• ISSN 1008-505X
  • CN 11-3996/S
王小春, 杨文钰, 邓小燕, 张群, 雍太文, 刘卫国, 杨峰, 毛树明. 玉米/大豆和玉米/甘薯模式下玉米干物质积累与分配差异及氮肥的调控效应[J]. 植物营养与肥料学报, 2015, 21(1): 46-57. DOI: 10.11674/zwyf.2015.0105
引用本文: 王小春, 杨文钰, 邓小燕, 张群, 雍太文, 刘卫国, 杨峰, 毛树明. 玉米/大豆和玉米/甘薯模式下玉米干物质积累与分配差异及氮肥的调控效应[J]. 植物营养与肥料学报, 2015, 21(1): 46-57. DOI: 10.11674/zwyf.2015.0105
WANG Xiao-chun, YANG Wen-yu, DENG Xiao-yan, ZHANG Qun, YONG Tai-wen, LIU Wei-guo, YANG Feng, MAO Shu-ming. Differences of dry matter accumulation and distribution of maize and their responses to nitrogen fertilization in maize/soybean and maize/sweet potato relay intercropping systems[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 46-57. DOI: 10.11674/zwyf.2015.0105
Citation: WANG Xiao-chun, YANG Wen-yu, DENG Xiao-yan, ZHANG Qun, YONG Tai-wen, LIU Wei-guo, YANG Feng, MAO Shu-ming. Differences of dry matter accumulation and distribution of maize and their responses to nitrogen fertilization in maize/soybean and maize/sweet potato relay intercropping systems[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 46-57. DOI: 10.11674/zwyf.2015.0105

玉米/大豆和玉米/甘薯模式下玉米干物质积累与分配差异及氮肥的调控效应

Differences of dry matter accumulation and distribution of maize and their responses to nitrogen fertilization in maize/soybean and maize/sweet potato relay intercropping systems

  • 摘要: 【目的】西南山地玉米区是我国第三大玉米主产区,但单产比全国低近750 kg/hm2。由于该区特殊的气候条件,玉米以多熟间套种植为主,如何利用多熟种植中各作物的间套优势和茬口特性,寻求提高本区玉米产量的新途径,是农业科技工作者研究的热点。本文在四川的两个玉米主产区,通过四年的田间小区试验,对比研究了西南玉米主要的两种套作模式玉米/大豆和玉米/甘薯模式下玉米干物质积累分配、 转运差异及施氮量对其的调控效应,以探讨种植模式和氮肥管理的增产效应。【方法】2008年设置玉米/大豆和玉米/甘薯两个套种田间试验,分析比较两种模式玉米干物质积累、 分配和转运的差异;2009~2010年在前一年的基础上分带轮作,即玉米分别种在大豆或甘薯茬上,分析套作和轮作效应对玉米干物质积累的影响;2011年,在前三年的基础上,采用小区套微区的方式,研究两种模式下不同施氮水平(N0、 N90、N180、N270、N360)对玉米干物质积累和转运的调控。【结果】1)在玉米/大豆模式下, 玉米干物质积累量从蜡熟期开始显著高于玉米/甘薯模式,茎鞘输出率也显著高于玉米/甘薯模式,最终产量增加2.4%~3.2%,但差异未达显著水平; 2)分带轮作后,从拔节期开始, 玉米/大豆模式下玉米干物质积累量就显著高于玉米/甘薯模式,到成熟期两套种模式下玉米单株干物质积累两试验点平均相差达26.8 g,茎秆向籽粒的输出率和贡献率也显著高于玉米/甘薯模式,收获指数玉米/大豆模式平均较玉米/甘薯模式提高3.9%,最终玉米/大豆模式下玉米产量较玉米/甘薯模式增幅加大,两年两个试验点分别增加了7.4%和14.4%;3)氮肥对两种模式下玉米干物质积累分配和产量的调控效应显著,玉米/大豆模式下,玉米以施氮180 kg/hm2处理,而玉米/甘薯模式下270 kg/hm2处理与同一模式下其他氮素水平相比,增加了光合产物的积累,提高了干物质增长速率,延长了灌浆持续天数,有利于茎鞘和叶片的干物质向籽粒转移,显著提高收获指数,进而提高玉米的增产潜能,玉米/大豆模式下低氮处理(0~180 kg/hm2)对玉米的增产效应比较明显,在高施氮水平(270~360 kg/hm2)下两种模式间玉米产量差异不显著。【结论】西南丘陵旱地应选择玉米与大豆套作,采用分带轮作种植方式,既有利于提高玉米产量,又可避免大豆的连作障碍;且氮肥管理措施应因种植模式不同而有所差异,在中高等肥力条件下,与大豆套作玉米施氮180 kg/hm2,与甘薯套作施氮应提高至270 kg/hm2。

