“薄浅湿晒”灌溉稻田土壤微生物量碳、氮和酶活性研究

梁燕菲，张潇潇，李伏生*
（广西大学农学院，南宁 530005）

摘要：通过盆栽试验，研究了不同氮肥水平下“薄、浅、湿、晒”灌溉对水稻拔节期、孕穗期和乳熟期土壤微生物量碳（MBC）、微生物量氮（MBN）、硝化细菌和反硝化细菌数量和酶活性的影响，以探讨该灌溉方式下土壤微生物活性变化规律。试验设2种灌水方式，即常规灌溉（CIR）和“薄、浅、湿、晒”灌溉（TIR）；3种氮肥水平，即低氮（N 0.10 g/kg）、中氮（N 0.15 g/kg）和高氮（N 0.2 g/kg）。结果表明，与CIR处理相比，TIR处理土壤MBC增加13%～240%，而土壤MBN减少6.5%～47.3%；高氮水平时3个时期TIR处理土壤硝化细菌有所增加，反硝化细菌拔节期和孕穗期降低12.1%～61.2%，而乳熟期增加0.7～3.0倍；中、低氮水平时3个时期TIR处理土壤硝酸还原酶活性分别降低63.8%和43.3%。与低氮水平相比，中氮水平可以增加土壤MBC、MBN、硝化细菌和反硝化细菌数量以及过氧化氢酶、脲酶和转化酶活性，而高氮水平则降低土壤MBC，以及过氧化氢酶、脲酶和硝酸还原酶活性。可见，中等氮肥水平下“薄、浅、湿、晒”灌溉方式能有效提高稻田土壤微生物量碳和过氧化氢酶、脲酶、转化酶活性。

关键词：灌溉方式；微生物量碳、氮；土壤酶活性；硝化细菌；水稻土
中图分类号：S154；S511.071 文献标识码：A 文章编号：1008-505X（2013）06-1403-08

Soil microbial biomass carbon and nitrogen and enzyme activities in paddy soil under “thin-shallow-wet-dry” irrigation method

LIANG Yan-fei, ZHANG Xiao-xiao, LI Fu-sheng*
（College of Agriculture, Guangxi University, Nanning 530005, China）

Abstract: A pot experiment was carried out to study effects of the “thin-shallow-wet-dry” irrigation method on microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), the numbers of nitrification bacteria and demitrification bacteria and enzyme activities in soils at the jointing, booting and milky stages of rice under different nitrogen(N) levels, and to explore variation of soil microbe activities under the irrigation method. There were two irrigation methods, conventional irrigation (CIR) and “thin-shallow-wet-dry” irrigation (TIR), and three N levels, low N (0.10 g/kg soil), middle N (0.15 g/kg soil) and high N (0.2 g/kg soil). Compared to the CIR treatments, the TIR treatments increase soil MBC by 13%–240%, and decrease soil MBN by 6.5%–47.3%. At the high N level, the TIR treatment increases the number of soil nitrification bacteria at three growth stages slightly, and increases the number of soil denitrification bacteria by 0.7 to 3 times at the milky stage and decreases the number of soil denitrification bacteria by 12.1% to 61.2% at the jointing and booting stages. At the low and middle N levels, the TIR treatments reduce the activity of soil nitrate reductase by 63.8% and 43.3% at the booting stage. Under the same irrigation method, compared to the low N level, the middle N level increases soil MBC and MBN, the numbers of nitrification bacteria and denitrification bacteria, and the activities of catalase, urease and invertase.

收稿日期：2013-06-24 接受日期：2013-08-06
基金项目：国家“863”计划（2011AA1002504）；国家科技支撑计划项目课题（2012BAD05B03）；中国科学院战略性先导科技专项子课题（XDA05070403）资助。
作者简介：梁燕菲（1986—），女，广西南宁人，硕士研究生，主要从事水土资源利用与环境研究。E-mail：534760097@qq.com
* 通信作者 Tel：0771-3235314–806，E-mail：zhen@gru.edu.cn；lpks@163.com
while the high N level reduces soil MBN and the activities of catalase, urease and nitrate reductase. Thus TIR can effectively improve microbial biomass carbon and the activities of catalase, urease and invertase under the middle N level.

