• ISSN 1008-505X
  • CN 11-3996/S
Volume 27 Issue 9
Oct.  2021
Article Contents

Citation:

Mechanism of improving water and nitrogen use efficiency and reducing soil nitrate leaching by suitable irrigation during the anthesis stage of wheat

  •   【Objectives】  This study investigated the effects of soil water content during the flowering period of wheat on N accumulation and transfer and soil NO3-N leaching to provide a theoretical basis for water conservation to promote high wheat yield and efficient N use.   【Methods】  Field experiments were conducted during 2018–2019 and 2019–2020 wheat-growing seasons using Jimai 22 as the test cultivar. Three water treatments were set up during the anthesis stage: no watering (W0), watering 0–40 cm soil depth to a relative moisture content of 70% (W1) and 85% (W2). The wheat N accumulation and translocation at anthesis and maturing stage were determined; wheat yield and N fertilizer efficiency were investigated at the maturing stage, and soil nitrate-nitrogen content in 0–200 cm soil depth was analyzed.   【Results】  After anthesis, the average N transfer in the vegetative organ of W1 at maturity was 11.6% and 7.3% higher than W0 and W2, and the N transfer rate in W1 was 9.5% and 6.1% higher than W0 and W2. At the maturity stage, the grain N distribution in W1 was 22.5% and 12.9% higher than W0 and W2, but the N distribution in the leaf and spike axis and glume in W1 was (P < 0.05) lower than in W0 and W2, thus increasing N harvest index. Compared with W0 and W2, W1 treatment reduced NO3-N content in 60–120 cm soil depth, increased wheat N uptake by 11.4% and 6.5%. The apparent excess soil N in W1 treatment was 51.0% and 40.9% lower than W0 and W2, reducing the risk of NO3-N leaching into the deeper soil layer. W1 reduced the residual inorganic N in 0–200 cm soil layer and the apparent excess soil N, which benefited absorption and utilization by wheat roots. Compared with W0 and W2, a thousand-grain weight of W1 treatment was 11.0% and 5.4% higher, grain yield was 25.9% and 11.8% higher, and the water use efficiency was 17.0% and 12.7% higher in the two growing seasons. Similarly, N use efficiency was 13.0% and 4.9% higher in W1 than W0 and W2, and the N uptake efficiency was 11.4% and 6.5% higher on average.  【Conclusions】  Irrigating 0–40 cm soil layer to a moisture content of 70% during the flowering period benefits N transfer from vegetative organs to grains in the middle and late grain filling stages and at maturity, thereby promoting grain N accumulation, yield, N harvest index, and water use efficiency. Irrigating to 70% of the soil water capacity at the flowering stage reduces the NO3-N content in 60–120 cm soil depth, thereby decreasing the risk of NO3-N leaching, which improves wheat N use efficiency and uptake for production. Excessive irrigation leads to excessive downward movement of NO3-N, which affects root absorption. Insufficient water, on the other hand, decreases the transport of N to the grains.
  • 加载中
  • [1] Zhao D D, Shen J Y, Lang K, et al. Effects of irrigation and wide–precision planting on water use, radiation interception, and grain yield of winter wheat in the North China Plain[J]. Agricultural Water Management, 2013, 80: 87–92.
    [2] 万文亮, 郭鹏飞, 胡语妍, 等. 调亏灌溉对新疆滴灌春小麦土壤水分、硝态氮分布及产量的影响[J]. 水土保持学报, 2018, 32(6): 166–174. Wang W L, Guo P F, Hu Y Y, et al. Distribution and yield of spring wheat under drip irrigation in Xinjiang[J]. Journal of Soil and Water Conservation, 2018, 32(6): 166–174.
    [3] Mon J, Bronson K F, Hunsaker D J, et al. Interactive effects of nitrogen fertilization and irrigation on grain yield, canopy temperature, and nitrogen use efficiency in overhead sprinkler–irrigated durum wheat[J]. Field Crops Research, 2016, 191: 54–65. doi:  10.1016/j.fcr.2016.02.011
    [4] 张嫚, 周苏玫, 杨习文, 等. 减氮适墒对冬小麦土壤硝态氮分布和氮素吸收利用的影响[J]. 中国农业科学, 2017, 50(20): 3885–3897. Zhang M, Zhou S M, Yang X W, et al. Effects of nitrogen–reducing and suitable soil moisture on nitrate nitrogen distribution in soil, nitrogen absorption and utilization of winter wheat[J]. Scientia Agricultura Sinica, 2017, 50(20): 3885–3897. doi:  10.3864/j.issn.0578-1752.2017.20.005
    [5] 党建友, 裴雪霞, 张定一, 等. 灌溉方法与施氮对土壤水分、硝态氮和小麦生长发育的调控效应[J]. 应用生态学报, 2019, 30(4): 1161–1169. Dang J Y, Pei X X, Zhang D Y, et al. Regulation effects of irrigation methods and nitrogen application on soil water, nitrate, and wheat growth and development[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1161–1169.
