应用多酚--叶绿素仪监测棉花氮素营养状况研究

殷星,侯振安,治军*,闭伟,刘凯,王方斌,廖欢,甘浩天,刘少华,孙嘉璘 (石河子大学农学院农业资源与环境系,新疆石河子 832003)

摘要:【目的】通过田间试验,研究使用多酚-叶绿素仪对棉花进行快速无损氮素营养诊断适宜的指标。 【方法】田间试验在新疆石河子市进行,设3个施氮处理,分别为施纯N0、180和240kg/hm²,分别用N0、N180和N240表示。所有氮肥分5次随滴灌施入,每次施肥后3天,利用多酚-叶绿素仪(Dualex-4)和SPAD叶绿素 仪分别测定20株棉花叶片的氮平衡指数(NBI)、Chl值和SPAD值,同步采样测定棉花叶片全氮含量,及0-20 cm、0-40 cm和0-60 cm 土层硝态氮含量。【结果】随着施氮量的增加棉花叶片全氮含量和土壤硝态氮含量 均显著增加。其中,0-40 cm 土层硝态氮含量与棉花叶片全氮含量关系最密切。增加氮肥施用量,棉花叶片氮 素营养诊断指标NBI、Chl值和SPAD值均显著增加。棉花叶片NBI、Chl和SPAD与叶片全氮含量均呈极显著 正相关关系,且相关系数(r)均达到0.8以上。相关性模型校验结果表明,棉花叶片全氮含量实测值与预测值的 平均相对误差(RE)分别为-4.0%(NBI)、-3.1%(Chl)和-5.7%(SAPD)。其中,氮平衡指数(NBI)模型对棉花叶 片全氮含量的预测精度最高,与实测值的相关系数达到了0.9143,平均绝对百分比误差(MAPE)为6.91%;标 准均方根误差(nRMSE)为8.21%。棉花叶片NBI、Chl和SPAD与土壤硝态氮的模型决定系数表现为NBI > Chl > SPAD。模型校验分析表明,NBI模型与0-40 cm 土层硝态氮实测含量的相关性最高,相关系数为0.9116, 预测值与实测值的MAPE和nRMSE分别为14.11%和17.88%。【结论】应用多酚-叶绿素仪监测棉花氮素营 养,氮平衡指数(NBI)与棉花叶片氮含量和0-40 cm 土层硝态氮含量的相关性最高,预测值与实测值的误差仅 为6.91%和14.11%,可以满足膜下滴灌条件下棉花氮素营养的快速诊断需求。

关键词:多酚--叶绿素仪; 氮素平衡指数; 叶绿素; SPAD; 土壤硝态氮含量; 棉花叶片全氮含量; 模型预测精度

Application of polyphenol-chlorophyll meter to monitor cotton N nutrition status

YIN Xing, HOU Zhen-an, YE Jun^{*}, MIN Wei, LIU Kai, WANG Fang-bin, LIAO Huan, GAN Hao-tian, LIU Shao-hua, SUN Jia-lin

(Department of Resources and Environmental Science, Colloge of Agronomy, Shihezi University, Shihezi, Xinjiang 832003, China)

Abstract: [Objectives] We studied the suitable parameter in diagnosing cotton N nutrition using the polyphenol-chlorophyll meter in the field. **[Methods]** A field experiment was set up in Shihezi, Xinjiang, with three N application rates: N 0, 180, and 240 kg/hm², expressed as N0, N180 and N240. The N fertilizer treatments were topdressed 5 times with drip irrigation. Nitrogen balance index (NBI), Chl, and SPAD values of 20 cotton plants leaves were measured on the third day after topdressing, using both Polyphenol-chlorophyll meter (Dualex-4) and SPAD chlorophyll meter. The total N content of cotton leaves and the nitrate-nitrogen content in 0–20 cm, 0–40 cm and 0–60 cm soil layers were determined simultaneously. **[Results]** With increasing N applicationrate, the total N content of cotton leaves and soil nitrate-nitrogen content increased significantly. The soil NO₃⁻-N content in the 0–40 cm soil layer had the closest relationship with the total N content of cotton leaves significantly increased with

收稿日期: 2020-12-23 接受日期: 2021-05-12

基金项目:国家重点研发计划(2017YFD0200100,2018YFD0800800);兵团中青年科技创新领军人才计划(2016BC001)。

联系方式: 殷星 E-mail: 18290777404@163.com; * 通信作者 冶军 E-mail: yejun.shz@163.com

increasing N application rate, and were positively correlated with the total N content of cotton leaves. The correlation coefficients were all above 0.8. The average relative error (RE) of the measured and predicted values of leaf total N content was -4.0% (NBI), -3.1% (Chl), and -5.7% (SAPD), respectively. The NBI exhibited the highest prediction accuracy for leaf N content, with an *r*-value of 0.9143, average absolute percentage error (MAPE) of 6.91%, and the standard root mean square error (nRMSE) was 8.21%. The model determination coefficient (R^2) of the diagnostic index with soil NO₃⁻-N content was in the descending order NBI > Chl > SPAD. The NBI was the most sensitive to NO₃⁻-N content in 0–40 cm soil layer, with *r*-value of 0.9116, MAPE of 14.11%, and nRMSE of 17.88%. **[Conclusions]** When using the polyphenol-chlorophyll meter to diagnose N nutrition, we find that the N balance index (NBI) is sensitive and accurate in reflecting cotton leaf N content and the NO₃⁻-N content in 0–40 cm soil layer. The average absolute percentage error (MAPE) between the predicted and measured values is as low as 6.91% and 14.11%, respectively, which could meet the requirement for rapid diagnosis of cotton N nutrition.

Key words: polyphenol-chlorophyll meter; nitrogen balance index; chlorophyll; SPAD; soil nitrate content; leaf total N content; prediction accuracy

土壤 NO,⁻-N 是作物氮素的主要来源,作物吸收 的氮素约 50% 来自于土壤,有些则高达 70% 以 上¹¹。土壤中的氮素常常不能满足作物生长需求,需 要通过施肥来补充四。但过量施肥会导致氮肥利用率 降低,土壤温室气体排放加剧,及地表水、地下水 污染等一系列环境问题^[3]。因此,适时合理的施肥至 关重要。由于作物当季吸收利用的氮素养分来自于 土壤硝态氮和铵态氮,二者均属无机氮4%。侯秀玲等59 研究表明,通过测定一定土壤剖面中的无机氮含量 来确定作物的氮肥用量,即土壤无机氮法 (Nmin), 可以减少氮肥损失、提高氮肥利用率。还有研究认 为,在旱地土壤中只需通过测定土壤硝态氮含量进 行施肥研究也是行之有效的方法[6]。然而,土壤 Nmin 法有一定的专业性要求,测试周期相对较长, 且费时费力,很难满足棉花膜下滴灌技术对养分状 况的实时需要^[7]。

作物氮素养分与土壤无机氮密切相关^[8],测定作 物氮素含量可以反映土壤的供氮能力以及施肥效 应。叶片是植物光合作用合成有机物的主要器官, 在可见光波段内植株叶片对光的反射率和吸收率受 叶绿素的影响最大^[9]。叶片中的全氮有 50%~70% 用 于叶绿体的形成^[10],叶绿素含量随着施氮量的增加而 增加^[11],这一发现为采用叶绿素仪进行作物氮素营养 诊断提供了理论基础,并且已经在棉花^[12]、小 麦^[13]和玉米^[14]等作物上开展了大量研究。王亚飞^[15] 研究表明小麦叶片叶绿素相对含量 (SPAD 值),在一 定施氮量范围内随施氮量的增加而增加;过量施 氮,SPAD 值甚至出现下降趋势。Richardson 等^[16]研 究发现,随着叶绿素含量的增加,通过 SPAD 值估 算叶片叶绿素含量的准确性较差。此外,也有研究 应用多酚仪 (Dualex-3) 测定小麦和玉米叶片中多酚 (Phen)含量来诊断氮素营养状态^[17-19]。Cartelat 等^[17]提 出联合使用 SPAD 仪和多酚仪 (Dualex-3),采用叶绿 素与多酚含量的比值 (Chl/Phen 比值) 能更好地表征 小麦氮素状况。Tremblay 等^[18]证实玉米叶片的 Chl/Phen 比值与施氮量密切相关,且较其他诊断指 标更为敏感和稳定。目前,多酚–叶绿素仪 (Dualex-4)可直接测定 Chl/Phen 比值,并称为氮平衡指数 (NBI)^[11]。但是应用多酚–叶绿素仪 (Dualex-4) 在滴灌 棉花氮素营养诊断方面的研究还鲜有报道。

