• ISSN 1008-505X
  • CN 11-3996/S
郭俊杰, 朱晨, 刘文波, 王建中, 凌宁, 郭世伟. 不同施肥模式对土壤氮循环功能微生物的影响[J]. 植物营养与肥料学报, 2021, 27(5): 751-759. DOI: 10.11674/zwyf.20504
引用本文: 郭俊杰, 朱晨, 刘文波, 王建中, 凌宁, 郭世伟. 不同施肥模式对土壤氮循环功能微生物的影响[J]. 植物营养与肥料学报, 2021, 27(5): 751-759. DOI: 10.11674/zwyf.20504
GUO Jun-jie, ZHU Chen, LIU Wen-bo, WANG Jian-zhong, LING Ning, GUO Shi-wei. Effects of different fertilization managements on functional microorganisms involved in nitrogen cycle[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 751-759. DOI: 10.11674/zwyf.20504
Citation: GUO Jun-jie, ZHU Chen, LIU Wen-bo, WANG Jian-zhong, LING Ning, GUO Shi-wei. Effects of different fertilization managements on functional microorganisms involved in nitrogen cycle[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 751-759. DOI: 10.11674/zwyf.20504

不同施肥模式对土壤氮循环功能微生物的影响

Effects of different fertilization managements on functional microorganisms involved in nitrogen cycle

  • 摘要:
    目的  微生物在土壤氮循环过程中发挥着重要作用。通过研究农田土壤氮循环过程中不同功能微生物群落基因丰度对施肥模式的响应及其关键影响因素,探讨不同施肥模式调控下氮素转化的微生物学机制,为改善农业生产中氮素的管理策略提供理论依据。
    方法  田间试验始于2011年,试验地点位于江苏省常州市溧阳市南渡镇,供试土壤为白土型水稻土,种植制度为稻麦轮作。试验包括单施化肥 (NPK)、化肥+畜禽有机肥 (NPKM)、化肥+秸秆还田 (NPKS) 以及相邻江苏省耕地质量监测点不施肥对照 (CK),共 4个处理。于2014年水稻成熟期采集土壤样品,采用实时荧光定量PCR法分析了土壤硝化 (amoA)、反硝化 (narGnirSnirKnorBnosZ)、固氮 (nifH)、硝酸盐异化还原 (napA) 等氮循环过程的相关功能微生物基因丰度的变化。以氨氧化微生物为模式微生物,测定添加与不添加1-辛炔情况下的土壤硝化潜势,分析氨氧化古菌 (AOA) 与氨氧化细菌 (AOB) 功能基因丰度与土壤硝化功能的内在联系。
    结果  与CK相比,NPK处理显著增加了土壤中AOB-amoAnarGnosZnifH基因的丰度。与NPK处理相比,NPKS处理进一步提高了土壤中AOB-amoAnarGnosZnifH以及nirK基因的丰度。与CK相比,除AOA-amoAnirSnapA基因以外,NPKM处理显著提高了土壤中所有氮循环功能基因的丰度。AOB-amoA基因丰度的变化对土壤氮循环功能基因丰度的整体变异影响最大。AOB主导了施肥土壤的硝化过程 (81.90%~84.42%)。土壤总硝化潜势与AOB-amoA基因丰度显著相关,但与AOA-amoA基因丰度相关性不显著。氮循环功能微生物基因丰度主要受到土壤pH、土壤有机碳(SOC)和NO3含量的影响。
    结论  畜禽有机肥与秸秆的施用能够进一步刺激氮循环功能基因丰度的增长,促进土壤氮循环。土壤pH、SOC和NO3含量是影响土壤氮循环功能微生物丰度的关键因素。施肥主要通过提高土壤AOB-amoA功能基因的丰度,进而提高土壤硝化潜势,因此在控制土壤硝化作用时应重点关注AOB微生物群落。

     

    Abstract:
    Objectives  Soil microorganisms play important roles in nitrogen cycle. This study aimed to enhance our understanding of the microbial mechanism of soil nitrogen transformation and provide a theoretical basis for improving nitrogen management strategies in agricultural soils. Thus, we analyzed the response of different functional genes in nitrogen cycle under different fertilization managements.
    Methods  Soils subjected to four different short-term fertilization managements no fertilizer (CK), mineral NPK fertilizer only (NPK), mineral NPK plus livestock manure (NPKM), and mineral NPK fertilizer plus wheat straw (NPKS) were collected from a field experiment. Quantitative real-time PCR was used to determine the variation of abundances of functional genes involved in soil nitrification (amoA), denitrification (narG, nirS, nirK, norB, nosZ), nitrogen fixation (nifH) and dissimilatory nitrate reduction (napA) pathways under the different fertilization managements. The relationships between the functional gene abundances of ammonia-oxidizers (AOA and AOB) and soil nitrification were analyzed by measuring nitrification potential with and without 1-octyne.
    Results  Compared with CK, NPK treatment significantly increased the abundances of AOB-amoA, narG, nosZ, and nifH genes in soil. Compared with NPK, NPKS treatment increased the abundances of AOB-amoA, narG, nosZ, nifH and nirK genes in soil. Compared with CK, NPKM treatment increased the abundances of all the nitrogen cycling genes, except AOA-amoA, nirS and napA genes. AOB-amoA genes abundance contributed most to the variations in the abundance of all nitrogen cycling related genes in the fertilization managements. AOB dominantly contributed (81.90%–84.92%) to nitrification in all the fertilized soils. The abundance of AOB-amoA gene rather than that of AOA-amoA gene was significantly correlated with soil nitrification potential. Soil pH, SOC and NO3 significantly affected the nitrogen cycling microbial community abundance.
    Conclusions  The application of livestock manure and straw have strong effect on the abundance of nitrogen cycle genes and promote soil nitrogen cycle. Soil pH, SOC and NO3 are the key factors influencing the abundance of microbial communities involved in the soil nitrogen cycle. Fertilization mainly affects the abundance of AOB-amoA gene in soil, and then regulates soil nitrification potential. Therefore, more attention should be paid on microbial community of AOB when controlling soil nitrification.

     

/

返回文章
返回