• ISSN 1008-505X
  • CN 11-3996/S
刘嫣含, 李廷轩, 蒲勇, 高东东, 叶代桦. 高磷处理下矿山生态型水蓼根系耐受特征[J]. 植物营养与肥料学报, 2021, 27(12): 2160-2169. DOI: 10.11674/zwyf.2021258
引用本文: 刘嫣含, 李廷轩, 蒲勇, 高东东, 叶代桦. 高磷处理下矿山生态型水蓼根系耐受特征[J]. 植物营养与肥料学报, 2021, 27(12): 2160-2169. DOI: 10.11674/zwyf.2021258
LIU Yan-han, LI Ting-xuan, PU Yong, GAO Dong-dong, YE Dai-hua. Root tolerance characteristics of mining ecotype Polygonum hydropiper under high P application[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2160-2169. DOI: 10.11674/zwyf.2021258
Citation: LIU Yan-han, LI Ting-xuan, PU Yong, GAO Dong-dong, YE Dai-hua. Root tolerance characteristics of mining ecotype Polygonum hydropiper under high P application[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2160-2169. DOI: 10.11674/zwyf.2021258

高磷处理下矿山生态型水蓼根系耐受特征

Root tolerance characteristics of mining ecotype Polygonum hydropiper under high P application

  • 摘要:
      目的  磷富集植物对高磷具有良好的耐性是其应用于植物修复的前提。本研究探讨磷富集植物矿山生态型水蓼根系对高磷的耐受能力,为后期利用其修复环境中的过量磷提供一定的理论依据。
      方法  采用矿山生态型和非矿山生态型水蓼(ME和NME)进行了水培试验,营养液中设置无机磷2、4、8、16 mmol/L 4个高浓度处理,以正常磷0.5 mmol/L浓度为对照,分析对比了两种生态型水蓼根系对高磷的耐受特征。
      结果  随着磷浓度的增加,ME地上部和根系生物量和磷积累量均先显著增加后降低,在磷浓度4 mmol/L时出现峰值,而NME则大体呈降低趋势。高磷处理ME地上部和根系生物量分别为NME的1.35~2.56和1.18~1.86倍,除磷浓度16 mmol/L处理外,ME地上部和根系磷积累量分别为NME的1.35~2.58和1.36~1.96倍,磷积累能力更强。ME根系质膜开始受到明显损伤的营养液磷浓度是8 mmol/L,而NME是磷浓度4 mmol/L。随着磷浓度的增加,ME根系中H2O2、MDA和NME根系中的MDA含量均表现为先稳定后显著增加,而NME根系中的H2O2含量则持续增加;两种生态型水蓼根系SOD、POD和CAT活性均先显著增高后降低,分别在磷浓度4和2 mmol/L时显著高于对照。与NME相比,ME根系抗氧化酶活性更高,对H2O2和MDA的清除能力更强。两种生态型水蓼根系亚细胞组分磷含量均表现为可溶部分(含液泡)>细胞壁>细胞器。随着磷浓度的增加,两种生态型水蓼各亚细胞组分磷含量均显著增加,且在磷浓度2和4 mmol/L处理下,根系可溶部分(含液泡)磷分配比例明显高于对照,液泡是其磷素储存的重要场所。
      结论  矿山生态型水蓼对高磷的耐受能力和磷积累能力均强于非矿山生态型水蓼。高磷处理下矿山生态型水蓼存在根系自由基和保护酶动态平衡、细胞壁固持和可溶部分的液泡区隔化现象,这是其根系的重要耐受特征。

     

    Abstract:
      Objectives  Phosphorus (P) accumulation tolerance is fundamental to the phytoremediation of excessive P in the environment. Previous studies have reported mining ecotype Polygonum hydropiper as a hyperaccumulator of P.
      Methods  We conducted a hydroponic experiment using mining ecotype Polygonum hydropiper (ME) and non-mining ecotype Polygonum hydropiper (NME) as test materials. The treatments were high inorganic P concentrations in nutrient solution at 2, 4, 8, and 16 mmol/L, taking normal P concentration at 0.5 mmol/L as the control. We investigated the tolerance of ME and NME roots to high P.
      Results  Compared to normal P control, the shoot and root biomass of ME increased when exposed to P concentrations 2 and 4 mmol/L but decreased when exposed to P concentrations 8 and 16 mmol/L. The shoot and root biomass of ME was 1.35–2.56 and 1.18–1.86 times those of NME under high P treatments, showing higher tolerance to high P than NME. The shoot and root P accumulation of ME increased when exposed to P concentrations 2 and 4 mmol/L but decreased when exposed to P concentrations8 and 16 mmol/L. The shoot and root P accumulation of ME was 1.35–2.58 and 1.36–1.96 higher than NME, indicating the former's stronger P accumulation potential. The ME and NME were stained when exposed to 8 and 4 mmol/L P concentration respectively. This showed that the plasma membranes of the root cells were (P<0.05) damaged at P concentrations 8 mmol/L for ME and P concentrations 4 mmol/L for NME. With increasing P concentration, SOD, POD, and CAT activities in ME roots increased and then decreased. The concentrations of H2O2 and MDA were stable at first and then increased. However, the concentration of H2O2 exhibited a constant increase in NME roots. The P in the roots of both ME and NME was mostly distributed in the soluble fraction (containing the vacuole) and cell walls. The P content in the subcellular component (P<0.05) increased in both ME and NME roots with increasing P concentrations. The soluble fraction (containing the vacuole) P (P<0.05) increased at P concentrations 2 and 4 mmol/L than the control, indicating the importance of vacuole for P storage.
      Conclusions  The tolerance and accumulation of P in ME were stronger than NME. Under high P, ME showed root free radicals and protective enzyme dynamic balance, cell wall retention, and vacuole compartments, contributing to its root tolerance characteristics. Our findings indicate that ME shows higher antioxidant enzyme activities and lower lipid membrane peroxidation than NME.

     

/

返回文章
返回