿素处理的土壤脲酶活性

    Figure 2.  Soil urease activity treated with different slow/controlled release urea

    表 1  试验区土壤类型及0—20 cm土层基本理化性质

    Table 1.  Soil type and basic physical and chemical properties of 0-20 cm soil layer

    地点
    Location
    土壤类型
    Soil type
    土壤质地
    Soil texture
    有机质 (g/kg)
    SOM
    碱解氮 (mg/kg)
    Available N
    有效磷 (mg/kg)
    Olsen-P
    速效钾 (mg/kg)
    Available K
    pH电导率 (μS/cm)
    Ec
    潍坊 Weifang棕壤 Brown soil壤土 Loam14.4643.1425.89146.187.13172.57
    泰安 Tai’an棕壤 Brown soil砂壤土 Sandy loam 9.1424.3812.78 87.656.76128.37
    下载: 导出CSV

    表 2  不同缓/控释尿素处理的小麦株高和单株分蘖数

    Table 2.  Height and tillers per plant of wheat treated with different slow/controlled release urea

    地点
    Location
    处理
    Treatment
    株高 Height (cm)单株分蘖 Tiller per plant
    越冬期
    Wintering stage
    拔节期
    Jointing stage
    开花期
    Flowering stage
    返青期
    Greening stage
    开花期
    Flowering stage
    分蘖成穗率(%)
    Tillering rate
    潍坊 WeifangCK19.21 c33.00 d64.30 d4.60 b2.00 b43.48 d
    尿素 Urea21.71 a33.42 cd78.10 a5.80 a3.40 a58.62 bc
    PCU20.26 bc35.80 b71.35 bc5.10 ab3.40 a66.67 ab
    PPU21.67 a35.42 b69.00 cd5.40 ab3.20 ab59.26 bc
    UF21.08 ab34.16 c68.25 cd5.30 ab3.00 ab56.60 c
    CHQ19.72 c36.83 a75.28 ab4.90 b3.60 a73.47 a
    泰安 Tai’anCK10.96 c17.52 e49.00 c3.70 b1.50 c40.54 d
    尿素 Urea13.07 a22.32 d64.87 b4.10 ab1.90 bc46.34 cd
    PCU11.51 bc30.66 a67.78 a4.40 ab2.70 a61.36 ab
    PPU12.10 b26.07 c65.76 b4.80 a2.50 ab52.08 bc
    UF12.01 b25.44 c65.44 b4.50 ab2.20 ab48.89 cd
    CHQ11.47 bc28.69 b68.82 a4.20 ab2.80 a66.67 a
    注(Note):PCU—树脂包膜尿素 Resin coated urea; PPU—多肽尿素 Peptide urea; UF—脲甲醛尿素 Formaldehyde urea; CHQ—树脂包膜与脲酶抑制剂结合型控释尿素 Urea coated with resin and added with urease inhibitor; 同列数据后不同字母表示同一试验点处理间差异显著 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments in the same site at 0.05 level.
    下载: 导出CSV

    表 3  不同缓/控释尿素处理的小麦干物质积累与转运量

    Table 3.  Dry matter accumulation and transport capacity of wheat treated with different slow/controlled release urea

    地点
    Location
    处理
    Treatment
    营养器官干物质积累量 (kg/hm2)
    DMA
    花前营养器官干物质转运
    DMTB
    花后干物质生产
    DMPA
    开花期
    Flowering stage
    成熟期
    Maturation stage
    转运量 (kg/hm2)
    Transportation
    贡献率 (%)
    Contribution
    生产量 (kg/hm2)
    Production
    贡献率 (%)
    Contribution
    潍坊 WeifangCK10576.80 d7507.50 d3069.30 d61.55 a1917.37 d38.45 b
    尿素 Urea13580.53 ab9297.85 b4282.68 ab46.00 b5028.43 b54.00 a
    PCU13104.96 b8976.00 b4128.96 ab45.75 b4895.48 b54.25 a
    PPU12214.93 c8371.87 c3843.07 bc47.33 b4276.93 c52.67 a
    UF11670.77 c8084.24 c3586.53 c46.78 b4080.13 c53.22 a
    CHQ14280.48 a9836.16 a4444.32 a42.97 b5897.90 a57.03 a
    泰安 Tai’anCK8511.91 d6381.33 d2130.58 b60.59 a1386.09 e39.41 d
    尿素 Urea10268.64 c7616.16 c2652.48 a52.80 b2370.85 d47.20 c
    PCU11526.34 ab8686.66 ab2839.68 a43.09 cd3750.32 a56.91 ab
    PPU11257.20 b8354.40 abc2902.80 a46.35 cd3360.53 b53.65 ab
    UF10609.98 c7958.62 bc2651.36 a47.60 bc2918.64 c52.40 bc
    CHQ11770.80 a8868.90 a2901.90 a41.65 d4064.77 a58.35 a
    注(Note):PCU—树脂包膜尿素 Resin coated urea; PPU—多肽尿素 Peptide urea; UF—脲甲醛尿素 Formaldehyde urea; CHQ—树脂包膜与脲酶抑制剂结合型控释尿素 Urea coated with resin and added with urease inhibitor; DMA—Dry matter accumulation in vegetative organs; DMTB—Dry matter transport in vegetative organs before anthesis; DMPA—Dry matter production after anthesis. 同列数据后不同字母表示同一试验点处理间差异显著 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments in the same site at 0.05 level.
    下载: 导出CSV

    表 4  不同缓/控释尿素处理的小麦产量及其生物学指标

    Table 4.  Yield and biological indexes of wheat treated with different slow/controlled release urea

    地点
    Location
    处理
    Treatment
    穗数
    Spike number
    (× 104 plant/hm2)
    穗粒数
    Grain per spike
    (grain/ spike)
    千粒重
    1000-grain weight
    (g)
    经济产量
    Economic yield
    (kg/hm2)
    生物产量
    Biological yield
    (kg/hm2)
    收获指数
    Harvest index
    (%)
    潍坊 WeifangCK390.00 d38.20 b39.47 c4986.67 d12597.00 d39.65 b
    尿素 Urea534.67 ab44.60 a46.00 ab9311.11 b18627.79 b49.99 a
    PCU528.00 ab44.10 a45.74 ab9024.44 b17994.24 b50.18 a
    PPU493.33 bc43.40 a44.97 ab8120.00 c16521.73 c49.15 a
    UF484.67 c42.50 ab43.88 b7666.67 c15722.59 c48.79 a
    CHQ564.00 a45.30 a47.12 a10342.22 a20117.88 a51.43 a
    泰安 Tai’anCK347.00 e29.80 b38.79 c3516.67 d9899.91 d35.52 c
    尿素 Urea432.00 d31.80 b41.49 b5023.33 c12636.00 c39.76 b
    PCU493.00 ab34.80 a43.63 a6590.00 ab15273.14 ab43.16 a
    PPU472.00 bc34.50 a43.36 ab6263.33 b14613.12 b42.86 a
    UF454.00 cd34.40 a41.73 ab5570.00 c13524.66 c41.18 ab
    CHQ510.00 a35.70 a43.80 a6966.67 a15835.50 a44.07 a
    注(Note):PCU—树脂包膜尿素 Resin coated urea; PPU—多肽尿素 Peptide urea; UF—脲甲醛尿素 Formaldehyde urea; CHQ—树脂包膜与脲酶抑制剂结合型控释尿素 Urea coated with resin and added with urease inhibitor; 同列数据后不同字母表示同一试验点处理间差异显著 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments in the same site at 0.05 level.
    下载: 导出CSV