新疆是我国最大的优质棉花生产基地^[20],据 2019年国家统计局资料显示,棉花种植面积占全国 棉花面积的76%、总产占全国84.9%,连续25年位 居全国第一。本研究通过田间试验,应用多酚-叶绿 素仪 (Dualex-4)和 SPAD 叶绿素仪进行棉花氮素营 养诊断,探讨多酚-叶绿素仪 (Dualex-4)用于棉花氮 素营养诊断的可行性,为新疆棉花氮肥合理施用提 供理论依据。

1 材料与方法

1.1 试验设计

1.1.1 氮肥用量试验 氮肥用量试验于 2019 年在 新疆石河子市天业生态园进行。土壤类型为灌耕灰 漠土,质地为壤土。耕层 (0—20 cm) 土壤容重 1.32 g/cm³、有机质 18.9 g/kg、全氮 1.13 g/kg、有效磷
28.74 mg/kg、速效钾 421 mg/kg、硝态氮含量 7.97 mg/kg。供试棉花品种'新陆早45号'。

试验设置 3 个施氮水平,分别为施纯氮 0、180 和 240 kg/hm²,用 N0、N180 和 N240 表示。每个处 理重复 3 次,共 9 个试验小区,小区面积为 45.6 m²。

棉花采用膜下滴灌,1膜3管6行,行距配置为 (66+10) cm,株距10 cm,毛管间距为76 cm。棉花 于2019年4月20日播种,采用"干播湿出"方 式,即播种后滴出苗水40 mm。棉花于5月5日出 苗,生长期间共灌水9次,灌溉定额450 mm,灌水 从6月中旬开始,8月下旬结束,灌水周期7~12 天。试验中各处理氮肥在棉花生长期内分5次随水 滴施,施用时间及比例分别为:2019年6月24日 (9%)、7月6日(13%)、7月10日(23%)、7月20日 (25%)、7月30日(30%)。各处理磷钾肥施用量保持 一致,P₂O₅105 kg/hm²、K₂O 75 kg/hm²全部追施。其 它栽培管理措施与当地大田生产一致。

各试验小区随机选取 3 个采样点,于每次施肥 后第 3 天,即分别于出苗后 54、66、70、80、 90 天,每个样点选择长势均匀一致的棉花 20 株,于 上午 9:00—12:00,使用多酚–叶绿素仪 (Dualex-4) 和 SPAD 叶绿素仪分别测定倒四叶叶片上部^[10,21-22], 并记录测定的氮平衡指数 (NBI)、Chl 值和 SPAD 值。同时,采集测试植株叶片样品,于 105℃ 杀青 30 min 后,在 75℃ 下烘干至恒重。样品被粉碎后过 1 mm 筛,用 H₂SO₄-H₂O₂ 消煮后,凯氏定氮法测定 叶片的全氮含量^[23]。

每个试验小区在用叶绿素仪监测后,随机选取 3个采样点,每个样点选择棉花长势均匀的位置,在 两株棉花间滴灌带出水口的下方,用土钻采取0— 20 cm、20—40 cm 和40—60 cm 土样,装入自封 袋,当天带回实验室称取鲜土样5g,加入2 mol/L KCl 50 mL 浸提,振荡1h 后过滤,采用紫外分光光 度法测定土壤硝态氮含量^[24]。并同步取部分鲜样放入 干燥的铝盒中,用烘干法测定土壤含水率。0—40 cm 和 0—60 cm 土层硝态氮含量,通过不同土层硝 态氮含量进行加权平均计算得出。

1.1.2 大田验证试验 试验于 2020 年在石河子大 学教学实验场进行,根据调查,选取氮肥施用量存 在一定差异的棉田 30 块,施氮量在 250~330 kg/hm², 其耕层 (0—20 cm) 土壤肥力见表 1。在棉花开花期 取样,植株和土壤采集及测试方法同 1.1.1。

1.2 模型的建立与验证

1.2.1 模型的建立 采用 2019 年氮肥用量试验获 取的数据,分别进行土壤硝态氮与棉花叶片全氮含 量相关性,氮素营养诊断指标 (NBI、Chl和 SPAD) 与棉花叶片全氮和土壤硝态氮含量相关性分析。根 据相关系数判断两个变量之间的相关程度,对达到 显著水平的变量之间进行回归分析。根据分析的结 果建立以下模型:1)棉花叶片全氮含量的预测模 型;2)土壤硝态氮的预测模型。

1.2.2 模型的验证 采用 2020 年大田调查试验获 得的氮素营养诊断指标 (NBI、Chl 和 SPAD) 预测棉 花叶片全氮和土壤硝态氮含量。采用相关系数、均 方误差 (MSE)、均方根误差 (RMSE)、平均绝对误差 (MAE) 和相对误差 (RE) 作为模型预测精度的评价指 标。一般而言,相关系数相对较高或者 MSE、 RMSE、MAE 相对较低,说明模型的预测精度较高;反之,模型预测精度较低。其中,相关系数|r| ≥ 0.8 时为高度相关; 0.5 ≤ |r| < 0.8 时为中度相关; 0.3 ≤ |r| < 0.5 时为低度相关^[25]。RE (%)的评价范围 为: $-5 \le$ RE ≤ 5 (优); $-10 \le$ RE < -5 或 5 < RE \le 10 (良); $-20 \le$ RE < -10 或 10 < RE ≤ 20 (中); > 20 或 < -20 (差)^[26]。

比较各诊断指标对棉花氮素营养状况预测时, 采用平均绝对百分比误差 (MAPE) 和标准均方根误 差 (nRMSE) 进行表征,因为 MAPE、nRMSE 属于无 量纲统计量。因此,可以在不同变量间进行比较, 其值越小则表明模型模拟精确度越高。

	表1	供试	帛田 0	-20	cm ∃	- 层土:	壤肥力指	标	
-	~				• •	-			~

Table 1 Son fertility index in 0–20 cm fayer of the cotton neus											
指标	Index	最小值 Min.	最大值 Max.	平均值 Average	标准差 SD						
全氮 Total N (g/kg)	0.60	1.30	0.94	0.19						
有机质 Organi	c matter (g/kg)	10.17	20.59	14.82	3.26						
有效磷 Availa	ble P (mg/kg)	5.97	27.56	15.82	6.58						
速效钾 Availa	ble K (mg/kg)	258.73	444.40	331.38	62.04						
硝态氮 Nitrate	N (mg/kg)	6.85	30.16	14.92	6.75						

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (F_i - A_i)^2$$
 (1)

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (F_i - A_i)^2}$$
 (2)

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |F_i - A_i|$$
 (3)

$$RE = \frac{(A_i - F_i)}{A_i} \times 100\%$$
(4)

MAPE =
$$\frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{F_{i-}A_i}{A_i} \right|$$
 (5)

$$nRMSE = \frac{RMSE}{\bar{A}_i} \times 100\%$$
 (6)

式中: *F_i*—为第*i*个预测值; *A_i*—为第*i*个实测值; *Ā_i*—实测值平均。

1.3 数据处理与分析

数据方差分析用 SPSS 11.5 进行,处理间多重比 较采用 Duncan 法 (*P* < 0.05 为差异显著),试验数据 相关和回归分析采用 Excel 2013 制作图表。

2 结果与分析

2.1 不同施氮水平下土壤硝态氮含量的变化

随着施氮量的增加,0—20 cm 和 20—40 cm 土 层硝态氮含量均显著增加,且在棉花出苗后 54~70 天急剧增加,80~90 天缓慢增加,然而在 40—60 cm 土层,出苗后 54 天 N180 和 N240 处理土壤硝态 氮含量差异不显著,可能是因为前期氮肥投入比例 较小,向下层的迁移能力较弱(图 1)。 图 1 显示, 施氮肥显著影响土壤中的硝态氮含量, 每次施肥后 3 个施肥处理之间的硝态氮含量差异显著,此外,随着施氮量的增加, 0—20 cm 土层硝态氮含量与 20—40 cm 和 40—60 cm 土层的差异加大,显示出表层硝态氮的积累。