    [6] 黄玲, 杨文平, 胡喜巧, 等. 水氮互作对冬小麦耗水特性和氮素利用的影响[J]. 水土保持学报, 2016, 30(2): 168–174. Huang L, Yang W P, Hu X Q, et al. Effects of irrigation and nitrogen interaction on water consumption characteristics and nitrogen utilization of winter wheat[J]. Journal of Soil and Water Conservation, 2016, 30(2): 168–174.
    [7] Xu J K, Yu Z W, Shi Y, et al. Effect of different supplemental irrigation strategies on photosynthetic characteristics and water use efficiency of wheat[J]. Chilean Journal of Agricultural Research, 2017, 77: 346–354. doi:  10.4067/S0718-58392017000400346
    [8] Li Q Q, Bian C Y, Liu X H, et al. Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain[J]. Agricultural Water Management, 2015, 153: 71–76. doi:  10.1016/j.agwat.2015.02.004
    [9] Dai Z M, Li Y, Zhang H, et al. Effects of irrigation schemes on the characteristics of starch and protein in wheat (Triticum aestivum L.)[J]. Starch-Stärke, 2016, 68(5): 454–461.
    [10] 于亮, 钮力亚, 付晶, 等. 小麦限水条件下产量及农艺性状的变化研究[J]. 中国农学通报, 2019, 35(12): 18–22. Yu L, Niu L Y, Fu J, et al. Variation of yield and agronomic characters of wheat with limited water treatment[J]. Chinese Agricultural Science Bulletin, 2019, 35(12): 18–22. doi:  10.11924/j.issn.1000-6850.casb18010048
    [11] 陈雨露, 康娟, 王家瑞, 等. 灌水与施磷对小麦氮素积累运转及水分利用效率的影响[J]. 麦类作物学报, 2019, 39(9): 1095–1104. Chen Y L, Kang J, Wang J R, et al. Effect of irrigation and phosphorus application on nitrogen accumulation and water use efficiency of winter wheat[J]. Journal of Triticeae Crops, 2019, 39(9): 1095–1104.
    [12] Zhang W C, Zhu J Q, Zhou X G, et al. Effects of shallow groundwater table and fertilization level on soil physico-chemical properties, enzyme activities, and winter wheat yield[J]. Agricultural Water Management, 2018, 208: 307–317. doi:  10.1016/j.agwat.2018.06.039
    [13] 丁锦峰, 苏盛楠, 梁鹏, 等. 拔节期和花后渍水对小麦产量、干物质及氮素积累和转运的影响[J]. 麦类作物学报, 2017, 37(11): 1473–1479. Ding J F, Su S N, Liang P, et al. Effect of waterlogging at elongation or after anthesis on grain yield and accumulation and remobilization of dry matter and nitrogen in wheat[J]. Journal of Triticeae Crops, 2017, 37(11): 1473–1479. doi:  10.7606/j.issn.1009-1041.2017.11.10
    [14] 路永强, 刘玉秀, 周发宝, 等. 不同水分供应对小麦氮素积累、分配和产量的影响[J]. 西北农业学报, 2019, 28(11): 1760–1768. Lu Y Q, Liu Y X, Zhou F B, et al. Effect of different water supplies on nitrogen accumulation distribution and yield in wheat[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(11): 1760–1768.
    [15] Wang Z H, Miao Y F, Li S X. Effect of ammonium and nitrate nitrogen fertilizers on wheat yield in relation to accumulated nitrate at different depths of soil in drylands of China[J]. Field Crops Research, 2015, 183: 211–224. doi:  10.1016/j.fcr.2015.07.019
    [16] 杜军, 杨培岭, 李云开, 等. 灌溉、施肥和浅水埋深对小麦产量和硝态氮淋溶损失的影响[J]. 农业工程学报, 2011, 27(2): 57–64. Du J, Yang P L, Li Y K, et al. Influence of the irrigation, fertilization and groundwater depth on wheat yield and nitrate nitrogen leaching[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(2): 57–64.
