• ISSN 1008-505X
  • CN 11-3996/S
姚瑞琪, 钭从越, 王英凡, 刘秀, 吴良欢, 马庆旭. 土壤可溶性有机硫的微生物分解与植物利用机制[J]. 植物营养与肥料学报. DOI: 10.11674/zwyf.2023378
引用本文: 姚瑞琪, 钭从越, 王英凡, 刘秀, 吴良欢, 马庆旭. 土壤可溶性有机硫的微生物分解与植物利用机制[J]. 植物营养与肥料学报. DOI: 10.11674/zwyf.2023378
YAO Rui-qi, TOU Cong-yue, WANG Ying-fan, LIU Xiu, WU Liang-huan, MA Qing-xu. Microbial decomposition and plant bioavailability of dissolved organic sulfur in soil[J]. Journal of Plant Nutrition and Fertilizers. DOI: 10.11674/zwyf.2023378
Citation: YAO Rui-qi, TOU Cong-yue, WANG Ying-fan, LIU Xiu, WU Liang-huan, MA Qing-xu. Microbial decomposition and plant bioavailability of dissolved organic sulfur in soil[J]. Journal of Plant Nutrition and Fertilizers. DOI: 10.11674/zwyf.2023378

土壤可溶性有机硫的微生物分解与植物利用机制

Microbial decomposition and plant bioavailability of dissolved organic sulfur in soil

  • 摘要: 硫(S)是植物生长所必需的一种营养元素,近年来植物的潜在缺硫现象在全球范围内普遍发生。可溶性有机硫(DOS)作为土壤硫的一种重要形态,可被微生物快速分解为硫酸盐而被植物吸收,因此明确土壤DOS含量、组成、微生物分解机制和植物利用过程有利于解决潜在缺硫问题。本文综述了土壤DOS(可溶性蛋白质、含硫氨基酸蛋氨酸(Met)和半胱氨酸(Cys)的微生物分解过程及植物吸收利用机制。可溶性蛋白质可以在数天内分解成无机硫(SO42−),而含硫氨基酸可以在数分钟到数小时内被分解。微生物吸收含硫氨基酸吸收后的几分钟到几小时内,可将含硫氨基酸中的碳、氮和硫分别以CO2、NH4+和SO42−的形式释放到微生物体外,释放的无机硫会被微生物再次利用以满足其生长发育。微生物能迅速利用DOS(Met、Cys),当其被微生物同化时,其原始分子结构决定了其转化成的生物大分子,从而影响DOS与SO42−之间的转化速率。Cys的硫醇基(H-S-C)易被氧化,因此微生物吸收利用Cys后SO42−释放量高于Met。小麦和油菜对Met和Cys的摄取量随着其供应量的增加而增加,在田间条件下,小麦和油菜可吸收0.63%~2.2%的外源Cys和0.4%~2.1%的外源Met。Met和Cys在植物氮营养中的作用有限,但它们在植物硫营养中的作用非常重要,约占植物硫吸收总量的10%。土壤DOS可被微生物快速分解,产生的SO42−可被植物快速吸收利用。即使存在土壤微生物的激烈竞争,植物也能够吸收完整的分子态有机硫(Met和Cys),是植物生长的重要硫源,并且其吸收主要发生在富含有机物的土壤中。

     

    Abstract: Sulfur (S) is essential for plant growth, however, potential sulfur deficiency is happening worldwide. Soluble organic sulfur (DOS) is an important form of soil sulfur, and can be decomposed quickly into sulphate by microorganisms for the absorption of plants. Clarifying the pathways and influence factors of DOS microbial decomposition process and plant uptake is crucial for the regulation of plant S nutrition. Therefore, we reviewed the researches on plant bioavailability and microbial decomposition of DOS, focusing mainly on proteins, the S-containing amino acids methionine (Met) and cysteine (Cys). Soluble proteins can be decomposed to SO42− within days, while S-containing amino acids can be decomposed within minutes to hours. After absorbed into microbial biomass, the carbon, nitrogen, and sulfur in S-containing amino acids would be released outside the microorganisms in form of CO2, NH4+, and SO42− within minutes to hours, the microorganisms will utilize the released inorganic sulfur and nitrogen to meet their growth requirements cyclically. Microorganisms assimilate DOS (Met and Cys) rapidly, and the original molecular structures of DOS dictate the resulting biopolymers upon microbial assimilation, thereby influencing the rate of conversion between DOS and SO42−. The thiol group (H-S-C) of cysteine is susceptible to oxidation, resulting in a higher release of SO42− after utilized by microorganisms, compared to methionine. The uptake of methionine and cysteine by wheat and rapeseed increase with the enhanced supply of sulfur in the field. Studies have found that they can absorb 0.63%−2.2% of added cysteine and 0.4%−2.1% of methionine. Met and Cys have a limited role in plant nitrogen uptake, but they play very important roles in sulfur nutrition, accounting for about 10% of total plant sulfur uptake. The DOS can be decomposed by soil microorganisms rapidly, and the produced SO42− is a superior sulfur source for plant absorption. Even in the face of intense competition with soil microorganisms, plants are capable of absorbing intact molecular organic sulfur (Met and Cys), especially in soils rich in organic matter.

     

/

返回文章
返回