2.2 不同施氮水平下棉花叶片全氮含量的变化

增施氮肥可提高棉花叶片全氮含量(图 2)。其 中,在出苗后 54~70天(前 3 次施肥),棉花由营养 生长向生殖生长过度,养分也由营养器官向生殖器 官转移,导致 N180 和 N240处理叶片中的氮含量呈 先升后降变化趋势。在 70~90天(第 4 次、第 5 次施 肥),棉花主要以生殖生长为主,此时期土壤硝态氮 含量持续稳定地增加,为棉花的生长提供了充足的 养分,棉花叶片全氮含量的变化减小,且趋于稳 定。不施肥对照的棉花叶片氮含量则持续下降。

2.3 土壤硝态氮与棉花叶片全氮含量的相关性 分析

将不同土层深度土壤的硝态氮含量与棉花叶片 全氮含量用一元线性方程进行拟合,均存在极显著 的相关关系 (*P* < 0.01,图 3)。棉花叶片氮含量与 0—40 cm 土壤硝态氮含量模型的决定系数 (*R*²) 达到 了 0.8317,且高于 0—20 cm 和 0—60 cm 土层相关 性模型的决定系数。因此,0—40 cm 土层硝态氮含 量与棉花叶片全氮含量关系最为密切。

2.4 不同施氮处理棉花叶片 NBI、Chl 值和 SPAD 值的变化

棉花叶片氮平衡指数 (NBI)、Chl 值和 SPAD 值 对不同施肥处理的响应存在一定差异 (图 4)。3 个诊 断指标在出苗后 54~66 天对施肥量的变化不是很敏

图 1 不同施氮水平下各土层硝态氮含量的变化

Fig. 1 Changes in nitrate-nitrogen content in different soil layers under different nitrogen application levels

[注(Note): 柱上不同小写字母表示处理间差异显著 (P < 0.05)

Different lowercase letters above the bars indicate significant difference among treatments ($P \le 0.05$).]

感,而在出苗后 70~90 天,随施氮总量的增加, NBI 与 Chl 值变化显著, SPAD 值虽然也有变化,但 变化幅度小于 NBI 和 Chl 值。

2.5 棉花氮素营养状况预测模型的建立

2.5.1 棉花叶片全氮含量预测模型 棉花氮素营养 诊断指标 (NBI、Chl值和 SPAD值)与棉花叶片全氮 含量均呈极显著的线性正相关关系 (P < 0.01,图5), 相关系数分别为 0.8984、0.8615和 0.8325。进一步 以氮素营养诊断指标为自变量,棉花叶片全氮含量

Fig. 2 Changes in total N content in cotton leaves under different N application levels

为因变量,建立棉花叶片全氮含量预测模型。其中,模型的决定系数分别为 0.8072 (NBI)、0.7421 (Chl) 和 0.6931 (SPAD)。依据决定系数,氮平衡指数 对棉花叶片氮含量的预测最准确 (表 2)。

2.5.2 土壤硝态氮含量预测模型 由图6可知,氮 平衡指数 (NBI) 和 Chl 值与不同土层硝态氮含量之间 均呈现极显著的线性正相关关系 (P < 0.01),相关系 数分别为 0.8883~0.9113 和 0.8392~0.8759。进一步 以 NBI、Chl 值为自变量,用不同土层的土壤硝态氮 含量为因变量建立回归模型,其中决定系数分别为 0.7890~0.8304 (NBI)、0.7042~0.7672 (Chl)。然而 对 SPAD 而言,当 SPAD 值 < 57 时,随 SPAD 值的 增加土壤硝态氮含量没有显著增加; SPAD ≥ 57 后 土壤硝态氮含量随 SPAD 值的增加迅速升高,在 0-20 cm 和 0-40 cm 土层的相关系数分别为 0.6406 和 0.5721 (P < 0.01), 而在 0-60 cm 土层的相 关系数为 0.5381 (P < 0.05)。总体来看, NBI 与土壤 硝态氮含量线性模型的决定系数高于 Chl 和 SPAD 模型(表3)。

此外,NBI与0—40 cm 土壤硝态氮模型的决定 系数为0.8304,高于0—20 cm 和0—60 cm 土层硝 态氮预测模型的决定系数。说明氮平衡指数(NBI) 能够较好地反映土壤中硝态氮含量状况,特别在棉

图 5 棉花叶片全氮含量 (y) 与氮素营养诊断指标 (x) 的相关性分析 (n = 23) Fig. 5 Correlation analysis of cotton leaf total N content (y) and N nutrition diagnostic index (x)

表 2 棉花叶片全氮含量的预测模型

 Table 2
 Prediction model of total N content in cotton leaves

1204

Table 3 Prediction model of soil nitrate-nitrogen										
诊断指标 Diagnostic index	土层深度 Soil depth (cm)	样本量 Sample number	回归方程 Regression equation	决定系数 R ²						
氮平衡指数 N balance index (NBI)	0—20	23	y = 4.5312x - 66.887	0.7938						
	0—40	23	y = 3.6531x - 53.125	0.8304						
	0—60	23	y = 3.5733x - 52.952	0.7890						
Chl 值 Chl value	0—20	23	y = 2.8075x - 84.720	0.7042						
	0—40	23	y = 2.3094x - 69.263	0.7672						
	0—60	23	y = 2.2700x - 69.161	0.7362						
SPAD 值 SPAD value	0—20	21	y = 4.4627x - 239.05	0.4104						
	0—40	21	y = 3.0576x - 159.98	0.3273						
	0—60	21	v = 2.9975x - 157.93	0.2895						

表 3 土壤硝态氮的预测模型 Table 3 Prediction model of soil nitrate-nitrogen

花根系聚集的 0—40 cm 土层,关系更为密切。

2.6 棉花氮素营养状况预测模型的验证

2.6.1 棉花叶片全氮含量预测的可靠性验证 由表4 可知,在30个样点土壤硝态氮含量差异较大的地 块,棉花叶片全氮含量的 NBI、Chl 和 SPAD 模型预 测值与实测值之间平均相对误差 (RE) 分别为 -4.0%、-3.1%和-5.7%。具体到每块田地,NBI模 型预测值准确性"差"的只有1个样点, 而 Chl 和 SPAD 模型预测值准确性"差"的样点数分别为 4、 9。棉花叶片全氮含量预测值与实测值之间均存在极 显著的相关关系 (P < 0.01, 表 5)。其中, 相关系数 分别为 0.9143 (NBI)、 0.8639 (Chl)、 0.6526 (SPAD), 并且 NBI 和 Chl 模型预测结果达到高度相关; 而 SPAD 模型的预测结果为中度相关。NBI 模型的均方 误差 (MSE)、均方根误差 (RMSE)、平均绝对误差 (MAE) 均优于 Chl 和 SPAD 模型。且平均绝对百分 比误差 (MAPE) 表现为: 6.91%(NBI) < 9.37%(Chl) < 14.07%(SPAD); nRMSE 与 MAPE 表现规律一致。 说明利用氮平衡指数 (NBI) 能够较敏感地反映棉花 叶片全氮含量。

2.6.2 土壤硝态氮含量预测的可靠性验证 由 表6可知,0—20 cm 土层硝态氮实测值与预测值之 间平均相对误差 (RE)分别为:-22.59% (NBI)、 -17.77% (Chl)和-9.62% (SPAD)。然而0—40 cm 和 0—60 cm 土层硝态氮实测值与 NBI、Chl、SPAD 模 型预测值之间平均相对误差分别为:-11.65%、 -7.84%、-5.34% (表7)和-18.18%、-14.42%、 -12.31% (表8)。由于各诊断指标是间接对土壤硝态 氮含量进行预测,导致土壤硝态氮预测模型的相对 误差变化范围相对较大。其中,NBI 模型的预测精 度低于 Chl 和 SPAD 模型,主要是因为 Chl 和 SPAD 模型相对误差 (RE) 较大的值均多于 NBI 模型,且在 计算过程中相互抵消,会影响预测精度的准确性。 因此,进一步验证分析发现,NBI 模型的 MSE、 RMSE、MAE 值均低于 Chl 和 SPAD 模型 (表 9)。