Key words: Irrigation method; microbial biomass carbon and nitrogen; soil enzyme activity; nitrification bacteria; paddy soil

水稻传统灌溉方法是淹灌，已有几千年历史，至今世界上绝大多数水稻仍然采用淹灌。但是，近半个世纪以来，随着耕作栽培技术的进步，稻田节水灌溉技术已有多种方式。目前，“薄、浅、湿、晒”灌溉(TIR)技术已在我国大面积推广，其技术要为：

薄水插秧、浅水返青、分蘖前期湿润、分蘖后期晒田；拔节孕穗、抽穗扬花期薄水、乳熟期湿润、黄熟期先湿润后落干、水稻灌时沟头前湿润、勾头后自然落干。研究表明，水稻采用“薄、浅、湿、晒”灌溉技术比当地灌溉方法节水40%～50%[1]，达到了节水、增产、增收的目的。

土壤微生物量可用微生物量碳(MBC)和微生物量氮(MBN)表征，虽然微生物量碳、氮分别只占土壤总碳和总氮的1%～4%和2%～6%，但由于直接或间接地参与几乎所有的土壤生物化过程，在土壤物质和能量循环中起着重要的作用，是评价土壤肥力和质量的重要生物学指标之一[2-5]。张奇春等[6-7]研究发现，施肥可显著提高土壤微生物量碳，而不平衡施肥则降低土壤微生物量氮，使微生物量\(C/N\)比增加。陈安等[8]研究表明，磷、磷和钾肥先后施入农田生态系统对土壤微生物量碳、氮没有显著影响，而有机养分循环利用则显著提高土壤微生物量碳。

1 材料与方法

1.1 试验材料

试验在广西大学农学院温室大棚中进行。供试土壤为采自本校农业试验站的第四纪红色粘土发育的水稻土，经风干、粉碎，过10 mm筛，取样15 kg于盆中(上部直径35 cm，下部直径26 cm，高29 cm)。供试土壤\(pH\)为6.07，\(NaCl\) 87.6 mg/kg(1 mol/L NaOH 溶解扩散法)、速效磷40.3 mg/kg(0.5 mol/L NaHCO\(_3\)浸提法)、速效钾72.9 mg/kg(1 mol/L 中性\(NH_4\)Ac 浸提法)。供试水稻品种为中籼优8号(新审稻2006002)。

1.2 试验设计

试验设2种灌溉方式。1) 常规灌溉(CIR) 除分蘖末期晒田和黄熟期自然落干以外，其它各生育期盆内土壤均保持浅水层(40～60 mm)。2) “薄、浅、湿、晒”灌溉(TIR) 插秧时盆内保持15 mm 深水层，插秧后保持25 mm的浅水层，分段前每5 d 深水10 mm，使土壤水分处于饱和状态，分段后晒田；拔节孕穗期保持5 mm 深水，抽穗扬花期保持10 mm 深水层，乳熟期隔5 d 深水10 mm，水稻灌时沟头前湿润，勾头后自然落干。设3种氮肥水平：低氮(F1，N 0.10 g/kg土)；中氮(F2，N 0.15 g/kg土)；高氮(F3，N 0.2 g/kg土)。试验共6个处理，每个处
理重复3次，共18盆，随机排列。氮肥用尿素（含N 46%），按基肥：分蘖肥：穗肥为4：3：3的比例施入，磷肥和钾肥按N：P₂O₅：K₂O=1.0：0.5：1.0的比例施用，磷肥用磷酸二氢钾（分析纯，含P₂O₅ 52%），钾肥用磷酸二氢钾（含K₂O 34%）和氯化钾（分析纯，含K₂O 60%），磷、钾全部作基肥施入。

水稻于2012年3月11日播种，水稻催芽育苗在后培育至3叶期，选取长势较一致的幼苗进行移栽，4月9日移栽至盆内，每盆移植2株，水稻秧苗移栽前提前3天泡水，且使盆内土壤均保持表土层（约25mm），两种灌水方式进行4月20日水稻返青后进行，灌水控制在各自设定的范围内，用量筒测量灌水量，并记录各处理灌水量，试验期间其他管理措施一致。2012年8月10日全部收获，全生育期143 d。

