• ISSN 1008-505X
  • CN 11-3996/S
韩天富, 都江雪, 曲潇琳, 马常宝, 王慧颖, 黄晶, 柳开楼, 刘立生, 谢建华, 吴远帆, 张会民. 1988―2019年中国农田表土有机碳库密度变化及其主要影响因素[J]. 植物营养与肥料学报, 2022, 28(7): 1145-1157. DOI: 10.11674/zwyf.2021560
引用本文: 韩天富, 都江雪, 曲潇琳, 马常宝, 王慧颖, 黄晶, 柳开楼, 刘立生, 谢建华, 吴远帆, 张会民. 1988―2019年中国农田表土有机碳库密度变化及其主要影响因素[J]. 植物营养与肥料学报, 2022, 28(7): 1145-1157. DOI: 10.11674/zwyf.2021560
HAN Tian-fu, DU Jiang-xue, QU Xiao-lin, MA Chang-bao, WANG Hui-ying, HUANG Jing, LIU Kai-lou, LIU Li-sheng, XIE Jian-hua, WU Yuan-fan, ZHANG Hui-min. Factors affecting change in topsoil organic carbon pool density in Chinese farmlands from 1988 to 2019[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1145-1157. DOI: 10.11674/zwyf.2021560
Citation: HAN Tian-fu, DU Jiang-xue, QU Xiao-lin, MA Chang-bao, WANG Hui-ying, HUANG Jing, LIU Kai-lou, LIU Li-sheng, XIE Jian-hua, WU Yuan-fan, ZHANG Hui-min. Factors affecting change in topsoil organic carbon pool density in Chinese farmlands from 1988 to 2019[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1145-1157. DOI: 10.11674/zwyf.2021560

1988―2019年中国农田表土有机碳库密度变化及其主要影响因素

Factors affecting change in topsoil organic carbon pool density in Chinese farmlands from 1988 to 2019

  • 摘要:
    目的 研究中国农田土壤有机碳(SOC)密度时空变化特征及其主要驱动因素,为土壤肥力提升、固碳减排和粮食安全提供理论依据。
    方法 基于1988至2019年农业农村部全国农田监测数据(1298个点位),分析水田、旱地和水旱轮作下SOC密度时空变化特征,利用方程拟合和提升回归树模型探究气候、施肥和土壤属性对SOC密度变化的影响。
    结果 1988―2019年全国农田表层(0―20 cm) SOC密度平均为35.13 t/hm2,不同土地利用方式下表现为水田>水旱轮作>旱地,水田和水旱轮作较旱地分别高53.2%和24.9%。SOC密度随监测时间的延长呈先降低后增加的趋势,其中水田、旱地和水旱轮作分别在2000、1998和2004年之前呈下降趋势,之后呈上升趋势。不同利用方式水田SOC密度随监测时间的变化趋势在东北地区逐渐增加,华南地区逐渐降低,西南和长江中游地区则先降低后增加,转折点分别在1995和2002年;旱地SOC密度的变化趋势在西北、华北和华南地区逐渐增加,东北、长江中游和长江下游地区先降低后增加,转折点分别在2008、2004和2004年;水旱轮作下SOC密度的变化趋势在长江中游、下游地区先降低后增加,转折点分别在2001和2013年,在西南地区呈先上升后微弱下降趋势,转折点在2012年。提升回归树结果显示,水田SOC密度后期上升阶段最重要的解释变量在西南、东北和华南区是年均温,在长江中游和下游分别是钾肥用量和土壤速效钾含量;旱地SOC密度后期上升阶段最重要的解释变量在东北为年均温,华北和华南为年均降雨,长江中游、下游区为氮肥,西北为有效磷;水旱轮作SOC密度后期上升阶段最重要的解释变量,在西南、长江中、下游地区分别为年均降雨、有效磷、氮肥。
    结论 1988―2019年全国农田表层SOC密度除华南水田外,整体上呈先降低后增加,水田、旱地和水旱轮作土壤的转折点分别在2000、1998和2004年,旱地SOC密度的提升快于水田和水旱轮作。影响表土SOC密度提升的主要因素,东北和西南地区水田和旱地为年均温,长江中、下游地区水田为钾肥投入和土壤速效钾含量,旱地为氮肥投入;华南地区水田为年均温,旱地为年降雨量;华北和西北地区旱地为年均降雨和土壤有效磷含量;西南和长江中游水旱轮作区为土壤有效磷含量,而长江下游为土壤速效钾含量。

     

    Abstract:
    Objectives The objective of this study was to analyze the characteristic change in soil organic carbon (SOC) density and the driving factors in China to provide a theoretical basis for soil fertility improvement, carbon sequestration, and food security.
    Methods This study employs the national farmland monitoring database of the Ministry of Agriculture and Rural Affairs from 1988 to 2019 (1298 sites) to examine the spatial-temporal change in SOC density under paddy, upland, and upland-paddy rotations. Further, the effects of climate, fertilization, and soil properties on SOC density were investigated using equation fitting and boosting regression tree model.
    Results From 1988 to 2019, the average SOC density in Chinese farmlands at the surface layer (0–20 cm) was 35.13 t/hm2. The order of the SOC density was paddy soil > paddy-upland rotation soil > upland soil. The SOC density in paddy and paddy-upland rotation soil was 53.2% and 24.9% higher than in upland soil. The density of SOC decreased at first and subsequently increased as the monitoring time extended. The SOC density decreased before 2000, 1998, and 2004 in paddy, upland, and paddy-upland rotation, respectively, and subsequently increased. For paddy soil, SOC density increased in Northeast China (NE), decreased in South China (SC), decreased and then increased in Southwest China (SW, turning point was in 1995) and Middle of Yangzi River (MYR, turning point 2002) with the increase of monitoring time. The SOC density gradually increased in Northwest China (NW), North China (NC), and SC for upland soil. It decreased and then increased in NE (in 2008), MYR (in 2004), and Lower of Yangzi River (LYR, in 2004). For the paddy-upland rotation, the SOC density in MYR (in 2001) and LYR (in 2013) decreased at first and later increased with time while showing a slight and fluctuating trend of increase-decrease in SW (in 2012). The results of boosting regression tree showed that the most important explanatory variables in the rising stage of SOC density in paddy soils were mean annual temperature (MAT) in the SW, NE, and SC, potassium fertilizer input in the MYR, and soil available potassium in the LYR. For the raising stage of SOC density in upland soils, the most important explanatory variables were MAT in the NE, mean annual precipitation (MAP) in the NC and SC, nitrogen input (NF) in the MYR and LYR, and available phosphorus (AP) in the NW. For the paddy-upland rotation soils, the MAP, AP, and NF were the most important influencing factors of SOC density in the rising stage in the SW, MYR, and LYR regions, respectively.
    Conclusions From 1988 to 2019, the density of surface SOC in paddy fields, dryland, and paddy-upland rotation field decreased before 2000, 1998, and 2004, respectively. Subsequently, there was a general increase in the SOC, except in the paddy field in South China. The main factors driving the change in SOC density were the annual temperature for the upland and paddy fields in the Northeast and Southwest China, potassium input and soil available K content for the paddy field, and nitrogen input for upland of Middle and Lower of Yangtze River. Moreover, annual temperature drives SOC in the paddy field and rainfall for the upland in South China; the rainfall and soil available P for the upland in North China and Northwest China; the soil available P for the paddy-upland rotation field in southwest China and Middle of Yangtze River; and soil available K for paddy-upland rotation field in Lower of Yangtze River.

     

/

返回文章
返回