此外,0—20 cm、0—40 cm 和0—60 cm 土层硝 态氮实测值与 NBI 模型预测值的相关系数分别为 0.8934、0.9116 和0.8786,且模型预测评价指标均表 现为0—40 cm 土层硝态氮含量较低。其中,0—40 cm 土层硝态氮 MAPE 和 nRMSE 分别为 14.11% 和 17.88%。说明氮平衡指数与0—40 cm 土层硝态氮含 量关系较为密切。

3 讨论

3.1 不同深度土壤硝态氮与棉花叶片全氮含量的 关系

在干旱与半干旱区,土壤硝态氮对作物营养的 供应起到关键的作用^[27]。由于植株体内的氮素丰缺状 况是土壤氮素供应能力、植物氮素需求和吸收能力 的综合反映。因此,叶片氮含量可以作为一种衡量 氮素营养水平高低的指标^[28]。本研究表明,在棉花各 生育期 0—20 cm、0—40 cm 和 0—60 cm 土层硝态 氮含量与棉花叶片氮含量之间均存在极显著的线性 关系。说明叶片中的氮含量可以用来反映土壤中硝 态氮的丰缺程度。胡明芳等^[29]研究表明,滴灌条件下 硝态氮峰值出现在土壤 40 cm 深处,并且滴灌条件 下棉花根系集中分布在 0—40 cm 土层,占到总根量 的 85% 以上^[30],根系是作物对养分吸收的主要器官^[31],

	Table + Re	氮平衡指	数 N balance ir	ndex (NBI)	Cl	hl 值 Chl val	ue	SPAD 值 SPAD value		
样点 Field	实测值 Measured value	测定值 Measured value	预测值 Predicted value	相对误差 RE (%)	测定值 Measured value	预测值 Predicted value	相对误差 RE (%)	测定值 Measured value	预测值 Predicted value	相对误差 RE (%)
1	1.962	16.6	1.947	0.75	32.2	1.78	9.06	51.6	1.827	6.88
2	2.470	19.5	2.655	-7.48	36.3	2.42	2.13	59.4	2.966	-20.07
3	2.945	20.2	2.839	3.62	37.3	2.56	13.14	53.9	2.162	26.58
4	3.131	20.6	2.935	6.26	38.1	2.68	14.30	56.9	2.600	16.95
5	2.687	20.1	2.817	-4.83	37.4	2.58	4.09	55.8	2.434	9.41
6	3.390	22.1	3.313	2.25	40.8	3.11	8.37	60.5	3.126	7.77
7	3.654	23.7	3.695	-1.13	43.6	3.53	3.43	61.2	3.233	11.51
8	3.489	23.9	3.752	-7.56	43.6	3.53	-1.29	63.3	3.531	-1.21
9	2.141	15.9	1.778	16.94	31.0	1.60	25.15	52.9	2.014	5.93
10	2.775	20.4	2.877	-3.66	38.9	2.82	-1.49	60.2	3.084	-11.13
11	2.750	20.8	2.974	-8.14	39.9	2.97	-7.86	60.3	3.097	-12.63
12	2.932	21.3	3.100	-5.73	41.8	3.25	-10.86	62.0	3.342	-13.99
13	2.673	20.8	2.987	-11.72	40.5	3.06	-14.51	61.5	3.276	-22.56
14	3.177	21.8	3.225	-1.51	42.3	3.33	-4.90	61.8	3.313	-4.31
15	3.744	23.0	3.521	5.95	44.5	3.68	1.77	64.7	3.745	-0.04
16	3.377	23.4	3.615	-7.05	45.8	3.87	-14.63	64.4	3.702	-9.61
17	3.507	22.7	3.453	1.53	42.6	3.38	3.76	59.2	2.937	16.26
18	3.584	23.5	3.653	-1.94	44.4	3.66	-2.20	63.6	3.572	0.32
19	3.757	23.2	3.573	4.89	44.4	3.66	2.65	64.6	3.725	0.84
20	3.332	23.1	3.549	-6.51	44.2	3.63	-8.79	64.8	3.754	-12.67
21	2.953	23.3	3.589	-21.57	44.0	3.60	-21.89	66.2	3.959	-34.08
22	3.409	23.2	3.577	-4.93	44.5	3.68	-7.86	66.7	4.032	-18.28
23	1.675	15.7	1.727	-3.08	31.2	1.63	2.90	51.6	1.830	-9.25
24	3.162	23.2	3.572	-12.98	45.5	3.82	-20.83	66.2	3.961	-25.29
25	3.158	22.5	3.409	-7.95	43.5	3.51	-11.26	63.9	3.616	-14.51
26	3.079	22.8	3.479	-13.01	44.3	3.64	-18.14	65.0	3.785	-22.95
27	3.469	23.3	3.605	-3.92	45.0	3.74	-7.90	62.5	3.421	1.40
28	3.559	23.0	3.520	1.11	43.2	3.46	2.66	58.3	2.805	21.18
29	2.938	22.1	3.309	-12.61	43.9	3.58	-21.81	65.0	3.784	-28.77
30	2.753	21.7	3.210	-16.61	40.6	3.07	-11.39	64.7	3.740	-35.85

表 4 不同诊断指标预测的棉花叶片全氮含量的相对误差 Table 4 Relative error (RE) of the predicted total N contents in cotton leaves by three diagnostic indexes

注 (Note): 相对误差 (RE%) 的评价范围为: $-5 \le RE \le 5$ (优); $-10 \le RE < -5$ 或5 < RE ≤ 10 (良); $-20 \le RE < -10$ 或 10 < RE ≤ 20 (中); > 20或 < -20 (差). The evaluation range of the relative error RE (%) is: $-5 \le RE \le 5$ (Excellent); $-10 \le RE < -5$ or 5 < RE ≤ 10 (Good); $-20 \le RE < -10$ or $10 < RE \le 20$ (Medium); > 20 or < -20 (Bad).

促进了对 0—40 cm 土层硝态氮的吸收,因此,表现 为棉花叶片氮含量与 0—40 cm 土层硝态氮含量相关 性较好。

3.2 氮素营养诊断指标与棉花叶片全氮含量的 关系

本研究分析发现,各诊断指标与棉花叶片全氮

表 5 不同诊断指标预测的棉花叶片全氮含量的准确性 (df = 30)

Table 5 Prediction accuracy of total N content in cotton leaves by three diagnostic indexes											
诊断指标	均方误差	均方根误差	平均绝对误差	平均绝对误差 (%)	标准均方根误差 (%)	相关系数					
Diagnostic index	MSE	RMSE	MAE	MAPE	nRMSE	r					
氮平衡指数 N balance index (NBI)	0.06	0.25	0.20	6.91	8.21	0.9143**					
Chl值 Chl value	0.11	0.34	0.28	9.37	11.08	0.8639**					
SPAD 值 SPAD value	0.26	0.51	0.42	14.07	16.80	0.6526**					

注(Note): **—P < 0.01.

	表 6 0—20 cm 土层硝态氮预测模型相对误差的分析
Table 6	Analysis of prediction accuracy of nitrate-nitrogen in 0-20 cm soil layer