    表 5  不同缓/控释尿素处理的小麦氮素吸收与利用指标

    Table 5.  Nitrogen absorption and utilization indexes of wheat treated with different slow/controlled release urea

    地点
    Location
    处理
    Treatment
    地上部氮积累量
    N accumulation
    (kg/hm2)
    氮素生产效率
    NPE
    (kg/kg)
    氮肥表观利用率
    NFAU
    (%)
    氮肥农学效率
    NFAE
    (kg/kg)
    氮肥偏生产力
    NFP
    (kg/kg)
    潍坊 WeifangCK124.72 f33.92 a
    尿素 Urea205.60 b24.06 c33.70 b18.02 b38.80 b
    PCU192.33 c23.32 c28.17 c16.82 b37.60 b
    PPU173.01 d20.98 d20.12 d13.06 c33.83 c
    UF159.35 e19.81 d14.43 e11.17 c31.94 c
    CHQ228.98 a26.72 b43.44 a22.31 a43.09 a
    泰安 Tai’anCK72.31 e27.05 a
    尿素 Urea97.78 d13.58 d10.61 d6.28 c20.93 c
    PCU132.09 b17.81 bc24.91 b12.81 ab27.46 ab
    PPU120.87 c16.93 c20.23 c11.44 b26.10 b
    UF101.35 d15.05 d12.10 d8.56 c23.21 c
    CHQ139.29 a18.83 b27.91 a14.37 a29.03 a
    注(Note):PCU—树脂包膜尿素 Resin coated urea; PPU—多肽尿素 Peptide urea; UF—脲甲醛尿素 Formaldehyde urea; CHQ—树脂包膜与脲酶抑制剂结合型控释尿素 Urea coated with resin and added with urease inhibitor; NPE—Nitrogen production efficiency; NFAU—Nitrogen fertilizer apparent utilization; NFAE—Nitrogen fertilizer agronomic efficiency; NFPP—Nitrogen fertilizer partial productivity; 同列数据后不同字母表示同一试验点处理间差异显著 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments in the same site at 0.05 level.
    下载: 导出CSV
  • [1] FAO. Fao stat[EB/OL]. http://www.fao.org/faostat/zh/#compare.
    [2] 中华人民共和国农业农村部. 化肥农药利用率稳步提高[EB/OL]. (2019-12-18). http://zdscxx.moa.gov.cn:8080/nyb/pc/search.jsp.

    Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Fertilizer and pesticide utilization rate steadily increased [EB/OL]. (2019-12-18). http://zdscxx.moa.gov.cn:8080/nyb/pc/search.jsp.
    [3] 彭玉, 马均, 蒋明金, 等. 缓/控释肥对杂交水稻根系形态、生理特性和产量的影响[J]. 植物营养与肥料学报, 2013, 19(5): 1048–1057. Peng Y, Ma J, Jiang M J, et al. Effects of slow/controlled release fertilizers on root morphological and physiological characteristics of rice[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(5): 1048–1057. doi:  10.11674/zwyf.2013.0503
    [4] 李雨繁, 贾可, 王金艳, 等. 不同类型高氮复混(合)肥氨挥发特性及其对氮素平衡的影响[J]. 植物营养与肥料学报, 2015, 21(3): 615–623. Li Y F, Jia K, Wang J Y, et al. Ammonia volatilization characteristics of different kinds of high-nitrogen compound fertilizers and their effects on nitrogen balance[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(3): 615–623. doi:  10.11674/zwyf.2015.0308
    [5] 解文艳, 周怀平, 杨振兴, 等. 不同缓控释氮肥对连作春玉米产量及氮肥去向的影响[J]. 水土保持学报, 2019, 33(3): 207–214. Xie W Y, Zhou H P, Yang Z X, et al. Effects of different slow controlled-release fertilizers on grain yield and nitrogen fate in continuous spring maize production[J]. Journal of Soil and Water Conservation, 2019, 33(3): 207–214.
    [6] 侯云鹏, 李前, 孔丽丽, 等. 不同缓/控释氮肥对春玉米氮素吸收利用、土壤无机氮变化及氮平衡的影响[J]. 中国农业科学, 2018, 51(20): 3928–3940. Hou Y P, Li Q, Kong L L, et al. Effects of different slow/controlled release nitrogen fertilizers on spring maize nitrogen uptake and utilization, soil inorganic nitrogen and nitrogen balance[J]. Scientia Agricultura Sinica, 2018, 51(20): 3928–3940. doi:  10.3864/j.issn.0578-1752.2018.20.011
    [7] 郑文魁, 李成亮, 窦兴霞, 等. 不同包膜类型控释氮肥对小麦产量及土壤生化性质的影响[J]. 水土保持学报, 2016, 30(2): 162–167, 174. Zheng W K, Li C L, Dou X X, et al. Effects of different types of controlled release urea on wheat yield and biochemical properties of soil[J]. Journal of Soil and Water Conservation, 2016, 30(2): 162–167, 174.
    [8] 张英鹏, 李洪杰, 刘兆辉, 等. 农田减氮调控施肥对华北潮土区小麦-玉米轮作体系氮素损失的影响[J]. 应用生态学报, 2019, 30(4): 1179–1187. Zhang Y P, Li H J, Liu Z H, et al. Effect of reducing N and regulated fertilization on N loss from wheat-maize rotation system of farmland in Chao soil region of North China Plain[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1179–1187.
    [9] 卢艳丽, 白由路, 王磊, 等. 华北小麦-玉米轮作区缓控释肥应用效果分析[J]. 植物营养与肥料学报, 2011, 17(1): 209–215. Lu Y L, Bai Y L, Wang L, et al. Efficiency analysis of slow/controlled release fertilizer on wheat-maize in North China[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(1): 209–215. doi:  10.11674/zwyf.2011.0129
    [10] 刘红江, 郭智, 郑建初, 等. 不同类型缓控释肥对水稻产量形成和稻田氮素流失的影响[J]. 江苏农业学报, 2018, 34(4): 783–789. Liu H J, Guo Z, Zheng J C, et al. Effects of different types of controlled release fertilizer on rice yield and nitrogen loss of surface runoff[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 783–789.
    [11] 周丽平, 杨俐苹, 白由路, 等. 不同氮肥缓释化处理对夏玉米田间氨挥发和氮素利用的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1449–1457. Zhou L P, Yang L P, Bai Y L, et al. Comparison of several slow-released nitrogen fertilizers in ammonia volatilization and nitrogen utilization in summer maize field[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1449–1457. doi:  10.11674/zwyf.16039
    [12] 林清火, 刘海林, 黄艳艳, 等. 4种缓控释氮肥的养分释放特征及肥效[J]. 热带作物学报, 2018, 39(9): 1718–1723. Lin Q H, Liu H L, Huang Y Y, et al. Release characteristics and fertilizer efficiency of coated controlled-release nitrogen for rice[J]. Chinese Journal of Tropical Crops, 2018, 39(9): 1718–1723.
    [13] 冯爱青, 张民, 李成亮, 等. 控释氮肥对土壤酶活性与土壤养分利用的影响[J]. 水土保持学报, 2014, 28(3): 177–184. Feng A Q, Zhang M, Li C L, et al. Effects of controlled release nitrogen fertilizer on soil enzyme activities and soil nutrient utilization[J]. Journal of Soil and Water Conservation, 2014, 28(3): 177–184.
    [14] 刘运军. 施氮量、尿素类型与秸秆覆盖对四川旱地小麦生长发育及氮素利用的影响[D]. 成都: 四川农业大学硕士学位论文, 2016.

