• ISSN 1008-505X
  • CN 11-3996/S
王文锋, 李春花, 黄绍文, 高伟, 唐继伟. 不同施肥模式对设施秋冬茬芹菜生育期间土壤酶活性的影响[J]. 植物营养与肥料学报, 2016, 22(3): 676-686. DOI: 10.11674/zwyf.15223
引用本文: 王文锋, 李春花, 黄绍文, 高伟, 唐继伟. 不同施肥模式对设施秋冬茬芹菜生育期间土壤酶活性的影响[J]. 植物营养与肥料学报, 2016, 22(3): 676-686. DOI: 10.11674/zwyf.15223
WANG Wen-feng, LI Chun-hua, HUANG Shao-wen, GAO Wei, TANG Ji-wei. Effects of different fertilization patterns on soil enzyme activities during growing period of autumn-winter season celery in greenhouse[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(3): 676-686. DOI: 10.11674/zwyf.15223
Citation: WANG Wen-feng, LI Chun-hua, HUANG Shao-wen, GAO Wei, TANG Ji-wei. Effects of different fertilization patterns on soil enzyme activities during growing period of autumn-winter season celery in greenhouse[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(3): 676-686. DOI: 10.11674/zwyf.15223

不同施肥模式对设施秋冬茬芹菜生育期间土壤酶活性的影响

Effects of different fertilization patterns on soil enzyme activities during growing period of autumn-winter season celery in greenhouse

  • 摘要: 【目的】利用在天津的日光温室蔬菜不同施肥模式定位试验,研究了不同施肥模式对设施菜田土壤酶活性的影响,为设施蔬菜高效施肥和菜田土壤可持续利用提供依据。【方法】取样调查在第9茬蔬菜(秋冬茬芹菜)进行。定位试验设6个处理,在等氮磷钾条件下,分别为1)全部施用化肥氮(4/4CN),2)3/4化肥氮+1/4猪粪氮(3/4CN+1/4PN),3)2/4化肥氮+2/4猪粪氮(2/4CN+2/4PN),4)1/4化肥氮+3/4猪粪氮(1/4CN+3/4PN),5)2/4化肥氮+1/4猪粪氮+1/4秸秆氮(2/4CN+1/4PN+1/4SN),6)2/4化肥氮+2/4秸秆氮(2/4CN+2/4SN)。在芹菜基肥施用前和定植后30、60、90、110天,采取0—20 cm土壤样品,测定土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纤维二糖苷酶、几丁质酶、磷酸酶和脲酶的活性,分析其与土壤微生物量碳氮及土壤可溶性有机碳氮含量之间的关系。【结果】芹菜生育期间不同施肥模式土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纤维二糖苷酶、几丁质酶和磷酸酶的活性总体上先增后降,较高土壤酶活性均出现在芹菜定植后60~90 d; 土壤脲酶活性总体上呈逐渐升高的趋势。芹菜季有机无机肥料配施模式土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纤维二糖苷酶、几丁质酶、磷酸酶和脲酶的活性较4/4CN模式平均分别增加22.9%~92.0%、20.1%~152.4%、23.1%~145.1%、28.7%~273.8%、9.2%~207.8%、13.7%~86.8%和6.5%~56.5%,其中以配施秸秆模式土壤酶活性相对较高,较4/4CN模式平均分别增加59.9%~92.0%、98.9%~152.4%、90.3%~145.1%、171.6%~273.8%、106.4%~207.8%、68.8%~86.8%和30.7%~56.5%。土壤酶活性与土壤微生物量碳氮、可溶性有机碳氮含量及芹菜产量之间总体上呈显著或极显著正相关关系。【结论】同等养分投入量下,设施菜田土壤酶活性表现为有机无机肥料配合显著高于单施化肥,又以配施秸秆效果更佳; 土壤酶活性与土壤微生物量碳氮、可溶性有机碳氮含量和蔬菜产量之间密切相关。说明有机无机肥配施,特别是配施一定的秸秆可有效提高土壤酶活性,维持较高的菜田土壤肥力,有利于设施蔬菜的可持续和高效生产。

     

    Abstract: 【Objectives】 The fixed-site greenhouse vegetable fertilization experiment is in Tianjin, where the rotation of tomato in spring season and celery in autumn-winter season has been set up. The effect of different fertilization patterns on soil enzymes activities was investigated to provide a scientific fertilization basis for sustainable and high-efficient vegetable production in greenhouse. 【Methods】 The experiment was carried out on celery in autumn-winter season, including 6 treatments depending on the proportion of nitrogen from different types of fertilizers: 1) Complete chemical nitrogen fertilizer (4/4CN); 2) 3/4 N from chemical fertilizer, 1/4 from pig manure (3/4CN+1/4PN); 3) 2/4 N from chemical fertilizer, 2/4 from pig manure (2/4CN+2/4PN); 4) 1/4 N from chemical fertilizer, 3/4 from pig manure (1/4CN+3/4PN); 5) 2/4 N from chemical fertilizer, 1/4 from pig manure and 1/4 from straw (2/4CN+1/4PN+1/4SN); 6) 2/4 N from chemical fertilizer, 2/4 from straw (2/4CN+2/4SN). This investigation was conducted in the ninth harvest of celery. All the treatments were applied with the same amounts of N, P2O5 and K2O nutrients. 0-20 cm surface soil samples were collected. Soil enzyme activities, includiung soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase, phosphatase and urease were measured at different growing stages of celery, and their correlations with contents of MBC, MBN, DOC and DON were calculated.【Results】 Activities of soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase and phosphatase in different treatments all increased initially and then decreased, with relatively higher activity at 60-90 days after transplanting of celery. Soil urease activities increased gradually during the celery growing season. Compared with the 4/4CN treatment, activities of soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase, phosphatase and urease were increased by 22.9%-92.0%, 20.1%-152.4%, 23.1%-145.1%, 28.7%-273.8%, 9.2%-207.8%, 13.7%-86.8% and 6.5%-56.5%, respectively in treatments with combined application of manure and straw with chemical fertilizers, and by 59.9%-92.0%, 98.9%-152.4%, 90.3%-145.1%, 171.6%-273.8%, 106.4%-207.8%, 68.8%-86.8% and 30.7%-56.5%, respectively in straw-amended treatments. Significant positive correlation relationships were found between enzymes activities and contents of MBC, MBN, DOC and DON and celery yield. 【Conclusions】 Compared with the 4/4CN, combined application of chemical fertilizers with organic materials, especially corn straw, can greatly enhance soil enzymes activities in greenhouse vegetable field. Soil enzymes activities are significantly correlated with MBC, MBN, DOC and DON contents and vegetable yield. Therefore, the combined utilization of organic and inorganic fertilizers can significantly increase soil enzymes activities, and maintain soil fertility in greenhouse vegetable production.

     

/

返回文章
返回