	应测体	氮平衡指	数 N balance in	idex (NBI)	С	hl值 Chl val	ue	SPAD值 SPAD v		alue
样点 Field	头树直 Measured value	测定值 Measured value	预测值 Predicted value	相对误差 RE (%)	测定值 Measured value	预测值 Predicted value	相对误差 RE (%)	测定值 Measured value	预测值 Predicted value	相对误差 RE (%)
1	6.386	16.6	8.422	-31.87	32.2	5.724	10.38	51.6	-8.775	237.40
2	17.040	19.5	21.395	-25.56	36.3	17.297	-1.51	59.4	26.034	-52.78
3	20.165	20.2	24.763	-22.80	37.3	19.866	1.49	53.9	1.465	92.74
4	27.356	20.6	26.525	3.04	38.1	22.147	19.04	56.9	14.848	45.72
5	20.339	20.1	24.359	-19.77	37.4	20.208	0.64	55.8	9.770	51.96
6	30.991	22.1	33.470	-8.00	40.8	29.878	3.59	60.5	30.928	0.20
7	34.261	23.7	40.471	-18.13	43.6	37.601	-9.75	61.2	34.201	0.17
8	34.217	23.9	41.520	-21.34	43.6	37.700	-10.18	63.3	43.305	-26.56
9	4.983	15.9	5.320	-6.75	31.0	2.399	51.86	52.9	-3.067	161.55
10	20.115	20.4	25.468	-26.62	38.9	24.596	-22.28	60.2	29.652	-47.41
11	27.191	20.8	27.243	-0.19	39.9	27.324	-0.49	60.3	30.051	-10.52
12	30.977	21.3	29.555	4.59	41.8	32.517	-4.97	62.0	37.526	-21.14
13	24.260	20.8	27.481	-13.27	40.5	29.067	-19.81	61.5	35.525	-46.43
14	33.169	21.8	31.842	4.00	42.3	34.018	-2.56	61.8	36.656	-10.51
15	34.886	23.0	37.274	-6.85	44.5	40.327	-15.60	64.7	49.854	-42.91
16	36.024	23.4	39.005	-8.27	45.8	43.870	-21.78	64.4	48.526	-34.71
17	34.594	22.7	36.036	-4.17	42.6	34.798	-0.59	59.2	25.142	27.32
18	31.852	23.5	39.698	-24.63	44.4	40.050	-25.73	63.6	44.555	-39.88
19	23.337	23.2	38.237	-63.85	44.4	39.959	-71.23	64.6	49.240	-111.00
20	21.174	23.1	37.790	-78.47	44.2	39.370	-85.94	64.8	50.133	-136.77
21	28.645	23.3	38.531	-34.52	44.0	38.892	-35.78	66.2	56.381	-96.83
22	29.472	23.2	38.302	-29.96	44.5	40.314	-36.79	66.7	58.612	-98.87
23	3.507	15.7	4.374	-24.72	31.2	2.840	19.00	51.6	-8.685	347.67
24	30.116	23.2	38.214	-26.89	45.5	42.934	-42.56	66.2	56.455	-87.46
25	27.806	22.5	35.220	-26.66	43.5	37.321	-34.22	63.9	45.893	-65.05
26	26.638	22.8	36.506	-37.04	44.3	39.586	-48.61	65.0	51.070	-91.72
27	29.817	23.3	38.822	-30.20	45.0	41.527	-39.27	62.5	39.937	-33.94
28	30.713	23.0	37.256	-21.30	43.2	36.437	-18.63	58.3	21.125	31.22
29	22.378	22.1	33.388	-49.20	43.9	38.529	-72.18	65.0	51.026	-128.02
30	24.605	21.7	31.576	-28.33	40.6	29.161	-18.52	64.7	49.687	-101.94

	-	氮平衡指	数 N balance in	dex (NBI)	c y or meruce C	hl值 Chl valu	ue	SPAD值 SPAD value		
样点 Field	实测值 Measured value	测定值 Measured value	预测值 Predicted value	相对误差 RE (%)	测定值 Measured value	预测值 Predicted value	相对误差 RE (%)	测定值 Measured value	预测值 Predicted value	相对误差 RE (%)
1	6.083	16.6	7.590	-24.76	32.2	5.134	15.60	51.6	-2.208	136.29
2	16.555	19.5	18.049	-9.03	36.3	14.654	11.48	59.4	21.641	-30.73
3	20.256	20.2	20.764	-2.51	37.3	16.768	17.22	53.9	4.808	76.27
4	24.922	20.6	22.185	10.98	38.1	18.644	25.19	56.9	13.977	43.92
5	19.035	20.1	20.438	-7.37	37.4	17.049	10.43	55.8	10.498	44.85
6	26.563	22.1	27.784	-4.59	40.8	25.003	5.87	60.5	24.995	5.91
7	29.110	23.7	33.428	-14.83	43.6	31.356	-7.72	61.2	27.237	6.43
8	29.582	23.9	34.274	-15.86	43.6	31.437	-6.27	63.3	33.474	-13.16
9	4.619	15.9	5.089	-10.17	31.0	2.400	48.05	52.9	1.703	63.14
10	19.449	20.4	21.333	-9.69	38.9	20.658	-6.22	60.2	24.120	-24.02
11	22.158	20.8	22.764	-2.73	39.9	22.902	-3.36	60.3	24.393	-10.09
12	27.316	21.3	24.628	9.84	41.8	27.174	0.52	62.0	29.515	-8.05
13	22.588	20.8	22.955	-1.63	40.5	24.336	-7.74	61.5	28.144	-24.60
14	29.819	21.8	26.471	11.23	42.3	28.408	4.73	61.8	28.919	3.02
15	31.603	23.0	30.851	2.38	44.5	33.598	-6.31	64.7	37.961	-20.12
16	33.003	23.4	32.246	2.29	45.8	36.513	-10.64	64.4	37.052	-12.27
17	27.875	22.7	29.852	-7.09	42.6	29.051	-4.22	59.2	21.030	24.56
18	26.923	23.5	32.805	-21.85	44.4	33.370	-23.95	63.6	34.330	-27.51
19	22.756	23.2	31.627	-38.98	44.4	33.296	-46.32	64.6	37.541	-64.97
20	24.780	23.1	31.267	-26.18	44.2	32.812	-32.41	64.8	38.152	-53.96
21	27.716	23.3	31.864	-14.97	44.0	32.418	-16.96	66.2	42.433	-53.10
22	29.472	23.2	31.679	-7.49	44.5	33.588	-13.96	66.7	43.962	-49.16
23	4.334	15.7	4.326	0.17	31.2	2.763	36.25	51.6	-2.147	149.54
24	29.602	23.2	31.609	-6.78	45.5	35.743	-20.74	66.2	42.484	-43.52
25	24.306	22.5	29.195	-20.11	43.5	31.126	-28.06	63.9	35.248	-45.02
26	21.638	22.8	30.231	-39.71	44.3	32.989	-52.46	65.0	38.795	-79.29
27	23.658	23.3	32.099	-35.68	45.0	34.586	-46.19	62.5	31.167	-31.74
28	27.113	23.0	30.836	-13.73	43.2	30.398	-12.12	58.3	18.278	32.58
29	19.878	22.1	27.718	-39.44	43.9	32.120	-61.58	65.0	38.764	-95.01
30	23.605	21.7	26.257	-11.24	40.6	24.413	-3.43	64.7	37.847	-60.34

表 7 0—40 cm 土层硝态氮含量预测精度的分析 Table 7 Analysis of prediction accuracy of nitrate-nitrogen content in 0–40 cm soil layer

含量之间存在极显著的正相关关系,相关系数均达 到 0.8 以上。并进行相关性模型的拟合,模型的决定 系数 R² 分别为 0.8072 (NBI)、0.7421 (Chl) 和 0.6931 (SPAD)。在可见光波段内植株叶片对光的反射率和 吸收率受叶片中很多大分子物质的影响^[7],其中叶绿 素的影响最大^[32]。且叶片中的叶绿素含量与叶片的氮 含量之间关系密切^[33]。因而可通过 SPAD 叶绿素仪对 叶片叶绿素含量进行表征,用来预测作物的氮素营 养状况^[11]。近年来已有大量研究表明,SPAD 值与作 物叶片氮含量之间存在极显著的正相关关系^[3435]。还