    Liu Y J. Effects of nitrogen application rate, urea species and straw-mulching on the growth and nitrogen utilization of wheat in the hilly area of Sichuan[D]. Chengdu: MS Thesis of Sichuan Agricultural University, 2016.
    [15] 周华敏, 陈宝成, 王晓琪, 等. 脲醛缓释肥不同配比对小麦生长及土壤氮素养分的影响[J]. 水土保持学报, 2017, 31(1): 179–185. Zhou H M, Chen B C, Wang X Q, et al. Effect of different proportions of urea formaldehyde slow-release nitrogen fertilizer on wheat growth and soil nitrogen nutrients[J]. Journal of Soil and Water Conservation, 2017, 31(1): 179–185.
    [16] 李玉, 王茂莹, 张倩, 等. 包膜脲酶抑制剂增效尿素对小麦生长的影响及其机理研究[J]. 水土保持学报, 2020, 34(2): 283–289. Li Y, Wang M Y, Zhang Q, et al. Effects of coated urease inhibitor synergic urea on wheat growth and its mechanism[J]. Journal of Soil and Water Conservation, 2020, 34(2): 283–289.
    [17] 刘海涛, 李保国, 任图生, 等. 不同肥力农田玉米产量构成差异及施肥弥补土壤肥力的可能性[J]. 植物营养与肥料学报, 2016, 22(4): 897–904. Liu H T, Li B G, Ren T S, et al. Dissimilarity in yield components of maize grown in different fertility fields and effect of nitrogen application on maize in low fertility fields[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 897–904. doi:  10.11674/zwyf.15243
    [18] 龙会英, 张德, 金杰. 土壤质地对柱花草生长发育、生物量及土壤肥力变化的影响[J]. 土壤, 2017, 49(5): 1049–1052. Long H Y, Zhang D, Jin J. Effects of soil textures on growth, biomass of stylosanthes guianensis and fertility of soils[J]. Soils, 2017, 49(5): 1049–1052.
    [19] 贾立华, 赵长星, 王月福, 等. 不同质地土壤对花生根系生长、分布和产量的影响[J]. 植物生态学报, 2013, 37(7): 684–690. Jia L H, Zhao C X, Wang Y F, et al. Effects of different soil textures on the growth and distribution of root system and yield in peanut[J]. Chinese Journal of Plant Ecology, 2013, 37(7): 684–690. doi:  10.3724/SP.J.1258.2013.00071
    [20] 杜盼, 张娟娟, 郭伟, 等. 施氮对不同肥力土壤小麦氮营养和产量的影响[J]. 植物营养与肥料学报, 2019, 25(2): 176–186. Du P, Zhang J J, Guo W, et al. Effect of nitrogen application on nitrogen nutrition and yield of wheat in fields of different fertility[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(2): 176–186. doi:  10.11674/zwyf.18039
    [21] 肖丽丽. 不同地力水平条件下种植密度对冬小麦籽粒产量和氮素利用率的影响[D]. 山东泰安: 山东农业大学硕士学位论文, 2014.

    Xiao L L. Effects of plant density on grain yield and nitrogen use efficiency of winter wheat under different fertility levels[D]. Tai'an, Shandong: MS Thesis of Shandong Agricultural University, 2014.
    [22] 窦怀良, 史衍玺, 刘庆, 等. 不同土壤肥力水平下施氮对甘薯产量与氮肥利用率的影响[J]. 水土保持学报, 2017, 31(4): 235–240. Dou H L, Shi Y X, Liu Q, et al. Effects of nitrogen application on yield and nitrogen use efficiency of sweet potato under different soil fertility[J]. Journal of Soil and Water Conservation, 2017, 31(4): 235–240.
    [23] 王静, 王允青, 张凤芝, 等. 脲酶/硝化抑制剂对沿淮平原水稻产量、氮肥利用率及稻田氮素的影响[J]. 水土保持学报, 2019, 33(5): 211–216. Wang J, Wang Y Q, Zhang F Z, et al. Effects of urease/nitrification inhibitors on yield and nitrogen utilization efficiency of rice and soil nitrogen of paddy field in plain along the Huaihe river[J]. Journal of Soil and Water Conservation, 2019, 33(5): 211–216.
    [24] 董强, 吴得峰, 党廷辉, 等. 黄土高原南部不同减氮模式对春玉米产量及土壤硝态氮残留的影响[J]. 植物营养与肥料学报, 2017, 23(4): 856–863. Dong Q, Wu D F, Dang T H, et al. Effects of different nitrogen reduction modes on yield of spring maize and nitrate-N residue in soils of the southern Loess Plateau[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 856–863. doi:  10.11674/zwyf.16484
    [25] 周礼恺, 武冠云, 张志明, 等. 尿酶抑制剂氢醌在提高尿素肥效中的作用[J]. 土壤学报, 1988, 25(2): 191–198. Zhou L K, Wu G Y, Zhang Z M, et al. Effect of urease inhibitor hydroquinone on the efficiency of urea fertilizer[J]. Acta Pedologica Sinica, 1988, 25(2): 191–198.
    [26] 武志杰, 石元亮, 李东坡, 等. 稳定性肥料发展与展望[J]. 植物营养与肥料学报, 2017, 23(6): 1614–1621. Wu Z J, Shi Y L, Li D P, et al. The development and outlook of stabilized fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1614–1621. doi:  10.11674/zwyf.17303
  • [1] 李莎莎王朝辉刁超朋王森刘璐黄宁 . 旱地高产小麦品种籽粒锌含量差异与产量构成和锌吸收利用的关系. 植物营养与肥料学报, doi: 10.11674/zwyf.17341
    [2] 郭明明赵广才郭文善常旭虹王德梅杨玉双王美亓振王雨代丹丹魏星李银银刘孝成 . 追氮时期和施钾量对小麦氮素吸收运转的调控. 植物营养与肥料学报, doi: 10.11674/zwyf.15089
    [3] 杜保见郜红建常江章力干 . 小麦苗期氮素吸收利用效率差异及聚类分析. 植物营养与肥料学报, doi: 10.11674/zwyf.2014.0604
    [4] 龚金龙邢志鹏胡雅杰张洪程*戴其根霍中洋许轲魏海燕高辉 . 籼、粳超级稻氮素吸收利用与转运差异研究. 植物营养与肥料学报, doi: 10.11674/zwyf.2014.0402
    [5] 丁锦峰杨佳凤王云翠陈芳芳封超年朱新开李春燕彭永欣郭文善* . 稻茬小麦公顷产量9000 kg群体氮素积累、分配与利用特性. 植物营养与肥料学报, doi: 10.11674/zwyf.2013.0303
    [6] 党红凯李瑞奇李雁鸣孙亚辉张馨文刘梦星 . 超高产冬小麦对氮素的吸收、积累和分配. 植物营养与肥料学报, doi: 10.11674/zwyf.2013.0502
    [7] 王海宁葛顺峰姜远茂魏绍冲周恩达王富林 . 施氮水平对五种苹果砧木生长以及氮素吸收、分配和利用特性的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2012.11482
    [8] 李春艳张宏马龙李诚* . 冬小麦苗期氮素吸收利用生理指标的综合评价. 植物营养与肥料学报, doi: 10.11674/zwyf.2012.11360
    [9] 曹倩贺明荣代兴龙门洪文王成雨 . 密度、氮肥互作对小麦产量及氮素利用效率的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2011.0545
    [10] 孟维伟王东于振文石玉 . 15N示踪法研究不同灌水处理对小麦氮素吸收分配及利用效率的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2011.0484
    [11] 杜世州曹承富张耀兰赵竹乔玉强刘永华张四华 . 氮素运筹对淮北地区超高产小麦养分吸收利用的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2011.0102
    [12] 阳显斌张锡洲*李廷轩宋潇胡宏松 . 磷素子粒生产效率不同品种的小麦磷素吸收利用差异. 植物营养与肥料学报, doi: 10.11674/zwyf.2011.0413
    [13] 路文静张树华郭程瑾段巍巍肖凯 , . 不同氮素利用效率小麦品种的氮效率相关生理参数研究. 植物营养与肥料学报, doi: 10.11674/zwyf.2009.0501
    [14] 孙旭生林琪李玲燕姜雯翟延举 , . 氮素对超高产小麦生育后期光合特性及产量的影响 . 植物营养与肥料学报, doi: 10.11674/zwyf.2008.0504
    [15] 梁太波王振林刘兰兰王汝娟陈晓光张晓冬史春余 . 腐植酸尿素对生姜产量及氮素吸收、同化和品质的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2007.0522
    [16] 邱临静周春菊李生秀薛亮王虎王林权 . 不同栽培模式和施肥方法对旱地冬小麦氮素吸收运转的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2007.0301
    [17] 王小燕于振文 . 不同冬小麦品种氮素吸收运转特性及其与子粒蛋白质含量的关系. 植物营养与肥料学报, doi: 10.11674/zwyf.2006.0303
    [18] 曹承富孔令聪汪建来赵斌赵竹 . 施氮量对强筋和中筋小麦产量和品质及养分吸收的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2005.0108
    [19] 孙传范戴廷波曹卫星 . 不同施氮水平下增铵营养对小麦生长和氮素利用的影响. 植物营养与肥料学报, doi: 10.11674/zwyf.2003.0106
    [20] 张国平张光恒 . 小麦氮素利用效率的基因型差异研究. 植物营养与肥料学报, doi: 10.11674/zwyf.1996.0406
  • 加载中
WeChat 点击查看大图
图(2)表(5)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-01

