• ISSN 1008-505X
  • CN 11-3996/S
杜建军, 阚玉景, 黄帮裕, 李永胜, 王新爱. 水肥调控技术及其功能性肥料研究进展[J]. 植物营养与肥料学报, 2017, 23(6): 1631-1641. DOI: 10.11674/zwyf.17304
引用本文: 杜建军, 阚玉景, 黄帮裕, 李永胜, 王新爱. 水肥调控技术及其功能性肥料研究进展[J]. 植物营养与肥料学报, 2017, 23(6): 1631-1641. DOI: 10.11674/zwyf.17304
DU Jian-jun, KAN Yu-jing, HUANG Bang-yu, LI Yong-sheng, WANG Xin-ai. Research progress on water and fertilizer regulation technology and functional fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1631-1641. DOI: 10.11674/zwyf.17304
Citation: DU Jian-jun, KAN Yu-jing, HUANG Bang-yu, LI Yong-sheng, WANG Xin-ai. Research progress on water and fertilizer regulation technology and functional fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1631-1641. DOI: 10.11674/zwyf.17304

水肥调控技术及其功能性肥料研究进展

Research progress on water and fertilizer regulation technology and functional fertilizers

  • 摘要: 综述水肥调控的有关技术,以及以高吸水性树脂 (super absorbent polymer,SAP) 为保水、缓/控释材料制备保水型缓/控释肥料的研究进展,为今后此类肥料的开发、应用提供依据。水分和养分是限制我国旱地农业可持续发展的主要因子,以肥调水,以水促肥,充分发挥水肥的协同效应是提高水肥利用率的关键。目前,水肥调控 (耦合) 技术的实施主要通过农艺措施和施肥灌溉技术来完成。近年来,随着SAP性能的不断改善和使用的普及,人们对SAP在吸水保水的同时,对土壤肥料养分的保持和缓释作用开始给予了重视,以SAP为保水、缓释材料的保水型缓/控释肥料的研究成为水肥调控研究的热点。SAP与一般聚合物不同之处是它具有高度亲水性,聚合物的骨架是一个适度交联的网状结构,进入树脂分子内的养分离子或分子可以以各种结合形式被暂时固定而延缓了养分的释放。土壤中可溶性盐对SAP吸水性能有重要影响,但尿素分子影响甚小。保水型缓/控释肥料可通过养分负载、复混或包膜等工艺制备。保水型缓/控释肥料是水肥调控 (耦合) 技术、化学制剂保水节水技术和肥料缓/控释技术的综合运用和物化的载体,兼具吸水、保水和养分缓/控释功能,实现水肥在同一时空条件下的一体化调控,同时提高水分和肥料的利用效率,在农业、林业、环境修复、生态工程等领域具有广阔的应用前景。未来工作是进一步寻求合适的SAP制造原料和工艺,降低成本;应用分子设计,改善SAP的结构,提高生物降解性,控制盐分的不利影响,提高肥料的吸水、保水和对养分的缓释性能;加强养分释放机理和不同于普通缓/控释肥料评价方法的研究。

     

    Abstract: This paper reviewed the relevant technologies of research on water and fertilizer regulation, and the progresses in water retention and slow/controlled release fertilizers (WRSRF) which were made from super absorbent polymer (SAP), and provided basis for development and application of this kind of fertilizers in the future. Water and nutrient are the main factors restricting the dryland sustainable agricultural development in China. Regulating water by fertilizers, and promoting fertilizers by water to fully use the synergy effect of water and fertilizer are the key to improve water and fertilizer use efficiencies. At present, the implementation of water and fertilizer regulation (coupling) technology is mainly completed by agronomic measures and fertigation technology. In recent years, with the improvement and popularization of SAP, besides its effect of water absorption and retention, people have paid more attention to its fuction of nutrients conservation and slow release. Therefore, the research of WRSRF based on SAP has become a hot topic. SAP is different from common polymer in its highly hydrophilic property and moderate crosslinking network structure. Nutrients of ions or molecules in the resin can be temporarily fixed and released later by various combination forms. The soluble salts in soil have important influence on water absorbency of SAP except urea. WRSRFs can be made by using techniques of nutrient loading, compounding and coating. WRSRF is the integrated application and materialized carrier of the technologies of water and fertilizer regulation (coupling), water retaining and water saving by chemical agent, and fertilizer slow/controlled release technology. WRSRF has the functions of water absorbing and retaining, and nutrient release, and realizes the integration of water and fertilizer regulation at the same time and space, improves the use efficiencies of water and fertilizers, and has broad application prospects in agriculture, forestry, environmental restoration, ecological engineering and other fields. The future work is to seek more suitable raw materials and manufacturing processes for SAP to reduce costs; use molecular design to change the structure of SAP, modify its biodegradability, control the adverse effects of salt, and improve the water absorption, water retention and slow release properties of the fertilizer; strengthen the study of nutrient release mechanism and WRSRF evaluation methods, which are different from ordinary slow/controlled release fertilizers.

     

/

返回文章
返回