• ISSN 1008-505X
  • CN 11-3996/S
霍龙, 逄焕成, 卢闯, 赵永敢, 李玉义. 地膜覆盖结合秸秆深埋条件下盐渍土壤呼吸及其影响因素[J]. 植物营养与肥料学报, 2015, 21(5): 1209-1216. DOI: 10.11674/zwyf.2015.0514
引用本文: 霍龙, 逄焕成, 卢闯, 赵永敢, 李玉义. 地膜覆盖结合秸秆深埋条件下盐渍土壤呼吸及其影响因素[J]. 植物营养与肥料学报, 2015, 21(5): 1209-1216. DOI: 10.11674/zwyf.2015.0514
HUO Long, PANG Huan-cheng, LU Chuang, ZHAO Yong-gan, LI Yu-yi. Effect of plastic mulching along with deep burial of straw on dynamics of salinized soil respiration and its affecting factors[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(5): 1209-1216. DOI: 10.11674/zwyf.2015.0514
Citation: HUO Long, PANG Huan-cheng, LU Chuang, ZHAO Yong-gan, LI Yu-yi. Effect of plastic mulching along with deep burial of straw on dynamics of salinized soil respiration and its affecting factors[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(5): 1209-1216. DOI: 10.11674/zwyf.2015.0514

地膜覆盖结合秸秆深埋条件下盐渍土壤呼吸及其影响因素

Effect of plastic mulching along with deep burial of straw on dynamics of salinized soil respiration and its affecting factors

  • 摘要: 【目的】研究土壤呼吸排放特征及其影响因素是评价土壤碳平衡的基础。本课题组前期研究发现在地表下35~40 cm处埋设作物秸秆隔层结合地表地膜覆盖,具有明显的耕层控抑盐效果。但由于秸秆隔层结合地膜覆盖调控土壤微环境,可能影响土壤CO2的排放。然而,相关研究特别是基于野外试验的研究还比较缺乏,不利于正确评价该技术措施的综合效应。为此本研究拟通过相关试验揭示不同耕作方式对河套灌区盐渍化土壤呼吸的影响。【方法】本文以位于河套灌区实施秸秆深埋三年后的典型盐碱地农田为研究对象,观测研究地膜覆盖结合秸秆深埋条件下盐渍化土壤呼吸及温度、水分、盐分、有机质等影响因素的动态变化。该研究主要分析翻耕(CK)、翻耕结合地膜覆盖(PM)、上盖地膜下埋秸秆(PM+SL)和秸秆深埋(SL)4 种耕作措施下盐渍化土壤呼吸速率的动态变化及其与影响因素的关系。【结果】 1)4 种耕作方式的土壤呼吸速率在食葵全生育期内均呈降低趋势,PM+SL处理在整个生育期内土壤呼吸速率最高,PM次之,SL处理呼吸速率仅在蕾期较CK略高,其余时期与CK基本持平,在盛花期、成熟期10: 00和15: 00两个关键时间点各处理间土壤呼吸值同样表现为: PM+SL>PM>SL>CK;各耕作方式0—40 cm土壤温度变化趋势保持一致,仅在收获期出现差异;PM+SL处理0—40 cm土壤含水量在所有处理中均为最低值,但其在控盐和增加有机质上明显优于其它处理;2)土壤呼吸速率与0—40 cm土壤温度呈极显著的正相关关系(P0.01),与0—40 cm土壤水分、盐分、有机质含量无相关性。拟合方程显示盐渍化土壤呼吸受土壤温度、水分、盐分的综合效应影响。【结论】干旱区域盐渍化土壤的呼吸速率受土壤温度、水分、盐分等因素的综合影响,在该区域通过上盖地膜下埋秸秆等相应措施起到保温抑盐效果的同时,可增强食葵根系生长以及微生物的代谢活动。

     

    Abstract: 【Objective】 Characteristics and affecting factors of soil respiration are basis of soil carbon balance. The preliminary research found that burying straw layer under 35-40 cm below the surface along with plastic mulching at the surface made a obvious effect of controlling salinity. At the same time, this treatment could affect soil micro-microbial activity and then affect soil CO2 emission. However, the relevant research in this area is still lacking, especially based on field trial, which could affect the evaluation of the combined effect of this treatment. Therefore, this study is to reveal how different tillage treatments affect saline soil respiration. 【Method】 Taking typical saline farmland with buried straw layer for three years in Hetao Irrigation District as the study object, this trial was to study the effect of different tillage measures, including conventional tillage(CK), conventional tillage plus plastic mulching(PM), plastic mulching plus straw layer burial(PM+SL)and deep burial of straw layer(SL), on dynamic changes of saline soil respiration and its impact factors and the relationship among them. 【Results】 1)Soil respiration rates in all tillage treatments showed a decreasing trend in the sunflower growth period, the PM+SL had the highest one in the whole growth period and the PM was the second, while the respiration rate of SL was similar to that of CK except with a higher rate at the bud stage. Meanwhile, at 10: 00 and 15: 00 of the flowering and mature stage, the respiration values were: PM+SL PM SL CK. The average soil temperature in 0-40 cm had a same trend, and the differences among all tillage methods only appeared at the harvest period. Soil moisture content in 0-40 cm under PM+SL was the lowest in all treatments, but it had significant advantage in controlling salinity and increasing organic matter. 2)Soil respiration rate had a significant positive correlation(P0.01)with soil temperature, but it had no correlations with soil moisture, soil salt content and soil organic matter. The fitting equation showed the saline soil respiration was influenced by the combined effect of soil temperature, moisture and salinity. 【Conclusion】The respiration rate of saline soil in arid regions was affected by the combined effects of soil temperature, moisture and salinity, PM + SL could be used for salinity controlling and heat preservation and enhancing sunflower root growth and metabolic activity of microorganisms in this region.

     

/

返回文章
返回