不同缓/控释尿素对小麦生长及氮素利用的影响

    作者简介:王茂莹 E-mail:1664256996@qq.com
    通讯作者: 董元杰, yuanjiedong@163.com
  • 1. 山东农业大学资源与环境学院,山东泰安 271018
  • 2. 山东农业大学农学院,山东泰安 271018
  • 基金项目: 国家重点研发计划项目(2017YFD0201705);山东省农业重大应用技术创新项目(SD2019ZZ021)
  • 摘要:    【目的】   本文通过大田试验筛选了山东省适宜于小麦生长的缓/控释尿素,并初步研究了其氮素高效利用的机制。   【方法】   选用的肥料产品有4种,包括树脂包膜尿素 (PCU)、多肽尿素 (PPU)、脲甲醛尿素 (UF) 和本实验室制备的树脂包膜与脲酶抑制剂结合型控释尿素 (CHQ),以普通尿素和不施氮肥为对照,分别在山东潍坊和泰安进行田间试验,供试小麦品种为‘济麦22号’,普通尿素按1∶1比例基施和追施,缓/控释肥均一次性基施。分析了小麦不同时期的株高和单株分蘖数、花前花后干物质积累与转运、产量及其构成因素、氮肥利用率以及土壤无机氮含量和脲酶活性的变化。   【结果】   施用4种缓/控释尿素均降低了小麦越冬期的土壤脲酶活性,减缓尿素水解,降低土壤无机氮含量;成熟期,在潍坊试验区仅CHQ的土壤无机氮含量高于尿素,在泰安试验点4种缓/控释尿素的土壤无机氮含量均高于尿素,以CHQ的无机氮含量最高,CHQ的土壤无机氮含量在泰安和潍坊2个试验点较尿素分别增加了81.86%和6.20%。与尿素相比,在泰安试验点施用4种缓/控释尿素均可促进小麦生长,提高小麦花前干物质转运与花后干物质生产量,有利于小麦的群体构建和产量形成,增强小麦对氮素的吸收利用能力,提高氮肥利用率,以CHQ表现最优;而在潍坊试验点,仅CHQ肥效优于尿素。CHQ在泰安和潍坊的小麦产量分别为6966.67 kg/hm2和10342.22 kg/hm2,较尿素处理分别增加了38.69%和11.07%;氮素生产效率分别为18.83 kg/kg和26.72 kg/kg,较尿素分别增加了38.66%和11.06%。潍坊试验点小麦产量和氮素生产效率整体高于泰安,CHQ较尿素的增幅也低于泰安试验点。   【结论】   土壤肥力影响缓/控释尿素对小麦的增产效果,在高肥力的壤土 (潍坊) 上,只有既控制尿素释放速度又控制其在土壤中的水解速度的树脂包膜与脲酶抑制剂结合型控释尿素可有效促进小麦生长及其对氮素的吸收利用,在低肥力砂壤土 (泰安) 上,4种缓/控释尿素在小麦生长后期均可维持土壤中较高的氮素供应,肥效均好于普通尿素。综合来讲,在山东省建议优先选择树脂包膜与脲酶抑制剂结合型控释尿素。

    English Abstract

    • 氮肥是农业生产中需求量最大的化肥。FAO数据显示,我国农业氮肥施用量在2002年至2014年间年均增长4.95 × 105 t[1]。氮肥施用过多使氮肥利用率低、损失率高,造成严重的资源浪费与环境污染问题。因此,我国农业部自2015年开展了化肥减量增效工作且已取得显著成效。中国农业农村部数据显示,2014年至2018年,我国氮肥用量年均降低8.19 × 105 t[2]。其中,施用缓/控释氮肥是提高氮肥利用率的有效途径。

      缓/控释氮肥因缓/控释机制不同分为包膜肥料、稳定性肥料、脲甲醛肥料等。前人研究表明,与普通尿素相比,施用不同类型缓/控释氮肥可提高作物产量,促进作物对氮素的吸收利用能力,减少氮损失[3-10]。但不同生态区、不同作物的最适缓/控释氮肥种类不同。侯云鹏等[6]研究表明,在吉林省中部地区,施用硫包衣尿素、树脂包膜尿素、稳定性尿素和脲甲醛可提高春玉米生长后期的土壤无机氮含量,减少氮损失,提高玉米产量和氮素利用率,其中,施用树脂包膜尿素的玉米产量最高,较普通尿素增产18.8%~19.6%;周丽平等[11]在河北省对夏玉米的研究表明,树脂包膜尿素、控失尿素、凝胶尿素和脲甲醛可显著减少氨挥发损失,提高产量和氮肥利用率,以脲甲醛表现最优,与普通尿素相比,脲甲醛的氨挥发总量减少57.2%~64.6%,产量增加16.67%~21.05%;解文艳等[5]在山西省对春玉米的研究表明,树脂包膜尿素、硫包衣尿素和多酶金缓释尿素可显著促进春玉米对氮素的吸收,减少氮损失,其中,施用硫包衣尿素的玉米产量最高,较普通尿素增产17.51%;刘红江等[10]在江苏省的研究表明,在减量施氮的条件下,与稳定性尿素、硫包衣尿素和树脂包膜尿素相比,脲醛尿素和草酰胺在减少稻田地表径流总氮流失的同时,更能保证水稻产量;林清火等[12]在海南省对水稻的研究表明,植物油包膜尿素的肥效较树脂包膜尿素、脲甲醛、硫包衣尿素更优,其产量和氮肥利用率较普通尿素分别提高17.4%和15.2%。