1.3 稻样采集和测定方法

试验分3次采样，即6月1日（拔节期）、7月5日（齐穗期）、8月1日（乳熟期），每次采样时间为灌水处理后第2 d 上午，分别采集不同处理 0—16 cm 土壤土壤并混匀，其中一部分土壤样样用于测定硝化细菌和反硝化细菌，另一部分土样风干后过1 mm 筛，用于测定土壤酶活性。

微生物量氮、氮氧氮蒸氨化—0.5 mol/L 硫酸钾浸提[16]，浸提液用浓硫酸重铬酸钾氧化、硫酸亚铁滴定法测定微生物量氮，结果以单位质量干土中土壤微生物量氮（MBC）表示。计算公式为 MBC = Ec/0.38，式中，Ec 为熏蒸土样和未熏蒸土样有机碳量之差；0.38 为转换系数。

微生物量氮用比色法测定：浸提液在 280 nm 下用紫外分光光度计测定吸光度[16—17]，用单位土壤中的吸光度值表示，微生物量氮（MBC）=（abs 黑/G 黑）—（abs 未/G 未），其中，abs 代表紫外光下的吸光度，G 代表烘干土质量。

硝化细菌和反硝化细菌采用 MPN 法计数[12]。

土壤过氧化氢酶活性用高锰酸钾滴定法[18]，以 0.02 mol/L KMnO₄ ML/(g·h) 表示；转化酶活性用 3,5-二硝基水杨酸比色法测定[18]，单位为 mg/(g·24h)；脲酶活性用苯酚-次氯酸钠比色法测定[18]，以 NH₃-N mg/(kg·24h) 表示；硝酸还原酶活性在厌氧条件下，通过与酚二磺酸的蓝色反应，求出反应前后硝氮差值，用于表示硝酸还原酶活性，单位为 NO₃-N mg/(g·24h)[12]。亚硝酸还原酶活性通过 NO₂⁻-N 与格里试剂反应所产生的颜色的深度，测定酶促反应前后 NO₂⁻-N 的变化，用于表示亚硝酸还原酶活性，以 NO₂⁻-N mg/(g·24h) 表示[12]。

1.4 数据处理

试验数据用 SPSS17.0 分析软件进行统计分析，多重比较用 Duncan 法，差异显著性水平为 P < 0.05。

2 结果与分析

2.1 灌溉方式和氮肥水平对水稻土微生物量碳、氮的影响

从表1可以看出，与常规灌溉（CIR）相比，除乳熟期在 F1 时“薄、浅、湿、暗”灌溉（TIR）土壤微生物量氮（MBC）降低 34.7 %，而其他情况下 TIR 处理

| 表1 灌溉方式和氮肥水平对土壤微生物量碳、氮的影响 (mg/kg) |
|-------------------|-------------------|-------------------|-------------------|
| 按照方式 | N水平 | 微生物量碳 | 微生物量氮 |
| Irrigation method | N level | Microbial biomass C | Microbial biomass N |
| 拔节期 | Jointing stage | Booting stage | Milky stage | Jointing stage | Booting stage | Milky stage |
| CIR | F1 | 166.1 ± 4.9 d | 160.7 ± 12.7 cd | 389.8 ± 12.5 b | 16.7 ± 1.6 bc | 36.8 ± 2.5 abc | 70.8 ± 2.9 b |
| F2 | 208.2 ± 5.0 e | 144.7 ± 10.5 d | 391.6 ± 28.5 b | 36.1 ± 3.7 a | 41.5 ± 3.4 a | 81.2 ± 2.4 a |
| TIR | F1 | 264.9 ± 6.7 bc | 231.3 ± 18.1 c | 421.8 ± 10.5 b | 19.8 ± 1.6 bc | 41.1 ± 2.3 ab | 47.9 ± 1.3 c |
| F2 | 354.8 ± 4.4 ab | 358.3 ± 17.4 b | 254.4 ± 6.7 c | 15.6 ± 2.1 c | 32.6 ± 2.4 bc | 37.3 ± 3.4 d |
| F3 | 423.2 ± 25.1 b | 487.5 ± 28.2 a | 443.1 ± 7.7 b | 24.6 ± 3.7 b | 38.6 ± 2.4 ab | 78.2 ± 2.1 a |
| 注（Note）：CIR—常规灌溉 Conventional irrigation；TIR—“薄、浅、湿、暗”灌溉 Thin-shallow-wet-dry irrigation；F1—低氮 Low N；F2—中氮 Middle N；F3—高氮 High N。列数据后不同字母表示处理间差异达 5% 水平。Values followed by different letters in a column are significant among treatments at the 5% level. |
的土壤MBC均显著增加。相同灌水方式下，3个时期土壤MBC一般随着氮肥用量的增加而增加。