     

    Abstract: 【Objectives】The southwest region is the third major maize producing area in China where the maize yield is 750 kg/ha lower than the national average yield. Due to exceptional weather conditions in this region, intercropping is the main planting pattern of maize. How to use intercropping advantages and previous crop stubble features is a new approach to increase maize yield in this region. In order to explore a new way to improve maize yield and a reasonable nitrogen management to keep a sustainable yield increase of intercropped maize, a field experiment was conducted to investigate dry matter accumulation, distribution, transportation and their responses to nitrogen fertilization under maize/soybean(MS) and maize/sweet potato(MSP) relay strip intercropping systems from 2008 to 2011 in two major maize producing areas in Sichuan.【Methods】 A single factor experiment including maize/soybean and maize/sweet potato relay strip intercropping systems was developed to explore effects of different planting patterns on maize dry matter accumulation, distribution and transportation in 2008.From 2009 to 2010, the experiment was set up by strip rotation, which made the two intercropped crops strips be exchanged, including growing maize on the strips of land which were soybean (or sweet potato) strips the previous year, so did soybean (or sweet potato) to explore effects of intercropping and crop rotation on maize dry matter accumulation. In 2011, effects of different nitrogen application rates (N0, N90, N180, N270 and N360) on maize dry matter accumulation and distribution and their responses to nitrogen fertilization were studied using the micro-plot experiment.【Results】 1) From the dough stage, the dry matter accumulation of maize and dry matter transportation efficiency in stem-sheath in the maize/soybean intercropping system are significantly higher than those in the maize/sweet potato intercropping system with a yield increasing of 2.4%-3.2%, however, the yield difference is insignificant. 2) After the strip rotation, as a result of the rotation effect and intercropping advantages, the maize dry matter accumulation in maize/soybean is significantly higher than that in maize/sweet potato from the jointing stage, and the difference reaches to 26.8 g/plant at the maturing stage. The transportation efficiency and contribution rate in stem-sheath and the harvest index in the maize-soybean intercropping system are also significantly higher than those in the maize-sweet potato intercropping system, with the harvest index increased by 3.9%. Eventually, there are bigger increases of maize yield in maize-soybean intercropping with increases of 7.4% and 14.4% according to the 2-yr field experiments of the two experimental sites. 3) The maize dry matter accumulation and distribution and yield responding to the nitrogen fertilization are significantly different between the maize/soybean and maize/sweet potato intercropping systems. Application of nitrogen fertilizer of 180 kg/ha in the maize-soybean intercropping and of 270 kg/ha in the maize-sweet potato intercropping could help to increase the accumulation of photosynthate and dry matter increasing rate and also extend the length of the continuous filling days. And at the same time, the dry matter transportation from stem-sheath and leaf to grain and the harvest index are increased significantly and then the potential for increasing maize yield is improved. The maize/soybean intercropping increases maize yield significantly under low nitrogen treatment (0-180 kg/ha), however, yield difference is insignificant between the two intercropping systems under the high nitrogen treatments.【Conclusions】 Optimization of planting patterns is one of the way to increase the yield of maize in the southwest, and maize intercropped with soybean and growing with crop rotation can increase maize yield and avoid continuous cropping barrier. Nitrogen management is different with different cropping systems, the nitrogen fertilizer of 180 kg/ha has an obvious effect of increasing maize yield in the maize/soybean relay strip intercropping system in moderate-fertility and high-fertility soil. However, the nitrogen application rate should be raised to 270 kg/ha when maize intercropped with sweet potato.

     

/

返回文章
返回