      山东省是我国的农业大省,小麦是山东省种植面积最大的粮食作物,发展山东省的小麦生产对我国农业经济具有重要意义。小麦是跨年度、跨冷暖季的生长期较长的作物,筛选适宜小麦生长的缓/控释氮肥可为小麦的优质高产及新型缓/控释氮肥的研制提供技术支撑和理论依据。而前人对不同缓/控释氮肥在山东省区域小麦上的研究报道较少。因此,本研究选用树脂包膜尿素、多肽尿素、脲甲醛尿素和本实验室制备的树脂包膜与脲酶抑制剂结合型控释尿素4种不同缓/控释机制尿素,分别在山东省鲁西麦区的泰安市和鲁东麦区的潍坊市选取两个有代表性的试验点同时进行试验,研究不同缓/控释尿素对小麦生长及氮素吸收与利用的影响,对比4种不同缓/控释尿素的肥效,筛选出对促进山东省小麦生长效果最优的缓/控释尿素,并明确其氮素高效机制,以期为山东省小麦优质高产、氮肥高效利用及新型缓/控释氮肥的研制提供科学依据。

      • 试验于2018年10月至2019年6月在山东省潍坊市农科院试验站和泰安市山东农业大学资源与环境学院实验站同时进行,两地同属暖温带半湿润大陆性季风气候。潍坊试验点位于北纬36°48′,东经119°12′,年均温12.1℃,年均降水量600 mm,年日照时数2800 h,无霜期191 d;泰安试验点位于北纬36°10′,东经117°08′,年均温13.2℃,年均降水量683.2 mm,年日照时数2655 h,无霜期187 d。土壤类型及0—20 cm土层基本理化性质见表1

        表 1  试验区土壤类型及0—20 cm土层基本理化性质

        Table 1.  Soil type and basic physical and chemical properties of 0-20 cm soil layer

        地点
        Location
        土壤类型
        Soil type
        土壤质地
        Soil texture
        有机质 (g/kg)
        SOM
        碱解氮 (mg/kg)
        Available N
        有效磷 (mg/kg)
        Olsen-P
        速效钾 (mg/kg)
        Available K
        pH电导率 (μS/cm)
        Ec
        潍坊 Weifang棕壤 Brown soil壤土 Loam14.4643.1425.89146.187.13172.57
        泰安 Tai’an棕壤 Brown soil砂壤土 Sandy loam 9.1424.3812.78 87.656.76128.37
      • 试验为大田试验,共设6个处理,分别为:1) 不施氮 (CK);2) 普通尿素 (尿素Urea);3) 树脂包膜尿素 (PCU,含氮量43%,释放期3个月,山东农业大学土肥资源高效利用国家工程实验室研制);4) 多肽尿素 (PPU,含氮量46%,鲁西化工集团股份有限公司生产);5) 脲甲醛尿素 (UF,含氮量38%,山东绿茵化工技术有限公司生产);6) 树脂包膜与脲酶抑制剂结合型控释尿素 (CHQ,脲酶抑制剂氢醌涂于尿素表面后共包树脂膜,含氮量43%,释放期3个月,含氢醌量0.35%,本实验室制备)。小区面积30 m2(长10 m × 宽3 m)(12行,行距0.25 m),各处理3次重复,小区随机排列。供试小麦品种为‘济麦22号’,种植密度为200株/m2,于2018年10月16日播种,2019年6月14日收获。供试肥料为普通尿素及4种缓/控释尿素、过磷酸钙和氯化钾,施肥量N-P2O5-K2O为240-105-105 kg/hm2。其中,尿素处理尿素基追比为1∶1,于拔节期追施;缓/控释尿素处理为普通尿素与缓/控释尿素3∶7配合一次性施用;磷、钾肥全部基施;肥料撒施后旋耕入土。

      • 分别于小麦越冬期、返青期、拔节期、开花期、成熟期采集植株样品,用直尺测量越冬期、拔节期、开花期小麦株高;计算返青期、开花期小麦单株分蘖数和分蘖成穗率;于小麦开花期和成熟期随机取30个单茎进行烘干、称重,根据小麦穗数计算小麦每公顷干物质积累与转运相关指标;于小麦成熟期测定产量及其构成因素,计算收获指数;用凯氏定氮法测定小麦地上部氮含量,计算氮肥利用效率相关指标。

        分别于小麦越冬期、返青期、拔节期、开花期、成熟期采集0—20 cm土壤样品,用流动注射分析仪测定土壤硝态氮和铵态氮含量,无机氮含量即为硝态氮和铵态氮含量之和;采用苯酚钠-次氯酸钠比色法测定土壤脲酶活性。

        干物质积累与转运相关指标计算公式:

        花前营养器官干物质转运量 = 开花期营养器官干重-成熟期营养器官干重;

        花前营养器官干物质转运量对籽粒的贡献率 = 转运量/成熟期籽粒重 × 100%;

        花后干物质生产量 = 成熟期籽粒重-花前营养器官干物质转运量;

        花后干物质生产量对籽粒的贡献率 = 生产量/成熟期籽粒重 × 100%。

        氮肥利用效率相关指标计算公式:

        氮素生产效率 = 籽粒产量/土壤供氮量 (0—100 cm土层土壤无机氮+肥料氮);

        氮肥表观利用率 = (施氮区地上部氮积累-对照区地上部氮积累)/施氮量 × 100%;

        氮肥农学效率 = (施氮区产量-对照区产量)/施氮量;

        氮肥偏生产力 = 施氮区产量/施氮量。

      • 采用Microsoft Excel 2010进行数据处理,采用SPSS 22进行统计分析,采用Origin 2018软件作图,采用邓肯法 (Duncan) 进行差异显著性检验 (P < 0.05)。

      • 施用氮肥可显著提高小麦株高,增加小麦单株分蘖数,且相同处理同一时期的小麦株高和分蘖在潍坊高肥力壤土上高于泰安低肥力砂壤土 (表2)。在潍坊试验点上,与尿素处理相比,PCU、PPU、UF、CHQ处理的小麦株高在越冬期分别降低6.45%、0、2.76%、9.22%,拔节期分别增加7.19%、5.99%、2.40%、10.18%,开花期分别降低8.58%、11.65%、12.55%、3.59%。说明在小麦生长前期,缓/控释尿素对小麦生长的促进作用低于普通尿素;至小麦生长中期,普通尿素氮素供应减少,而缓/控释尿素可维持较高的氮素供应,更能促进小麦生长;由于尿素处理在拔节期追施普通尿素,开花期小麦株高较尿素处理又有所降低。在泰安试验点上,越冬期和拔节期的小麦株高变化规律与潍坊一致,而开花期PCU、PPU、UF、CHQ处理的小麦株高较尿素处理分别增加4.47%、1.39%、0.77%、6.01%。说明与尿素相比,在泰安一次性施用4种缓/控释尿素均可促进小麦生长;而在潍坊,除CHQ处理外,其它3种缓/控释尿素降低了小麦株高,说明缓/控释尿素在土壤肥力较低的泰安砂壤土上对小麦生长的促进效果更优。

        表 2  不同缓/控释尿素处理的小麦株高和单株分蘖数

        Table 2.  Height and tillers per plant of wheat treated with different slow/controlled release urea