与CIR相比，拔节期在F2时TIR处理土壤MBC降低31.9%，孕穗期在F3时TIR土壤MBC降低12.2%，而乳熟期在F1和F3时TIR土壤MBC分别降低47.3%和40.0%，拔节期CIR处理，F2土壤MBC比F1增加1.2倍，而TIR处理F2土壤MBC比F1增加57.7%；孕穗期相同灌溉方式时，F3和F2处理土壤MBC与F1差异不明显。乳熟期CIR和TIR处理土壤MBCF3比F1分别增加14.7%和109.6%，而F3土壤MBC分别比F1降低32.3%和22.5%。

2.2 灌溉方式和氨肥水平对水稻土硝化细菌及反硝化细菌数量的影响

表2 表明与CIR相比，拔节期和孕穗期在F3时TIR处理土壤反硝化细菌数量分别增加1.8倍和1.5倍；而在F2时TIR处理土壤反硝化细菌数量分别降低57.6%和41.6%，F1时孕穗期降低69.2%。

乳熟期在F1和F2处理分别增加121.8%和85.5%。CIR条件下，拔节期和孕穗期F2处理土壤硝化细菌数量比F1分别增加3倍和55.3%。TIR条件下，孕穗期F2和F3土壤硝化细菌数量比F1分别增加2倍和4倍；而乳熟期F3土壤硝化细菌数量比F1降低55.3%，其他处理土壤硝化细菌数量变化不明显。

与CIR处理相比，拔节期和孕穗期3种氮肥水平下TIR土壤反硝化细菌数量均降低，其中孕穗期F1、F2和F3土壤反硝化细菌数量分别降低45.1%、23.5%和33.9%，而拔节期降低不明显；乳熟期F1、F2和F3土壤反硝化细菌数量分别增加1.9倍、0.8倍和2.9倍。CIR条件下，3个时期的F2处理土壤反硝化细菌比F1分别增加94.7%、91.8%和105.9%。TIR条件下，拔节期和孕穗期的F2土壤反硝化细菌比F1增加3.4倍和1.5倍。

<table>
<thead>
<tr>
<th>灌溉方式</th>
<th>氮肥水平</th>
<th>硝化细菌 Nitrifying bacteria(×10³/g)</th>
<th>反硝化细菌 Denitrifying bacteria(×10³/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>拔节期 Jointing stage</td>
<td>孕穗期 Booting stage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>拔节期 Jointing stage</td>
<td>孕穗期 Booting stage</td>
</tr>
<tr>
<td>CIR</td>
<td>F1</td>
<td>11.5 ± 0.8 be</td>
<td>6.5 ± 0.7 b</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>46.2 ± 6.5 a</td>
<td>10.1 ± 1.7 a</td>
</tr>
<tr>
<td></td>
<td>F3</td>
<td>7.2 ± 0.6 c</td>
<td>3.9 ± 1.4 b</td>
</tr>
<tr>
<td>TIR</td>
<td>F1</td>
<td>13.9 ± 1.3 b</td>
<td>2.0 ± 0.4 a</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>19.6 ± 1.0 b</td>
<td>5.9 ± 1.0 b</td>
</tr>
<tr>
<td></td>
<td>F3</td>
<td>19.9 ± 0.8 b</td>
<td>9.9 ± 0.7 a</td>
</tr>
</tbody>
</table>

注（Note）：CIR—常规灌溉 Conventional irrigation；TIR—“湿、浅、湿、干”灌溉 Thin-shallow-wet-dry irrigation；F1—低氮 Low N；F2—中氮 Middle N；F3—高氮 High N。同列数据后不同字母表示处理间差异达5%显著水平。Values followed by different letters in a column are significant among treatments at the 5% level.