		氯平衡指	数 N balance in	dex (NBI)	<u> </u>	hl值 Chl valu	ue	SPAD值 SPAD value		
样点 Field	实测值 Measured value	测定值 Measured value	预测值 Predicted value	相对误差 RE (%)	测定值 Measured value	预测值 Predicted value	相对误差 RE (%)	测定值 Measured value	预测值 Predicted value	相对误差 RE (%)
1	5.549	16.6	6.436	-16.00	32.2	3.967	28.50	51.6	-3.259	158.74
2	16.532	19.5	16.667	-0.81	36.3	13.325	19.40	59.4	20.122	-21.71
3	20.772	20.2	19.323	6.98	37.3	15.402	25.85	53.9	3.619	82.58
4	24.171	20.6	20.713	14.31	38.1	17.246	28.65	56.9	12.608	47.84
5	18.992	20.1	19.004	-0.07	37.4	15.678	17.45	55.8	9.197	51.57
6	23.414	22.1	26.189	-11.85	40.8	23.497	-0.35	60.5	23.409	0.02
7	24.585	23.7	31.710	-28.98	43.6	29.742	-20.97	61.2	25.607	-4.16
8	25.719	23.9	32.537	-26.51	43.6	29.821	-15.95	63.3	31.722	-23.34
9	4.105	15.9	3.990	2.79	31.0	1.279	68.84	52.9	0.575	86.00
10	17.545	20.4	19.879	-13.30	38.9	19.226	-9.58	60.2	22.551	-28.53
11	20.711	20.8	21.279	-2.74	39.9	21.432	-3.48	60.3	22.819	-10.18
12	24.332	21.3	23.102	5.05	41.8	25.631	-5.34	62.0	27.840	-14.42
13	20.162	20.8	21.466	-6.47	40.5	22.841	-13.29	61.5	26.496	-31.41
14	23.994	21.8	24.905	-3.80	42.3	26.844	-11.88	61.8	27.256	-13.60
15	26.566	23.0	29.189	-9.88	44.5	31.946	-20.25	64.7	36.121	-35.97
16	26.783	23.4	30.554	-14.08	45.8	34.810	-29.97	64.4	35.229	-31.53
17	24.301	22.7	28.213	-16.10	42.6	27.475	-13.06	59.2	19.522	19.67
18	25.982	23.5	31.101	-19.70	44.4	31.721	-22.09	63.6	32.561	-25.32
19	19.769	23.2	29.949	-51.49	44.4	31.648	-60.09	64.6	35.709	-80.63
20	20.853	23.1	29.596	-41.93	44.2	31.172	-49.49	64.8	36.308	-74.12
21	19.995	23.3	30.181	-50.94	44.0	30.786	-53.97	66.2	40.505	-102.57
22	20.327	23.2	30.000	-47.58	44.5	31.935	-57.10	66.7	42.003	-106.63
23	3.698	15.7	3.244	12.27	31.2	1.636	55.76	51.6	-3.199	186.51
24	24.574	23.2	29.931	-21.80	45.5	34.054	-38.58	66.2	40.554	-65.03
25	21.115	22.5	27.569	-30.57	43.5	29.515	-39.78	63.9	33.460	-58.47
26	20.160	22.8	28.584	-41.78	44.3	31.346	-55.49	65.0	36.937	-83.22
27	21.331	23.3	30.410	-42.57	45.0	32.916	-54.31	62.5	29.460	-38.11
28	24.385	23.0	29.175	-19.65	43.2	28.800	-18.11	58.3	16.824	31.00
29	17.870	22.1	26.125	-46.20	43.9	30.492	-70.63	65.0	36.908	-106.53
30	20.249	21.7	24.696	-21.96	40.6	22.917	-13.17	64.7	36.008	-77.82

表 8 0—60 cm 土层硝态氮含量预测精度的分析 Table 8 Analysis of prediction accuracy of nitrate nitrogen content in 0–60 cm soil layer

有研究认为,在一定施氮量范围内小麦叶片 SPAD 值与施氮量之间存在极显著的线性正相关;然而过 多的氮肥施用,使作物处于饱和状态及叶绿素含量 不再增加,导致 SPAD 值呈现下降的趋势^[13]。然而, 王婷婷等^[50]研究表明,应用多酚-叶绿素仪 (Dualex4) 测定的叶绿素 (Chl) 指标能准确的预测叶绿素含量,并且李振海等^[37]研究认为,利用多酚-叶绿素仪 (Dualex-4) 测定的 Chl 指标对叶片中叶绿素的预测精 度要高于 SPAD 指标。Cerovic 等^[38]认为, SPAD 叶 绿素仪的一个核心波段 (650 nm) 属于叶绿素的高吸

1209

公库书石	1日沤庄 -	土均	土壤硝态氮预测模型的验证 Verification of soil nitrate nitrogen prediction model								
运购行首称 Diagnostic index	工运休度	均方误差 MSE	均方根误差 RMSE	平均绝对误差 MAE	平均绝对百分比误差 MAPE (%)	标准均方根误差 nRMSE (%)	相关系数 <i>r</i>				
氮平衡指数	0—20	48.88	6.99	5.61	23.37	27.35	0.8934**				
N balance index (NBI)	0—40	17.23	4.15	3.22	14.11	17.88	0.9116**				
	0—60	30.15	5.49	4.35	20.94	27.07	0.8786**				
Chl 值 Chl value	0—20	65.60	8.10	6.02	24.83	31.68	0.8581**				
	0—40	28.44	5.33	4.05	19.53	22.98	0.8813**				
	0—60	47.25	6.87	5.70	30.71	33.89	0.8259**				
SPAD 值 SPAD value	0—20	284.23	16.86	14.42	76.01	65.94	0.6847**				
	0—40	97.25	9.86	8.44	44.44	42.49	0.7469**				
	0—60	127.98	11.31	9.57	56.57	55.77	0.6453**				

表 9 土壤硝态氮预测模型评价指标 (df = 30) Table 9 Evaluation index of soil nitrate-nitrogen prediction model

注(Note): **—P < 0.01.

收波段, 高吸收波段能够提高叶绿素的测量精度, 但当叶绿素浓度较高时存在饱和性问题而导致测量 精度降低。而 Vogelmann^[39]认为多酚-叶绿素仪 (Dualex-4)的一个核心波段(710 nm)属于叶绿素的低 吸收波段,可以降低叶绿素含量在高浓度下的饱和 问题。并且此波段处具有"筛孔效应"(即叶片的光 透射率高于均一样品的光透射率),并且可以避免花 青素的影响。Martinon^[40]研究认为,与单独应用叶绿 素和类黄酮相比,氮平衡指数 (NBI) 能降低叶片中 叶绿素和类黄酮分布不均造成的误差,进而可以更 好的预测作物的氮素营养状况。朱娟娟4四研究得到, 应用多酚--叶绿素仪测定的氮平衡指数 (NBI) 能较好 地反映玉米氮素营养状况。本研究通过模型校验发 现,棉花叶片全氮含量实测值与预测值的平均相对 误差分别为-4.0% (NBI)、-3.1% (Chl) 和-5.7% (SPAD),其中,NBI与Chl对棉花叶片全氮含量预 测的平均相对误差(RE)均达到了"优"的水平,而 SPAD 达到了"良"的水平。且 NBI氮平衡指数模型 的均方误差 (MSE)、均方根误差 (RMSE)、平均绝对 误差 (MAE) 均优于 Chl 和 SPAD 模型。平均绝对百 分比误差 (MAPE) 表现为: 6.91%(NBI) < 9.37%(Chl) <14.07%(SPAD); nRMSE 与 MAPE 表现一致。说明 利用氮平衡指数 (NBI) 能够较敏感的反映棉花叶片 全氮含量。

3.3 氮素营养诊断指标与土壤硝态氮含量的关系

土壤中的无机氮 (NO₃⁻-N) 是作物主要吸取的速 效养分^[1]。因此,可利用速测手段通过对作物体内营

养状况诊断,进而间接的反映土壤中的养分丰缺程 度,并以此作为作物追肥决策的依据,提高环境效 益。氮平衡指数 (NBI) 和 Chl 值与不同深度土壤硝态 氮含量均达到极显著相关(P<0.01)。然而,对于 SPAD 模型而言: 当 SPAD 值 < 57 时,不同深度土壤硝态 氮含量与 SPAD 值之间相关性不显著; SPAD 值 ≥ 57 时, 0-20 cm 和 0-40 cm 土壤硝态氮含量与 SPAD 的相关系数分别为 0.6404 和 0.5721,均达到极显著 相关 (P < 0.01); 0-60 cm 土壤硝态氮含量与 SPAD 值之间在 0.05 水平存在显著相关。其中,氮 平衡指数模型的决定系数均高于棉花 Chl 和 SPAD 模型。通过对土壤硝态氮实测值与预测值分析得 出, Chl和 SPAD 模型相对误差 (RE) 较大的值均高 于 NBI 模型。进一步校验表明, NBI 模型的预测精 度评价指标均优于 Chl 和 SPAD 模型。说明, NBI 对土壤硝态氮的预测精度较高。朱娟娟41研究发现, 利用 SPAD 叶绿素仪和多酚仪 (Dualex-3) 的比值 (Chl / Phen) 对土壤中硝态氮含量的预测优于单独使 用 SPAD 叶绿素仪和多酚仪 (Dualex-3)。Tremblay 等[42] 提出,联合使用 SPAD 叶绿素仪与多酚仪 (Dualex-3),采用 Chl / Phen 的比值与单独使用诊断指标相比 能够较为敏感的预测土壤中的 NO,-N 含量。其原因 有以下几点:1)本研究是通过监测棉花叶片的氮素 营养状况,间接的反映土壤硝态氮的变化,存在一 些变异。2) 由于仪器自身工作原理的差异,并且在 3.2 中明确 NBI 对叶片 N 含量的预测精度较高;进 而增加了对土壤养分预测的精确度。3) 由于 SPAD

