• ISSN 1008-505X
  • CN 11-3996/S
于会丽, 徐变变, 徐国益, 邵微, 刘慧敏, 张子华, 乔宪生, 司鹏. 海藻提取物复合制剂适宜用量提高桃果实产量、品质及养分吸收量[J]. 植物营养与肥料学报, 2021, 27(9): 1656-1664. DOI: 10.11674/zwyf.2021058
引用本文: 于会丽, 徐变变, 徐国益, 邵微, 刘慧敏, 张子华, 乔宪生, 司鹏. 海藻提取物复合制剂适宜用量提高桃果实产量、品质及养分吸收量[J]. 植物营养与肥料学报, 2021, 27(9): 1656-1664. DOI: 10.11674/zwyf.2021058
YU Hui-li, XU Bian-bian, XU Guo-yi, SHAO Wei, LIU Hui-min, ZHANG Zi-hua, QIAO Xian-sheng, SI Peng. Optimum application of seaweed extracts promote the yield, quality and nutrient absorption of peach fruit[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1656-1664. DOI: 10.11674/zwyf.2021058
Citation: YU Hui-li, XU Bian-bian, XU Guo-yi, SHAO Wei, LIU Hui-min, ZHANG Zi-hua, QIAO Xian-sheng, SI Peng. Optimum application of seaweed extracts promote the yield, quality and nutrient absorption of peach fruit[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1656-1664. DOI: 10.11674/zwyf.2021058

海藻提取物复合制剂适宜用量提高桃果实产量、品质及养分吸收量

Optimum application of seaweed extracts promote the yield, quality and nutrient absorption of peach fruit

  • 摘要:
    目的 研究海藻提取物复合制剂 (海藻提取物含量60%、海藻酸6.5%、腐植酸5%、pH 6.7、密度为1.15 g/mL) 对桃果实品质和养分吸收的影响,以期筛选其最适海藻提取物复合制剂的施用量,为开发海藻水溶肥提供技术依据。
    方法 以‘中桃8号’为试验材料进行了两年定位田间试验。从桃萌芽期至成熟期,共进行4次追肥。海藻提取物复合制剂 (简称复合制剂) 施用量处理按照每次追施氮磷钾养分与海藻提取物复合制剂总量 (w/w) 的0% (CK)、5% (T1)、10% (T2)、20% (T3) 和40% (T4) 设置,复合制剂与氮磷钾水溶肥一起施用。于果实成熟期,测定单果重、产量、果实品质、色泽和养分含量。
    结果 随复合制剂用量的增加,桃产量和品质指标呈先增加后降低的趋势。2019和2020年T2处理桃产量和可溶性固形物含量均为最高,产量较CK分别显著增加31.77%和40.67%,可溶性固形物含量较CK分别显著增加10.67%和7.20%,且T2处理桃产量与其他处理差异显著。T2处理桃果实可滴定酸含量最低,2019和2020年较CK分别降低了11.11%和50.00%。2019年,除T1处理的可溶性糖外,T2~T4处理的果实可溶性糖和糖酸比均低于CK,且T3、T4处理与CK间差异显著;2020年,除T4处理外,T1~T3处理的果实可溶性糖和糖酸比均高于CK,其中T2处理的可溶性糖含量和糖酸比最高,较CK分别显著增加20.55%和166.29%。连续两年施用复合制剂处理的果实钾含量和果皮色泽饱和度均高于CK,其中,2019年T2处理和2020年T3处理的桃果实钾含量最高,较CK分别显著增加16.70%和11.94%。主成分分析综合得分显示,连续两年均以T2处理得分最高。
    结论 在施用氮磷钾水溶肥基础上配施海藻提取物复合制剂能够提高桃果实产量、改善品质并促进钾养分吸收,以配施相当于氮磷钾水溶肥量10%的复合制剂对产量、品质和钾养分吸收的提升效果最佳。

     

    Abstract:
    Objectives The effects of adding different ratios of seaweed extracts (60% seaweed extract, 6.5% alginic acid, 5% humic acid, pH 6.7, and 1.15 g/mL density) to NPK fertilizer were studied for the efficient use of seaweed extract.
    Methods Peach cultivar of ‘Zhongtao 8’ was used as the test material in a two-year field experiment. The tested application dosages of seaweed extracts were designed as the ratio of NPK fertilizer used in four topdressings (w/w): 0% (CK), 5% (T1), 10% (T2), 20% (T3), and 40% (T4). The seaweed extracts were applied to the soil with NKP fertilizer simultaneously. We measured the single fruit weight, yield, fruit quality, color, and nutrient content of peach.
    Results With increasing of seaweed extract dosage, peach yield and quality increased first and then decreased. The highest yield and soluble solid content were recorded in T2 in 2019 and 2020, with 31.77%, 40.67% for yield and 10.67%, 7.20% for soluble solid content higher than CK. Further, the yield of T2 was (P < 0.05) different from other treatments. However, the titratable acid content of T2 was the lowest, which was 11.11% and 50.00% lower than CK in 2019 and 2020. In 2019, except for the soluble sugar in T1, the soluble sugar content and sugar to acid ratio in all the other seaweed extract treatments were lower than CK. Except for T4 in 2020, the soluble sugar content and sugar to acid ratio in other seaweed extract treatments were higher than CK, and T2 was 20.55% and 166.29% higher than CK. Seaweed extract application promoted nutrient absorption and fruit coloring in 2019 and 2020. The highest fruit K content was 16.7% (T2) and 11.94% (T3) higher than CK in 2019 and 2020. Based on the principal component analysis, the total score of T2 was the highest in the two consecutive years.
    Conclusions Seaweed extract shows a satisfactory effect in increasing peach fruit yield and quality while improving fruit coloration. The appropriate application dosage of seaweed extracts is 10% of topdressed NPK fertilizer.

     

/

返回文章
返回