2.3 灌溉方式和氨肥水平对水稻土酶活性的影响

从表3可以看出，与CIR相比，F3时TIR处理拔节期土壤磷酸还原酶活性增加1倍；F1和F2时TIR处理孕穗期土壤磷酸还原酶活性分别降低63.8%和43.3%。CIR时，拔节期和乳熟期F2处理土壤磷酸还原酶活性比F1分别增加1.5倍和1.2倍，而孕穗期F3土壤磷酸还原酶活性比F1降低44.1%。总体上3个时期土壤磷酸还原酶活性随着氮肥用量的增加表现出先增后减的趋势，其中孕穗期F2处理土壤磷酸还原酶活性最高。TIR时，拔节期和乳熟期F3处理土壤磷酸还原酶活性比F1分别增加90%和2.0倍，3个时期土壤磷酸还原酶活性随着氮肥用量的增加而增加，最大值出现在F3时拔节期。

表3还显示，3个时期TIR处理土壤亚硝酸还原酶活性与CIR相比变化不明显（表3）。CIR时，土壤亚硝酸还原酶活性随着氮肥用量的增加变化不明显。TIR时，3个时期土壤亚硝酸还原酶活性随
表 3 灌溉方式和氮肥水平对水稻土硝酸还原酶和亚硝酸还原酶活性的影响

<table>
<thead>
<tr>
<th>灌溉方式</th>
<th>氮肥水平</th>
<th>硝酸还原酶 Nitrate reductase [NO₃⁻-N mg/(g·24h)]</th>
<th>亚硝酸还原酶 Nitrite reductase [NO₂⁻-N mg/(g·24h)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jointing stage</td>
<td>Booting stage</td>
</tr>
<tr>
<td>CIR</td>
<td>F1</td>
<td>0.26 ± 0.05 e</td>
<td>0.79 ± 0.32 ab</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>0.66 ± 0.09 ab</td>
<td>0.94 ± 0.10 a</td>
</tr>
<tr>
<td></td>
<td>F3</td>
<td>0.45 ± 0.04 be</td>
<td>0.44 ± 0.18 c</td>
</tr>
<tr>
<td>TIR</td>
<td>F1</td>
<td>0.49 ± 0.12 b</td>
<td>0.29 ± 0.11 c</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>0.71 ± 0.10 ab</td>
<td>0.38 ± 0.14 c</td>
</tr>
<tr>
<td></td>
<td>F3</td>
<td>0.92 ± 0.13 a</td>
<td>0.53 ± 0.15bc</td>
</tr>
</tbody>
</table>

注 (Note)：CIR—常规灌溉 Conventional irrigation；TIR—“薄、浅、慢、短”灌溉 “Thin-shallow-wet-short” irrigation；F1—低氮 Low N；F2—中氮 Middle N；F3—高氮 High N。同列数据后不同字母表示处理间差异显著性水平 Values followed by different letters in a column are significant among treatments at the 5% level.

着氮肥用量的增加而增加，其中拔节期和孕穗期 F3 土壤亚硝酸还原酶活性比 F1 分别增加 34.4% 和 122.7%。

过氧化氢酶在 F1 时，孕穗期和乳熟期 TIR 比 CIR 处理土壤过氧化氢酶活性分别提高 12.5% 和 15.4% (表 4)；其他条件下 TIR 处理土壤过氧化氢酶活性变化不显著。CIR 时，与 F1 相比，F2 处理乳熟期土壤过氧化氢酶活性提高 10.3%，而拔节期和孕穗期过氧化氢酶活性提高不显著；F3 处理拔节期、孕穗期和乳熟期土壤过氧化氢酶活性均有所提高。TIR 时，与 F1 相比，F2 和 F3 处理拔节期过氧化氢酶活性分别增加 17.1% 和 4.9%，孕穗期下降 11.1%，乳熟期 F3 下降 8.9%。