的测量面积为 6 mm² (2 mm × 3 mm),而多酚-叶绿素 仪 (Dualex-4) 的测量面积为 19.6 mm² (直径 5 mm 的 孔径),测量时较小的测量面积容易受到叶片结构特征 (如叶脉)的影响,会影响测试的准确性^[43]。

此外,NBI与0—40 cm 土壤硝态氮模型的决定 系数为0.8304;然而,其它深度土壤硝态氮预测模 型的决定系数均在0.8 以下。通过模型校验分析,不 同深度土壤硝态氮与NBI的相关系数分别为0.8934 (0—20 cm)、0.9116 (0—40 cm)和0.8786 (0—60 cm)。且模型预测精度评价指标均表现为0—40 cm 土壤硝态氮较低。其中,0—40 cm 土壤硝态氮预 测模型的 MAPE 和 nRMSE 分别为 14.11% 和 17.88%。因此,氮平衡指数 (NBI) 能够较敏感的预 测土壤中硝态氮含量,其中与0—40 cm 土壤硝态氮 含量的关系密切。

4 结论

氮平衡指数 (NBI) 能够较敏感的反映棉花叶片氮 含量和 0—40 cm 土壤硝态氮含量。氮平衡指数对棉 花叶片全氮含量的预测值与实测值的误差仅为 6.91%,对 0—40 cm 土壤硝态氮含量的预测误差为 14.11%。因此,可以满足新疆棉花滴灌条件下的养 分快速诊断需求。

参考文献:

- [1] 董鹏. 棉花膜下滴灌氮素养分综合管理技术研究[D]. 新疆石河子: 石河子大学硕士学位论文, 2011.
 Dong P. Study on integrated management of nitrogen and nutrients in drip irrigation under cotton film[D]. Shihezi, Xinjiang: MS Thesis of Shihezi University, 2011.
- [2] 秦子娴. 长期施肥中性紫色水稻土氮素矿化及氨氧化菌的分子生态学研究[D]. 重庆: 西南大学硕士学位论文, 2014.
 Qin Z X. Molecular ecology of nitrogen mineralization and ammonia oxidizing bacteria in long-term fertilization of neutral purple paddy soil[D]. Chongqin: MS Thesis of Southwest University, 2014.
- [3] 张昊青. 黄土高原旱地麦田有机无机配施减氮增效作用研究[D]. 陕西杨陵: 西北农林科技大学硕士学位论文, 2017.
 Zhang H Q. Study on nitrogen reduction and synergism of organic and inorganic fertilizer in wheat field in dryland of loess plateau[D].
 Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2017.
- [4] 黄明. 基于收获期土壤测试和施肥位置优化的旱地小麦减肥增效 研究[D]. 陕西杨陵: 西北农林科技大学硕士学位论文, 2017. Huang M. Research on fertilizer reduction and efficiency improvement of dryland wheat based on soil testing during harvest period and optimization of fertilization position[D]. Yangling, Shannxi: MS Thesis of Northwest A&F University, 2017.
- [5] 侯秀玲, 张炎, 李磐, 等. 施氮对南疆潮土硝态氮分布的影响[J]. 干 旱地区农业研究, 2006, 24(6): 73–77, 84.

Hou X L, Zhang Y, Li P, *et al.* Effects of nitrogen application on the distribution of nitrate nitrogen in fluvo-aquic soil in southern Xinjiang[J]. Agricultural Research in the Arid Areas, 2006, 24(6): 73–77, 84.

- [6] 田敏,张泽,陈剑,等. 基于土壤硝态氮的滴灌春小麦氮素施肥模型 建立研究[J]. 新疆农业科学, 2014, 51(10): 1851–1856.
 Tian M, Zhang Z, Chen J, *et al.* Establishment of a spring wheat nitrogen fertilization model based on soil nitrate nitrogen by drip irrigation[J]. Xinjiang Agricultural Sciences, 2014, 51(10): 1851–1856
- [7] 李鹏程, 刘爱忠, 刘敬然, 等. 使用叶绿素仪进行棉花氮营养诊断应 注意的几个问题[J]. 中国棉花, 2014, 41(4): 38.
 Li P C, Liu A Z, Liu J R, *et al.* Several issues that should be noticed in the diagnosis of cotton nitrogen nutrition using chlorophyll meter[J]. China Cotton, 2014, 41(4): 38.
- [8] 李秋祝,余常兵,胡汉升,等.不同竞争强度间作体系氮素利用和土 壤剖面无机氮分布差异[J]. 植物营养与肥料学报,2010,16(4): 777-785.

Li Q Z, Yu C B, Hu H S, *et al.* Differences in nitrogen utilization and soil nitrogen distribution in soil profiles under different competition intensities[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(4): 777–785.

- [9] 薛利红, 罗卫红, 曹卫星, 等. 作物水分和氮素光谱诊断研究进展
 [J]. 遥感学报, 2003, 7(1): 73-80.
 Xue L H, Luo W H, Cao W X, *et al.* Research progress on spectral diagnosis of crop moisture and nitrogen[J]. Journal of Remote Sensing, 2003, 7(1): 73-80.
- [10] 陈新平,周金池, 王兴仁, 等. 冬小麦、夏玉米不同品种(系)之间的 氮营养效率的差异[J]. 中国农业大学学报, 2000, 5(1): 80-83. Chen X P, Zhou J C, Wang X R, *et al.* Differences in nitrogen nutrition efficiency among different winter wheat and summer maize varieties (lines)[J]. Journal of China Agricultural University, 2000, 5(1): 80-83.
- [11] Tremblay N, Wang Z, Cerovic Z G. Sensing crop nitrogen status with fluorescence indicators. A review[J]. Agronomy for Sustainable Development, 2012, 32(2): 451–464.
- [12] 潘薇薇. 应用叶绿素仪进行棉花氮素营养诊断[D]. 新疆石河子: 石 河子大学硕士学位论文, 2008.
 Pan W W. Diagnosis of cotton nitrogen nutrition with chlorophyll meter[D]. Shihezi, Xinjiang: MS Thesis of Shihezi University, 2008.
- [13] 史力超. 基于叶片SPAD值的滴灌春小麦氮肥分期推荐研究[D]. 新 疆石河子: 石河子大学硕士学位论文, 2016. Shi L C. Nitrogen stage recommendation of spring wheat under drip irrigation based on leaf SPAD value[D]. Shihezi, Xinjiang: MS Thesis of Shihezi University, 2016.
- [14] 蔡红光,米国华,陈范骏,等. 玉米叶片SPAD值、全氮及硝态氮含量的品种间变异[J]. 植物营养与肥料学报, 2010, 16(4): 866–873.
 Cai H G, Mi G H, Chen F J, *et al.* Variations among varieties of SPAD value, total nitrogen and nitrate nitrogen content in corn leaves[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(4): 866–873.
- [15] 王亚飞. SPAD值用于小麦氮肥追施诊断的研究[D]. 江苏扬州:扬州大学硕士学位论文, 2008.

Wang Y F. Study on SPAD value for diagnosis of topdressing nitrogen fertilizer in wheat[D]. Yangzhou, Jiangsu: MS Thesis of Yangzhou University, 2008.

- [16] Richardson A D, Duigan S P, Berlyn G P. An evaluation of noninvasive methods to estimate foliar chlorophyll content[J]. New Phytologist, 2002, 153(1): 185–194.
- [17] Cartelat A, Cerovic Z G, Goulas Y, et al. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (*Triticum aestivum* L.)[J]. Field Crops Research, 2005, 91(1): 35–49.
- [18] Tremblay N, Wang Z, Bélec C. Evaluation of the Dualex for the assessment of corn nitrogen status[J]. Journal of Plant Nutrition, 2007, 30(9): 1355–1369.
- [19] Cerovic Z G, Cartelat A, Goulas Y, Meyer S. In-the-field assessment of wheat-leaf polyphenolics using the new optical leaf-clip Dualex
 [A]. Stafford J V. Precision agriculture[M]. Wageningen: Wageningen Academic Publishers, 2005. 243–250.
- [20] 马春玥, 买买提·沙吾提, 依尔夏提·阿不来提, 姚杰. 新疆棉花种植 业地理集聚特征及影响因素研究[J]. 作物学报, 2019, 45(12): 1859–1867.