        地点
        Location
        处理
        Treatment
        株高 Height (cm)单株分蘖 Tiller per plant
        越冬期
        Wintering stage
        拔节期
        Jointing stage
        开花期
        Flowering stage
        返青期
        Greening stage
        开花期
        Flowering stage
        分蘖成穗率(%)
        Tillering rate
        潍坊 WeifangCK19.21 c33.00 d64.30 d4.60 b2.00 b43.48 d
        尿素 Urea21.71 a33.42 cd78.10 a5.80 a3.40 a58.62 bc
        PCU20.26 bc35.80 b71.35 bc5.10 ab3.40 a66.67 ab
        PPU21.67 a35.42 b69.00 cd5.40 ab3.20 ab59.26 bc
        UF21.08 ab34.16 c68.25 cd5.30 ab3.00 ab56.60 c
        CHQ19.72 c36.83 a75.28 ab4.90 b3.60 a73.47 a
        泰安 Tai’anCK10.96 c17.52 e49.00 c3.70 b1.50 c40.54 d
        尿素 Urea13.07 a22.32 d64.87 b4.10 ab1.90 bc46.34 cd
        PCU11.51 bc30.66 a67.78 a4.40 ab2.70 a61.36 ab
        PPU12.10 b26.07 c65.76 b4.80 a2.50 ab52.08 bc
        UF12.01 b25.44 c65.44 b4.50 ab2.20 ab48.89 cd
        CHQ11.47 bc28.69 b68.82 a4.20 ab2.80 a66.67 a
        注(Note):PCU—树脂包膜尿素 Resin coated urea; PPU—多肽尿素 Peptide urea; UF—脲甲醛尿素 Formaldehyde urea; CHQ—树脂包膜与脲酶抑制剂结合型控释尿素 Urea coated with resin and added with urease inhibitor; 同列数据后不同字母表示同一试验点处理间差异显著 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments in the same site at 0.05 level.

        在潍坊试验点上,开花期小麦单株分蘖表现为CHQ > U > PCU > PPU > UF,处理间差异不显著;除UF处理外,PCU、PPU、CHQ处理的分蘖成穗率均高于尿素处理。在泰安试验点上,4种缓/控释尿素处理的开花期小麦单株分蘖数和分蘖成穗率均高于尿素处理。两地均为CHQ处理的开花期小麦单株分蘖数和分蘖成穗率最高,与尿素处理相比,CHQ处理的开花期小麦单株分蘖数在潍坊和泰安分别增加了5.88%和47.37%,分蘖成穗率分别显著增加了25.43%和43.87%。说明施用缓/控释尿素较普通尿素更能有效利用养分,提高分蘖成穗率,有利于小麦群体构建,且缓/控释尿素在肥力较低的泰安砂壤土上表现更优,4种缓/控释尿素中以CHQ效果最优。

      • 施用氮肥可显著增加小麦营养器官的干物质积累,促进小麦花前营养器官贮藏的干物质向籽粒的转运及花后干物质生产,且相同处理的小麦干物质积累与转运量在潍坊高肥力壤土上高于泰安低肥力砂壤土 (表3)。小麦营养器官干物质积累量、花前营养器官干物质转运量和花后干物质生产量在潍坊试验点上均表现为CHQ > 尿素 > PCU > PPU > UF,在泰安试验点上均表现为CHQ > PCU > PPU > UF > 尿素。与尿素处理相比,CHQ处理的花前营养器官干物质转运量在潍坊和泰安分别增加了3.77%和17.29%,花后干物质生产量分别显著增加了9.40%和71.45%,泰安增幅高于潍坊。说明与尿素相比,在泰安一次性施用4种缓/控释尿素均可促进小麦干物质积累与转运,有利于小麦产量形成;而在潍坊仅CHQ处理表现优于尿素处理,说明在土壤肥力较低的泰安砂壤土上施用缓/控释尿素对小麦干物质积累与转运的促进效果更优。小麦花前营养器官干物质转运对籽粒的贡献率与花后干物质生产对籽粒的贡献率呈相反的变化趋势,且花后干物质生产的贡献率高于花前营养器官干物质转运的贡献率。其中,CHQ处理的花后干物质生产对籽粒的贡献率在潍坊和泰安较尿素处理分别增加了5.61%和23.62%。说明花后干物质生产是小麦产量的主要来源,且CHQ处理的肥效最优,更能促进小麦花后干物质生产,有利于小麦产量的提高。

        表 3  不同缓/控释尿素处理的小麦干物质积累与转运量

        Table 3.  Dry matter accumulation and transport capacity of wheat treated with different slow/controlled release urea

        地点
        Location
        处理
        Treatment
        营养器官干物质积累量 (kg/hm2)
        DMA
        花前营养器官干物质转运
        DMTB
        花后干物质生产
        DMPA
        开花期
        Flowering stage
        成熟期
        Maturation stage
        转运量 (kg/hm2)
        Transportation
        贡献率 (%)
        Contribution
        生产量 (kg/hm2)
        Production
        贡献率 (%)
        Contribution
        潍坊 WeifangCK10576.80 d7507.50 d3069.30 d61.55 a1917.37 d38.45 b
        尿素 Urea13580.53 ab9297.85 b4282.68 ab46.00 b5028.43 b54.00 a
        PCU13104.96 b8976.00 b4128.96 ab45.75 b4895.48 b54.25 a
        PPU12214.93 c8371.87 c3843.07 bc47.33 b4276.93 c52.67 a
        UF11670.77 c8084.24 c3586.53 c46.78 b4080.13 c53.22 a
        CHQ14280.48 a9836.16 a4444.32 a42.97 b5897.90 a57.03 a
        泰安 Tai’anCK8511.91 d6381.33 d2130.58 b60.59 a1386.09 e39.41 d
        尿素 Urea10268.64 c7616.16 c2652.48 a52.80 b2370.85 d47.20 c
        PCU11526.34 ab8686.66 ab2839.68 a43.09 cd3750.32 a56.91 ab
        PPU11257.20 b8354.40 abc2902.80 a46.35 cd3360.53 b53.65 ab
        UF10609.98 c7958.62 bc2651.36 a47.60 bc2918.64 c52.40 bc
        CHQ11770.80 a8868.90 a2901.90 a41.65 d4064.77 a58.35 a
        注(Note):PCU—树脂包膜尿素 Resin coated urea; PPU—多肽尿素 Peptide urea; UF—脲甲醛尿素 Formaldehyde urea; CHQ—树脂包膜与脲酶抑制剂结合型控释尿素 Urea coated with resin and added with urease inhibitor; DMA—Dry matter accumulation in vegetative organs; DMTB—Dry matter transport in vegetative organs before anthesis; DMPA—Dry matter production after anthesis. 同列数据后不同字母表示同一试验点处理间差异显著 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments in the same site at 0.05 level.
      • 施用氮肥可显著改善小麦产量构成因素,提高小麦产量,且相同处理的小麦产量及其生物学指标在潍坊高肥力壤土上高于在泰安低肥力砂壤土 (表4)。在潍坊试验点上,小麦经济产量和生物产量均表现为CHQ > 尿素 > PCU > PPU > UF,其中,CHQ处理的经济产量和生物产量较尿素处理显著增加了11.07%和8.00%,PCU处理与尿素处理产量间差异不显著,小麦产量构成因素和收获指数与产量变化趋势一致,但处理间无显著性差异。在泰安试验点上,4种缓/控释尿素处理的产量、产量构成因素和收获指数均高于尿素处理,其中,PCU、PPU和CHQ处理的穗数、经济产量、生物产量和收获指数与尿素处理间差异显著,CHQ处理的经济产量、生物产量和收获指数最高,较尿素处理分别增加了38.69%、25.32%和10.84%。说明与尿素相比,在泰安一次性施用4种缓/控释尿素均可促进小麦产量形成,提高收获指数,有利于获得更高的经济效益;而在潍坊仅CHQ处理的小麦产量高于尿素处理,说明缓/控释尿素在土壤肥力较低的泰安砂壤土上对小麦的增产效果更优。

        表 4  不同缓/控释尿素处理的小麦产量及其生物学指标

        Table 4.  Yield and biological indexes of wheat treated with different slow/controlled release urea