表 4 还显示，与 CIR 处理相比，在 F1 时，3 个时期 TIR 土壤酶活性变化不明显；F2 时，拔节期 TIR 土壤转氨酶活性提高 20.1%；F3 时，拔节期和乳熟期 TIR 土壤转氨酶活性分别提高 49.6% 和 10.1%。CIR 时，与 F1 相比，F2 拔节期、孕穗期和乳熟期土壤转氨酶活性分别提高 13.3%、15.1% 和 2.0%，F3 分别提高 16.9%、18.2% 和 15.5%。TIR 时，与 F1 相比，F2 拔节期土壤转氨酶活性提高 29.8%，F3 拔节期和乳熟期分别提高 61.8% 和 23.0%。

与 CIR 处理相比，TIR 土壤转氨酶活性拔节期和孕穗期有所提高，而乳熟期有所下降 (表 4)。CIR 时，与 F1 相比，F2 和 F3 在 3 个采样时期土壤转氨酶活性均有所提高；TIR 时，与 F1 相比，F2 在 3 个采样时期土壤转氨酶活性有所降低，而乳熟期有所上升。

3 讨论与结论

土壤微生物量碳、氮与土壤中碳、氮元素的循环关系密切 [12]，同时，土壤微生物量碳、氮转化速率较快，可直接或间接地反映土壤肥力和土壤环境变化，是比较敏感的生物学指标 [20]。本研究表明，与 CIR 处理相比，TIR 处理土壤 MBC 增加 13%～240%，而土壤 MBN 降低 6.5%～47.3%，显示土壤中微生物量碳、氮的转化速率加快，而土壤 MBC 出现加后减的趋势。氮肥是影响微生物量碳、氮的主要因素，适量施用氮肥可以增加土壤微生物量碳、氮，但是过量施用氮肥反而降低土壤 MBN，这与前人研究结果相符 [21-25]。

硝化作用是在硝化细菌作用下将土壤中铵态氮氧化成硝酸的过程，而反硝化作用是土壤中硝态氮在反硝化细菌的作用下转化为气态氮的过程，参与这两个过程的硝化细菌和反硝化细菌数量变化受土壤环境和耕作措施的影响较大，同时也能反映土壤氮肥供应状况。施肥对土壤含氮细菌和反硝化细菌影响较大，张永明等 [24] 研究表明，高浓度的铵态氮会抑制硝化细菌的生长。本研究表明，F3 时 3 个时期的 TIR 土壤硝化细菌数量比 CIR 有所增加；拔节期和孕穗期时 TIR 土壤反硝化细菌数量比 CIR
表 4 灌溉方式和氮肥水平对土壤过氧化氢酶，转化酶和脲酶活性的影响

Table 4 Effects of the irrigation methods and N levels on the activities of catalase, invertase and urease in soil

| 灌溉方式 | 氮肥水平 | 过氧化氢酶 Catalase
| | N level | [0.02 mol/L K MnO₄ mL/(g·h)] | 转化酶 Invertase
| | | | [mg/(g·24h)] | 脲酶 Urease
			[NH₃-N mg/(kg·24h)]							
	Jointing stage	Booting stage	Milky stage	Jointing stage	Booting stage	Milky stage	Jointing stage	Booting stage	Milky stage	
CIR	F1	0.41 ± 0.02 b	0.40 ± 0.02 b	0.39 ± 0.01 c	4.21 ± 0.28 d	4.83 ± 0.34 c	5.55 ± 0.17 c	14.02 ± 2.72 b	19.10 ± 1.17 b	17.41 ± 0.85 a
	F2	0.45 ± 0.02 ab	0.42 ± 0.1 b	0.43 ± 0.03 ab	4.77 ± 0.15 e	5.56 ± 0.03 a	5.66 ± 0.18 e	15.36 ± 1.29 ab	22.02 ± 2.70 ab	19.36 ± 1.01 a
	F3	0.46 ± 0.04 ab	0.41 ± 0.02 b	0.40 ± 0.02 c	4.92 ± 0.38 c	5.71 ± 0.37 a	6.41 ± 0.15 b	14.08 ± 1.84 b	19.97 ± 0.94 b	18.90 ± 1.33 a
TIR	F1	0.41 ± 0.02 b	0.45 ± 0.01 a	0.45 ± 0.01 a	4.55 ± 0.14 cd	4.91 ± 0.51 bc	5.74 ± 0.17 e	17.05 ± 1.78 ab	22.74 ± 3.24 ab	16.38 ± 1.54 a
	F2	0.48 ± 0.02 a	0.4 ± 0.01 b	0.44 ± 0.02 ab	5.91 ± 0.13 b	5.40 ± 0.12 ab	5.83 ± 0.07 a	20.13 ± 1.80 a	26.23 ± 4.59 a	18.79 ± 2.71 a
	F3	0.43 ± 0.02 ab	0.4 ± 0.02 b	0.41 ± 0.01 bc	7.36 ± 0.22 a	5.46 ± 0.27 ab	7.06 ± 0.54 a	14.54 ± 2.18 b	22.39 ± 1.01 a	18.69 ± 1.22 a