Ma C Y, Maimat Sawut, Ershat Ablet, Yao J. Study on the characteristics and influencing factors of geographic agglomeration of cotton plantation in Xinjiang[J]. Acta Agronomica Sinica, 2019, 45(12): 1859–1867.

- [21] 罗新宁. 基于SPAD 的棉花氮素营养诊断及氮营养特性研究[D].
 乌鲁木齐: 新疆农业大学硕士学位论文, 2010.
 Luo X N. Research on cotton nitrogen nutrition diagnosis and nitrogen nutrition characteristics based on SPAD[D]. Urumqi: MS Thesis of Xinjiang Agricultural University, 2010.
- [22] 薛向荣,杨涛,马兴旺,等.棉花营养期倒四叶不同位点SPAD值与 植株氮营养相关性[J].西北农业学报,2013,22(6):73-78. Xue X R, Yang T, Ma X W, *et al.* Correlation between SPAD value of different positions on the top four leaves of cotton during vegetative period and nitrogen nutrition of plants[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(6): 73-78.
- [23] 鲍士旦. 土壤农化分析(第3版)[M]. 北京: 中国农业出版社, 2000.
 Bao S D. Soil and agricultural chemistry analysis (3rd Edition)[M].
 Beijing: China Agriculture Press, 2000.
- [24] 陕红,张庆忠,张晓娟,等.保存、分析方法等因素对土壤中硝态氮测定的影响[J].分析测试学报, 2013, 32(12): 64–69.
 Shan H, Zhang Q Z, Zhang X J, *et al.* The influence of factors such as preservation and analysis methods on the determination of nitrate nitrogen in soil[J]. Journal of Instrumental Analysis, 2013, 32(12): 64–69.
- [25] 贺佳, 刘冰峰, 郭燕, 等. 冬小麦生物量高光谱遥感监测模型研究
 [J]. 植物营养与肥料学报, 2017, 23(2): 313–323.
 He J, Liu B F, Guo Y, *et al.* Study on the monitoring model of winter wheat biomass by hyperspectral remote sensing[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 313–323.
- [26] Khursheed A, Gaur R Z, Sharma M K, et al. Dependence of enhanced biological nitrogen removal on carbon to nitrogen and rbCOD to sbCOD ratios during sewage treatment in sequencing batch reactor[J]. Journal of Cleaner Production, 2018, 171(2): 1244–1254.

- [27] Li S X, Wang Z H, Hu T T, et al. Nitrogen in dryland soils of China and its management[J]. Advances in Agronomy, 2009, 101(8): 123–181.
- [28] 沈阿林, 姚健, 刘春增, 等. 沿黄稻区主要水稻品种的需肥规律、叶 色动态与施氮技术研究[J]. 华北农学报, 2000, 15(4): 131–136. Shen A L, Yao J, Liu C Z, *et al.* Study on fertilizer requirement, leaf color dynamics and nitrogen application technology of main rice varieties along the yellow rice area[J]. Acta Agriculturae Boreali– Sinicca, 2000, 15(4): 131–136.
- [29] 胡明芳, 田长彦, 吕昭智, 等. 氮肥施用量对新疆棉花产量及植株和
 土壤中硝态氮含量的影响[J]. 西北农林科技大学学报(自然科学版), 2006, (4): 63–68.
 Hu M F, Tian C Y, Lü Z Z, *et al.* Effects of nitrogen fertilizer

application rate on Xinjiang cotton yield and nitrate nitrogen content in plants and soil[J]. Journal of Northwest A& F University (Natural Science Edition), 2006, (4): 63–68.

- [30] 刘梅先,杨劲松,李晓明,等. 滴灌模式对棉花根系分布和水分利用 效率的影响[J]. 农业工程学报, 2012, 28(25): 98–105.
 Liu M X, Yang J S, Li X M, *et al.* Effects of drip irrigation mode on cotton root distribution and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(25): 98–105.
- [31] 陈绍民. 基于土壤水分分布的滴灌棉花根系构型模拟方法研究
 [D]. 新疆石河子: 石河子大学硕士学位论文, 2015.
 Chen S M. Research on the simulation method of drip irrigation cotton root architecture based on soil moisture distribution[D].
 Shihezi, Xinjiang: MS Thesis of Shihezi University, 2015.
- [32] 危常州, 马富裕, 雷咏雯, 等. 棉花膜下滴灌根系发育规律的研究
 [J]. 棉花学报, 2002, 14(4): 209–214.
 Wei C Z, Ma F Y, Lei Y W, *et al.* Study on root development of cotton under drip irrigation under film[J]. Cotton Journal, 2002, 14(4): 209–214.
- [33] 张金恒, 王珂, 王人潮. 叶绿素计SPAD-502在水稻氮素营养诊断中的应用[J]. 西北农林科技大学学报(自然科学版), 2003, 31(2): 177-180.

Zhang J H, Wang K, Wang R C. Application of chlorophyll meter SPAD-502 in rice nitrogen nutrition diagnosis[J]. Journal of Northwest A& F University (Natural Science Edition), 2003, 31(2): 177–180.

- [34] 谢华, 沈荣开, 徐成剑, 等. 水、氮效应与叶绿素关系试验研究[J]. 中国农村水利水电, 2003, (8): 40-43.
 Xie H, Shen R K, Xu C J, *et al.* Experimental study on the relationship between water and nitrogen effects and chlorophyll[J]. China Rural Water and Hydropower, 2003, (8): 40-43.
- [35] 田永超,朱艳,曹卫星,等.利用冠层反射光谱和叶片SPAD值预测 小麦籽粒蛋白质和淀粉的积累[J].中国农业科学,2004,37(6): 808-813.

Tian Y C, Zhu Y, Cao W X, *et al.* Using canopy reflectance spectra and leaf SPAD values to predict wheat grain protein and starch accumulation[J]. Scientia Agricultura Sinica, 2004, 37(6): 808–813.

[36] 王婷婷,常庆瑞,刘梦云,等.基于Dualex植物多酚--叶绿素仪的冬 小麦叶绿素含量高光谱估算[J].麦类作物学报,2019,39(5): 595-604.

27 卷

Wang T T, Chang Q R, Liu M Y, *et al.* Hyperspectral estimation of chlorophyll content in winter wheat based on Dualex plant polyphenol-chlorophyll meter[J]. Journal of Triticeae erops, 2019, 39(5): 595–604.

- [37] 李振海, 王纪华, 贺鹏, 等. 基于Dualex氮平衡指数测量仪的作物叶绿素含量估算模型[J]. 农业工程学报, 2015, 31(21): 191–197.
 Li Z H, Wang J H, He P, *et al.* Crop chlorophyll content estimation model based on Dualex nitrogen balance index measuring instrument
 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 191–197.
- [38] Cerovic Z G, Masdoumier G, Ghozlen N Ï B, et al. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids[J]. Physiologia Plantarum, 2012, 146(3): 251–260.
- [39] Vogelmann T C. Plant tissue optics[J]. Annual Review of Plant Biology, 1993, 44(1): 231–251.
- [40] Martinon V. Innovative optical sensors for diagnosis, mapping and

real-time management of row crops: The use of polyphenolics and fluorescence[C]. Denver: International Conference for Precision Agriculture, 2010.

- [41] 朱娟娟. 玉米氮素营养无损诊断及水氮效应[D]. 陕西杨陵: 西北农 林科技大学博士学位论文, 2012.
 Zhu J J. Nondestructive diagnosis of nitrogen nutrition in maize and effects of water and nitrogen on maize[D]. Yangling, Shaanxi: PhD
- [42] Tremblay N, Wang Z, Bélec C. Performance of Dualex in spring wheat for crop nitrogen status assessment, yield prediction and estimation of soil nitrate content[J]. Journal of Plant Nutrition, 2009, 33(1): 57–70.

Dissertation of Northwest A&F University, 2012.

[43] Goulas Y, Cerovic Z G, Cartelat A, et al. Dualex: A new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence[J]. Applied Optics, 2004, 43(23): 4488– 4496.