        地点
        Location
        处理
        Treatment
        穗数
        Spike number
        (× 104 plant/hm2)
        穗粒数
        Grain per spike
        (grain/ spike)
        千粒重
        1000-grain weight
        (g)
        经济产量
        Economic yield
        (kg/hm2)
        生物产量
        Biological yield
        (kg/hm2)
        收获指数
        Harvest index
        (%)
        潍坊 WeifangCK390.00 d38.20 b39.47 c4986.67 d12597.00 d39.65 b
        尿素 Urea534.67 ab44.60 a46.00 ab9311.11 b18627.79 b49.99 a
        PCU528.00 ab44.10 a45.74 ab9024.44 b17994.24 b50.18 a
        PPU493.33 bc43.40 a44.97 ab8120.00 c16521.73 c49.15 a
        UF484.67 c42.50 ab43.88 b7666.67 c15722.59 c48.79 a
        CHQ564.00 a45.30 a47.12 a10342.22 a20117.88 a51.43 a
        泰安 Tai’anCK347.00 e29.80 b38.79 c3516.67 d9899.91 d35.52 c
        尿素 Urea432.00 d31.80 b41.49 b5023.33 c12636.00 c39.76 b
        PCU493.00 ab34.80 a43.63 a6590.00 ab15273.14 ab43.16 a
        PPU472.00 bc34.50 a43.36 ab6263.33 b14613.12 b42.86 a
        UF454.00 cd34.40 a41.73 ab5570.00 c13524.66 c41.18 ab
        CHQ510.00 a35.70 a43.80 a6966.67 a15835.50 a44.07 a
        注(Note):PCU—树脂包膜尿素 Resin coated urea; PPU—多肽尿素 Peptide urea; UF—脲甲醛尿素 Formaldehyde urea; CHQ—树脂包膜与脲酶抑制剂结合型控释尿素 Urea coated with resin and added with urease inhibitor; 同列数据后不同字母表示同一试验点处理间差异显著 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments in the same site at 0.05 level.
      • 施用氮肥可显著提高小麦地上部氮积累量,增强小麦对氮素的吸收和利用能力,且相同处理的氮素吸收与利用指标在潍坊高肥力壤土上高于泰安低肥力砂壤土 (表5)。在潍坊试验点上,CHQ处理的小麦地上部氮积累量、氮素生产效率、氮肥表观利用率、氮肥农学效率和氮肥偏生产力均显著高于尿素处理,较尿素处理分别增加了11.37%、11.06%、28.90%、23.81%和11.06%,其它缓/控释尿素处理低于尿素处理。在泰安试验点上,4种缓/控释尿素处理的小麦地上部氮积累量、氮素生产效率、氮肥表观利用率、氮肥农学效率和氮肥偏生产力均高于尿素处理,其中,PCU、PPU和CHQ处理与尿素处理间差异显著,CHQ处理的小麦地上部氮积累量、氮素生产效率、氮肥表观利用率、氮肥农学效率和氮肥偏生产力最高,较尿素处理分别增加了42.45%、38.66%、163.05%、128.82%和38.70%,增幅高于潍坊。说明与尿素相比,在泰安一次性施用4种缓/控释尿素均可促进小麦对氮素的吸收与利用,提高氮肥利用效率,减少氮损失;而在潍坊仅CHQ处理小麦对氮素的吸收利用优于尿素处理,说明在土壤肥力较低的砂壤土上施用缓/控释尿素更能增强小麦对氮素的吸收与利用能力。

        表 5  不同缓/控释尿素处理的小麦氮素吸收与利用指标

        Table 5.  Nitrogen absorption and utilization indexes of wheat treated with different slow/controlled release urea

        地点
        Location
        处理
        Treatment
        地上部氮积累量
        N accumulation
        (kg/hm2)
        氮素生产效率
        NPE
        (kg/kg)
        氮肥表观利用率
        NFAU
        (%)
        氮肥农学效率
        NFAE
        (kg/kg)
        氮肥偏生产力
        NFP
        (kg/kg)
        潍坊 WeifangCK124.72 f33.92 a
        尿素 Urea205.60 b24.06 c33.70 b18.02 b38.80 b
        PCU192.33 c23.32 c28.17 c16.82 b37.60 b
        PPU173.01 d20.98 d20.12 d13.06 c33.83 c
        UF159.35 e19.81 d14.43 e11.17 c31.94 c
        CHQ228.98 a26.72 b43.44 a22.31 a43.09 a
        泰安 Tai’anCK72.31 e27.05 a
        尿素 Urea97.78 d13.58 d10.61 d6.28 c20.93 c
        PCU132.09 b17.81 bc24.91 b12.81 ab27.46 ab
        PPU120.87 c16.93 c20.23 c11.44 b26.10 b
        UF101.35 d15.05 d12.10 d8.56 c23.21 c
        CHQ139.29 a18.83 b27.91 a14.37 a29.03 a
        注(Note):PCU—树脂包膜尿素 Resin coated urea; PPU—多肽尿素 Peptide urea; UF—脲甲醛尿素 Formaldehyde urea; CHQ—树脂包膜与脲酶抑制剂结合型控释尿素 Urea coated with resin and added with urease inhibitor; NPE—Nitrogen production efficiency; NFAU—Nitrogen fertilizer apparent utilization; NFAE—Nitrogen fertilizer agronomic efficiency; NFPP—Nitrogen fertilizer partial productivity; 同列数据后不同字母表示同一试验点处理间差异显著 (P < 0.05) Values followed by different letters in the same column indicate significant differences among treatments in the same site at 0.05 level.
      • 施用氮肥可显著增加土壤无机氮含量,提高土壤肥力 (图1)。在潍坊试验点上,与尿素处理相比,PCU、PPU、UF、CHQ处理的土壤无机氮含量在越冬期分别降低26.26%、8.00%、14.54%、33.83%,返青期分别降低20.98%、9.17%、13.42%、29.11%,拔节期分别升高24.75%、14.50%、11.07%、24.82%,开花期分别降低9.30%、24.69%、27.66%、5.66%,而成熟期仅CHQ处理的土壤无机氮含量高于尿素处理,较尿素处理增加6.20%。说明在小麦生长前期,缓/控释尿素的氮素供应低于普通尿素;随着生育期的推进,缓/控释尿素氮素控制释放,降幅低于普通尿素;至小麦生长中期,缓/控释尿素仍能维持较高的氮素供应且高于普通尿素;而尿素处理由于在拔节期追施普通尿素,使其开花期土壤无机氮含量高于缓/控释尿素;开花期至成熟期,尿素处理土壤无机氮含量降幅最大,但仍高于除CHQ处理外的其它缓/控释尿素处理。在泰安试验点上,随着生育期的推进,各处理的土壤无机氮含量变化趋势与潍坊一致。与潍坊不同的是,尿素处理的土壤无机氮含量在返青期低于缓/控释尿素处理;而成熟期,4种缓/控释尿素处理的土壤无机氮含量均高于尿素处理,其中,CHQ处理的土壤无机氮含量最高,较尿素处理增加了81.86%。说明与尿素相比,4种缓/控释尿素维持土壤氮素供应的效果在泰安优于潍坊,缓/控释尿素在土壤肥力较低的砂壤土上优势更显。

        图  1  不同缓/控释尿素处理的土壤无机氮含量

        Figure 1.  Soil inorganic nitrogen content treated with different slow/controlled release urea

