• ISSN 1008-505X
  • CN 11-3996/S
叶丽萍, 钟凤林, 林义章, 林琳琳. 外源NO对铜胁迫下小白菜SBPase基因表达特性及其光合速率的影响[J]. 植物营养与肥料学报, 2016, 22(3): 736-743. DOI: 10.11674/zwyf.14554
引用本文: 叶丽萍, 钟凤林, 林义章, 林琳琳. 外源NO对铜胁迫下小白菜SBPase基因表达特性及其光合速率的影响[J]. 植物营养与肥料学报, 2016, 22(3): 736-743. DOI: 10.11674/zwyf.14554
YE Li-ping, ZHONG Feng-lin, LIN Yi-zhang, LIN Lin-lin. Effects of exogenous nitric oxide on SBPase gene expression characteristics and photosynthetic rate of Brassica chinensis L. under copper stress[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(3): 736-743. DOI: 10.11674/zwyf.14554
Citation: YE Li-ping, ZHONG Feng-lin, LIN Yi-zhang, LIN Lin-lin. Effects of exogenous nitric oxide on SBPase gene expression characteristics and photosynthetic rate of Brassica chinensis L. under copper stress[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(3): 736-743. DOI: 10.11674/zwyf.14554

外源NO对铜胁迫下小白菜SBPase基因表达特性及其光合速率的影响

Effects of exogenous nitric oxide on SBPase gene expression characteristics and photosynthetic rate of Brassica chinensis L. under copper stress

  • 摘要: 【目的】本研究通过克隆小白菜光合暗反应中限制核酮糖-1, 5-二磷酸(RuBP)再生的关键酶景天庚酮糖-1,7-二磷酸酶(sedoheptulose-1, 7-bisphosphatase,SBPase)基因,分析铜胁迫及添加外源一氧化氮(NO)供体硝普钠(SNP)缓解铜胁迫时该基因的表达情况,并将其与对应处理下小白菜净光合速率(Pn)的变化情况结合在一起进行分析,以期为全面了解外源NO缓解铜胁迫植物光合作用机理提供理论依据。【方法】以小白菜品种“上海青”3~4片真叶大的幼苗为材料,采用RT-PCR技术克隆小白菜SBPase基因,铜处理浓度为200 μmol/L,外源NO供体SNP浓度为300 μmol/L,同时设置相关的4个对照组排除其他可能因素的干扰,在添加处理液后的0、 4、 8、 12 d上午九点测定各处理小白菜相同节位叶片的净光合速率,并利用实时荧光定量PCR技术检测在对应的处理时间及对应节位小白菜叶片中SBPase基因的表达情况。试验环境条件为光照强度200 μmol/(m2·s),光周期12 h,温度25℃/18℃。【结果】 1)克隆得到小白菜SBPase基因(Genbank登录号:AHY18974.1),开放阅读框为1182 bp,编码393个氨基酸,蛋白质分子量为42.34kD,理论等电点为5.85。2)序列分析表明其含有氧化还原活性位点,包含一个具有59个氨基酸残基的叶绿体转移肽序列。小白菜SBPase基因推导的氨基酸序列与其他物种中已分离的SBPase编码的氨基酸序列具有很高的同源性。3)实时荧光定量PCR分析表明,SBPase基因在铜胁迫下的小白菜叶片中表达量下降,且随着胁迫时间的延长下降程度加剧;而在铜胁迫的基础上添加外源NO可以在一定程度上缓解铜胁迫引起的小白菜叶中SBPase基因表达量的下降。4)铜胁迫下小白菜叶片Pn显著下降,且随着胁迫时间的延长,Pn下降加剧,施加外源NO后Pn的下降得到一定程度的缓解,各处理下Pn的变化与SBPase基因表达量变化趋势一致。【结论】铜胁迫及在铜胁迫的基础上添加外源NO后小白菜叶片中SBPase基因表达量的变化,可能是影响对应条件下小白菜叶片的净光合速率变化的原因之一。

     

    Abstract: 【Objectives】 In order to provide a theoretical basis for comprehensive understanding mechanism of adding exogenous nitric oxide(NO) to alleviate the decline of net photosynthetic rate(Pn), the gene of sedoheptulose-1, 7-bisphosphatase (SBPase) which is one of the key enzymes to restrict RuBP regeneration in calvin cycle was cloned, and the different expression of the SBPase gene in Brassica chinensis L. leavesunder copper stress and adding the SNP was analyzed combined with the net photosynthetic rate changes. 【Methods】 The SBPase gene of Brassica chinensis L. was cloned by RT-PCR, and seedlings of Brassica chinensis L. (named Shanghai green) with three to four real leaves were used as materials. Copper concentration was 200 μmol/L, and the SNP concentration was 300 μmol/L. At the same time, four related groups were set to exclude the disruptive factors. The Pn and the expression of SBPase gene of Brassica chinensis L. leaves at the same position and moment after the treatment of 0, 4, 8 and 12 days were determined. The environmental conditions of the experiment were light intensity, 200 μmol/(m2·s); photoperiod, 12 h; and temperature, 25℃/18℃.【Results】1) The sequence of the open reading frame of SBPase gene is 1182bp, encoding 393 amino acids. The molecular weight of the predicted protein is 42.34kD and the theoretical isoelectric point is 5.85. 2) The sequence analysis show that it contains a redox active site and a 59-amino acid chloroplast transfer peptide. The amino acid sequence has high homology with other SBPase separated from other species. 3) The qRT-PCR analysis show that the SBPase gene expression in Brassica chinensis L.leaves is declined under copper stress, and with time extending the degree of decline is aggravated. Besides, the expression of SBPase gene is increased after the addition of NO. 4) The application of exogenous NO increases the Pn of Brassica chinensis L. leaves under the copper stress, and the variation tendency of Pn and the expression of SBPase gene are in a good agreement. 【Conclusions】The expression of SBPase gene in Brassica chinensis L. leaves is changed under the copper stress and the addition of NO, which may be one of the causes of the change of Pn in Brassica chinensis L. under the copper stress and the addition of NO.

     

/

返回文章
返回