• ISSN 1008-505X
  • CN 11-3996/S
马明坤, 袁亮, 张水勤, 李燕婷, 高强, 赵秉强. 采用响应面模拟法优化过氧化氢提高腐殖酸羧基含量的反应条件[J]. 植物营养与肥料学报, 2019, 25(12): 2069-2075. DOI: 10.11674/zwyf.19043
引用本文: 马明坤, 袁亮, 张水勤, 李燕婷, 高强, 赵秉强. 采用响应面模拟法优化过氧化氢提高腐殖酸羧基含量的反应条件[J]. 植物营养与肥料学报, 2019, 25(12): 2069-2075. DOI: 10.11674/zwyf.19043
MA Ming-kun, YUAN Liang, ZHANG Shui-qin, LI Yan-ting, GAO Qiang, ZHAO Bing-qiang. Using response surface simulation method to optimize reaction conditions of hydrogen peroxide to increase carboxyl content of humic acid[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2069-2075. DOI: 10.11674/zwyf.19043
Citation: MA Ming-kun, YUAN Liang, ZHANG Shui-qin, LI Yan-ting, GAO Qiang, ZHAO Bing-qiang. Using response surface simulation method to optimize reaction conditions of hydrogen peroxide to increase carboxyl content of humic acid[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2069-2075. DOI: 10.11674/zwyf.19043

采用响应面模拟法优化过氧化氢提高腐殖酸羧基含量的反应条件

Using response surface simulation method to optimize reaction conditions of hydrogen peroxide to increase carboxyl content of humic acid

  • 摘要:
    目的 腐殖酸的生物活性与其羧基含量密切相关,本文以过氧化氢为氧化剂,采用响应面模拟法研究获取提高腐殖酸羧基含量的最佳反应条件。
    方法 以风化煤腐殖酸为原料,6%过氧化氢为氧化剂,选取pH、反应时间和液固比为自变量进行单因素试验,以腐殖酸羧基的红外光谱峰面积为响应值,根据响应面模拟 (Box-Benhnken) 试验设计原理,采用三因子四水平的分析法模拟得到二次多项式回归方程的预测模型,优化过氧化氢提高腐殖酸羧基含量的反应条件。以650FTIR傅里叶红外变换光谱仪测定并计算了产物中腐殖酸的羧基峰面积。
    结果 在pH因素试验中,腐殖酸羧基含量在pH 为7时达到最大值,与未处理腐殖酸相比,腐殖酸羧基含量提高了192.2%。随着反应时间的延长,腐殖酸羧基的含量在反应时间为120 min时达到最大值,并随着反应时间的延长呈现下降的趋势,与未处理腐殖酸相比,在反应时间为180和240 min时,腐殖酸羧基含量可分别提高83.0%和48.5%。腐殖酸羧基含量随液固比的增加呈先下降后上升的趋势,在液固比为0.4∶1时达到最大值。在响应面优化试验中,回归模型具有高度显著性,方程对试验拟合度较高,可对腐殖酸羧基含量进行分析和预测,各因子对腐殖酸羧基含量的影响大小依次是pH > 液固比 > 反应时间。响应面分析图表明,pH对腐殖酸羧基含量有显著影响,pH、液固比和反应时间任意两因子之间交互作用不显著。
    结论 以过氧化氢为氧化剂,对腐殖酸羧基基团影响最显著的条件是反应过程中的pH,其次是反应时间和液固比。在反应温度为100℃条件下,过氧化氢氧化提高腐殖酸羧基含量的最佳反应条件为pH 7.49、反应时间114.84 min、液固为0.39∶1,在该条件下得到的羧基含量预测值与实际值误差率仅为1.4%。

     

    Abstract:
    Objectives The bioactivity of humic acid is closely related to its carboxyl content. In this paper, the optimal processing parameters of increasing the humic acid carboxyl group content with hydrogen peroxide as oxidant were studied by using the method of response surface simulation.
    Methods Weathered coal humic acid was used as raw material and 6% hydrogen peroxide as oxidant, the oxidantion process of humic acids was conducted in a three-factorial experiment, each factor having four-levels. The pH during the reaction were 1, 4, 7 and 10 under liquid/solid ratio of 0.2∶1, 0.4∶1, 0.6∶1, 0.8∶1, and reaction time of 60, 120, 180 and 240 min. The peak area of carboxyl group in the reaction products was determined using Fourier Transform Infrared Spectrometer and calculated by Origin 2018. According the single factor experimental result, the response of surface methodology (Box-Benhnken) test was used for the optimization of the reacting parameters.
    Results In the single pH experiment, the highest humic acid carboxyl content was obtained in solution pH 7, which was 192.2% higher than that in untreated humic acid. In the reaction time experiment, the highest carboxyl content was obtained in 120 min. Then followed by 180 and 240 min during which the carboxyl contents were 83.0% and 48.5% higher than that in untreated humic acid. In the response surface optimization test, the model was highly significant, and the established regression equation for carboxyl content had an excellent goodness of fit. Therefore, the humic acid carboxyl content could be analyzed and predicted by the model. The effects of size of each independent variable on the carboxyl group content were shown in the following descending order: extraction pH > liquid/solid ratio > reaction time. The response surface plots indicated that solution pH had a significant effect on the humic acid carboxyl content, while the interaction between any two independent factors was not significant.
    Conclusions pH is the most important factor influencing the carboxyl content during the oxidation of humic acids using H2O2 as dissolvent. Under the reaction temperature of 100°C, the optimum reaction parameters to increase the humic acid carboxyl content are: pH 7.49, reaction time 114.84 min, liquid/solid ratio 0.39∶1, and under this optimum reaction condition, the error rate between the predicted and actual value of carboxyl content is only 1.4%.

     

/

返回文章
返回