      • 施用氮肥可提高土壤脲酶活性,土壤脲酶活性随小麦生育期的推进先升高后降低 (图2)。在潍坊试验点上,越冬期和返青期的土壤脲酶活性均表现为尿素 > PPU > UF > PCU > CHQ,说明施用缓/控释尿素可以降低小麦生长前期的土壤脲酶活性,减缓尿素水解;拔节期,尿素处理的土壤脲酶活性低于4种缓/控释尿素,说明至小麦生长中期,尿素处理养分供应减少,小麦生长缓慢,根系分泌脲酶减少,而4种缓/控释尿素仍能保持较高的氮素供应,促进小麦生长;由于拔节期追施普通尿素,开花期尿素处理的土壤脲酶活性高于缓/控释尿素;开花期至成熟期,脲酶活性显著下降,尿素处理的降幅最大,但仍高于除CHQ处理外的其它缓/控释尿素处理。

        图  2  不同缓/控释尿素处理的土壤脲酶活性

        Figure 2.  Soil urease activity treated with different slow/controlled release urea

        在泰安试验点上,返青期尿素处理的土壤脲酶活性低于PPU和UF处理;追施普通尿素后,开花期尿素处理的土壤脲酶活性大幅升高但仍低于CHQ处理;在成熟期,4种缓/控释尿素处理的土壤脲酶活性均高于尿素处理;越冬期和拔节期的土壤脲酶活性规律与潍坊一致。说明与尿素相比,缓/控释尿素在泰安表现优于潍坊,在土壤肥力较低的砂壤土上施用缓/控释尿素更能提高小麦中后期的土壤脲酶活性,保证氮素供应。其中,在小麦生长前期,两地均为CHQ处理的土壤脲酶活性最低,说明树脂包膜与脲酶抑制剂结合型控释尿素更能有效抑制土壤脲酶活性,减缓尿素水解,使其在小麦生长后期仍能保持较高的土壤氮素供应,促进小麦生长。在小麦成熟期,潍坊和泰安均为CHQ处理的土壤脲酶活性最高,较尿素处理分别显著增加了6.56%和52.51%。

      • 施用缓/控释氮肥可显著提高氮肥利用率,减少氮损失[13-16]。冯爱青等[13]研究表明,树脂包膜尿素与普通尿素掺混施用可促进小麦生长,有利于小麦根系对养分的吸收及微生物繁殖,提高氮素利用率和土壤酶活性。刘运军[14]研究结果显示,多肽尿素可提高小麦分蘖成穗能力,促进小麦干物质积累,提高小麦产量与氮肥利用率。周华敏等[15]研究表明,与普通尿素相比,适当比例掺混脲醛肥可提高土壤氮素供应,有利于小麦产量形成和氮素利用率的提高。李玉等[16]研究结果显示,脲酶抑制剂与尿素掺混施用可以提高小麦产量,减缓尿素水解,提高氮肥利用率和土壤氮素供应。本研究结果表明,在小麦生长前期,普通尿素水解速度快,较缓/控释尿素更能提高土壤供氮能力,促进小麦生长;至小麦生长中后期,小麦生长迅速,对养分需求量加大,且环境温度升高,缓/控释尿素养分释放加快,仍能保持土壤中较高的氮素供应,提高土壤脲酶活性。在泰安试验点上,与基追比1∶1施用普通尿素相比,4种缓/控释尿素均可促进小麦生长,提高小麦花前干物质转运与花后干物质生产量,有利于小麦的群体构建和产量形成,增强小麦对氮素的吸收利用能力,提高氮肥利用率,与前人研究结果一致。其中,以本实验室制备的树脂包膜与脲酶抑制剂结合型控释尿素表现最优。

        农田基础地力和肥料投入共同影响土壤养分供应和作物生长[17]。本研究结果显示,相同处理的小麦生长及产量水平在潍坊高肥力壤土上整体高于泰安低肥力砂壤土。但在潍坊试验点上,除树脂包膜与脲酶抑制剂结合型控释尿素外,其它3种缓/控释尿素的肥效均低于普通尿素处理。这与泰安试验点上的结果不一致。这可能是由于潍坊试验点的土壤质地为壤土,基础肥力较高,且保水保肥能力较好,基追比1∶1施用普通尿素可保证小麦全生育期的氮素需求,促进小麦生长;而泰安试验点的土壤质地为砂壤土,保肥能力差,普通尿素水解较快,易造成养分损失,拔节期追施普通尿素并不能满足小麦生育后期对氮素的大量需求,而缓/控释尿素可缓慢释放或吸附土壤中的养分以减少氮素损失,保证土壤氮素供应。龙会英等[18]研究表明,壤土的通气性和保水保肥能力良好,较砂壤土和重壤土更有利于柱花草的生长发育和干物质积累。贾立华等[19]研究结果显示,壤土比砂土更能促进花生根系对养分的吸收利用及其产量形成。杜盼等[20]和肖丽丽等[21]研究表明,不同肥力土壤上的小麦氮营养及产量有显著差异,在相同施肥模式下,低肥力土壤对氮肥的响应度更高,其小麦增产效果优于高肥力土壤。窦怀良等[22]在甘薯上得出相同结论。这与本研究结果一致。

        本试验发现,泰安和潍坊两地均为树脂包膜与脲酶抑制剂结合型控释尿素的肥效最好,对小麦产量形成和氮素利用率的提高效果最优。前人研究表明,尿素与脲酶抑制剂或硝化抑制剂掺混施用可以提高作物产量,促进作物对氮素的吸收与利用,增加植株氮积累量,提高氮素利用率,减少氮损失,保证土壤氮素供应[4,6,23]。另有研究表明,在尿素减施的条件下,添加脲酶抑制剂或硝化抑制剂可以保证作物产量和吸氮量,提高氮素利用率,减少氮素损失[8,10,24]。而周礼恺等[25]研究表明,脲酶抑制剂与尿素机械混施会造成脲酶抑制剂的损失,减小其对尿素水解的抑制作用,施用量过多又会过度地抑制尿素的酶促转化,影响作物养分吸收。武志杰等[26]的报道中也提出,现有稳定性肥料需提高脲酶抑制剂和硝化抑制剂的稳定性和持效性。本研究中所用的树脂包膜与脲酶抑制剂结合型控释尿素将脲酶抑制剂对尿素酶促转化的抑制作用和树脂包膜对氮素的控释作用结合起来,使脲酶抑制剂也得到控释,延长了脲酶抑制剂的持效期,提高了脲酶抑制剂对脲酶的抑制效果,使尿素态氮和脲酶抑制剂同步控释,在小麦生长前期显著抑制脲酶活性,减少氮损失,在小麦生长后期仍能保持较高的氮素供应,从而延长尿素肥效,促进小麦生长。

      • 施用缓/控释尿素可以降低小麦生长前期的土壤脲酶活性,减缓尿素水解,减少氮损失,使小麦生长后期仍能维持较高的氮素供应,促进小麦生长。在泰安试验点上,与基追比1∶1施用普通尿素相比,4种缓/控释尿素均可促进小麦生长,提高小麦花前干物质转运与花后干物质生产量,有利于小麦的群体构建和产量形成,增强小麦对氮素的吸收利用能力,提高氮肥利用率,其中,以树脂包膜与脲酶抑制剂结合型控释尿素表现最优。而在潍坊试验点上,仅树脂包膜与脲酶抑制剂结合型控释尿素肥效优于普通尿素。潍坊高肥力壤土上树脂包膜与脲酶抑制剂结合型控释尿素更有利于小麦生长,而泰安低肥力砂壤土对供试缓/控释尿素的响应度更高。本试验条件下,树脂包膜与脲酶抑制剂结合型控释尿素对山东省小麦生长的促进作用最优。

    参考文献 (26)
    WeChat 关注分享

    返回顶部

    目录

      /

      返回文章
      返回