注(Note): CIR—常规灌溉 Conventional irrigation; TIR—“薄、浅、湿、晒”灌溉 “Thin-shallow-wet-dry” irrigation；F1—低氮 Low N; F2—中氮 Middle N; F3—高氮 High N. 同列数据后不同字母表示处理间差异达5%显著水平 Values followed by different letters in a column are significant among treatments at the 5% level.
减少 12.1 % ~ 61.2 %，而乳熟期时增加 0.7 ~ 3.0 倍。适当增加氮肥用量可以增加硝化细菌和反硝化细菌数量，两种细菌数量的最大值均出现在 F2 时乳熟期，F3 时土壤硝化细菌和反硝化细菌数量比 F2 时低，说明本试验中氮水平会增加土壤中硝化细菌和反硝化细菌数量。

土壤酶主要来自微生物细胞和动物残体，土壤酶活性与土壤健康及土壤养分转化等有很大的关系。在一定水量范围内，土壤酶活性随土壤含水量增加而增加，合理的施肥制度也会提高土壤酶活性，但高量的尿素或铵态氮肥对土壤脲酶有抑制作用[21]。本研究结果表明，不同灌水方式和氮肥水平会影响土壤酶活性，但对不同土壤酶活性的影响不同。硝酸还原酶和亚硝酸还原酶是反硝化过程的两种主要主导酶，其中由亚硝酸还原酶诱导，将亚硝酸还原成一氧化氮的反应是将硝酸还原成气体第一步。CIR 处理的高氮水平下有利于降低土壤中的硝酸还原酶活性。与 CIR 相比，TIR 处理土壤处于低氮水平 F1 和 F2 时 TIR 土壤硝酸还原酶活性分别降低 63.8 % 和 43.3 %。在 CIR 和 TIR 处理下，增加氮肥用量一般会提高土壤中硝酸还原酶和亚硝酸还原酶活性。土壤中过氧化氢酶、转化酶和脲酶活性的最大值均出现在 CIR 方式，可见 TIR 在一定程度上有利于提高土壤中过氧化氢酶、转化酶和脲酶活性。相同灌水方式下，土壤转化酶活性随氮肥用量的增加而增加，最大值均出现在 F3 处理的拔节期；过氧化氢酶和脲酶活性随着氮肥用量的增加一般先增后减，最大值均出现在 F2 处理的孕穗期，这可能是因施用氮肥有助于土壤微生物的代谢。

参考文献:

[2] 苏永清，彭秋红。农业土壤动物和微生物与生物化学动态关系的研究[J]。生态学杂志，2004，24 (3)：134 -137。

Hu Y L, Hu X F. Discussion on soil microbial biomass as a bio-

[6] 张世春，王光文，张艳。不同施肥处理对水稻养分吸收和稻田土壤微生物生态特征的影响[J]。土壤学报，2005，42 (1)：116-121。

[7] 张世春，王光文，张艳。不同施肥处理对不同周期施用对稻田土壤微生物生态特征的影响[J]。植物营养与肥料科学，2010，16 (1)：118-123。

[8] 陈安鑫，吴凯军，朱小林。施肥制度与养分循环对稻田土壤微生物生物量碳氮磷的影响[J]。农业环境科学学报，2005，24 (6)：1094-1099。

[12] 李拴柱，杨永明，李志应。土壤与环境微生物研究方法[M]。北京：科学出版社，2008，397-413。