    [17] 雒文鹤, 师祖姣, 王旭敏, 等. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924–936. Luo W H, Shi Z J, Wang X M, et al. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat[J]. Acta Agronomica Sinica, 2020, 46(6): 924–936. doi:  10.3724/SP.J.1006.2020.91060
    [18] 张雨新, 张富仓, 邹海洋, 等. 生育期水分调控对甘肃河西地区滴灌春小麦氮素吸收和利用的影响[J]. 植物营养与肥料学报, 2017, 23(3): 597–605. Zhang Y X, Zhang F C, Zou H Y, et al. Effects of soil water regulation at different growing stages on nitrogen uptake and utilization of spring wheat in the Hexi Region, Gansu Province[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(3): 597–605. doi:  10.11674/zwyf.16453
    [19] Huang X, Wang C Y, Hou J F, et al. Coordination of carbon and nitrogen accumulation and translocation of winter wheat plant to improve grain yield and processing quality[J]. Scientific Reports, 2020, 10(1): 1030–1043. doi:  10.1038/s41598-020-57780-7
    [20] 周加森, 马阳, 吴敏, 等. 不同水肥措施下的冬小麦水氮利用和生物效应研究[J]. 灌溉排水学报, 2019, 38(9): 36–41. Zhou J S, Ma Y, Wu M, et al. Water and nitrogen utilization and biological effects of winter wheat under different water and fertilizer measures[J]. Journal of Irrigation and Drainage, 2019, 38(9): 36–41.
    [21] 金修宽, 马茂亭, 赵同科, 等. 测墒补灌和施氮对冬小麦产量及水分、氮素利用效率的影响[J]. 中国农业科学, 2018, 51(7): 1334–1344. Jin X K, Ma M T, Zhao T K, et al. Effects of nitrogen application on yield, water and nitrogen use efficiency of winter wheat under supplemental irrigation based on measured soil moisture content[J]. Scientia Agricultura Sinica, 2018, 51(7): 1334–1344. doi:  10.3864/j.issn.0578-1752.2018.07.011
    [22] 王茂莹, 贺明荣, 李玉, 等. 施氮量对不同小麦品种产量及氮素吸收利用的影响[J]. 水土保持学报, 2020, 34(4): 241–248. Wang M Y, He M R, Li Y, et al. Effects of nitrogen application rate on yield and nitrogen uptake and utilization of different wheat varieties[J]. Journal of Soil and Water Conservation, 2020, 34(4): 241–248.
    [23] 张晨阳, 张富仓, 郭金金, 等. 缓释氮肥与尿素掺施比例对冬小麦产量及氮素吸收利用的影响[J]. 植物营养与肥料学报, 2020, 26(4): 669–680. Zhang C Y, Zhang F C, Guo J J, et al. Effects of blending ratios of slow-release nitrogen fertilizer and urea on yield and nitrogen uptake of winter wheat[J]. Journal of Plant Nutrition and Fertilizer, 2020, 26(4): 669–680.
    [24] Ravier C, Meynard J M, Cohan J P, et al. Early nitrogen deficiencies favor high yield, grain protein content and N use efficiency in wheat[J]. European Journal of Agronomy, 2017, 89: 16–24. doi:  10.1016/j.eja.2017.06.002
    [25] 栗丽, 洪坚平, 王宏庭, 等. 水氮互作对冬小麦氮素吸收分配及土壤硝态氮积累的影响[J]. 水土保持学报, 2013, 27(3): 138–142, 149. Li L, Hong J P, Wang H T, et al. Effects of nitrogen and irrigation interaction on nitrogen uptake and distribution in winter wheat and nitrate accumulation in soil[J]. Journal of Soil and Water Conservation, 2013, 27(3): 138–142, 149.
    [26] Liang B, Kang L, Tao R, et al. The impact of exogenous N supply on soluble organic nitrogen dynamics and nitrogen balance in a greenhouse vegetable system[J]. Journal of Environmental Management, 2015, 154(1): 351–357.
    [27] 许骥坤, 石玉, 赵俊晔, 等. 测墒补灌对小麦水分利用特征和产量的影响[J]. 水土保持学报, 2015, 29(3): 277–281, 329. Xu J K, Shi Y, Zhao J Y, et al. Effects of supplemental irrigation based on measuring soil moisture on the water use characteristics and grain yield of wheat[J]. Journal of Soil and Water Conservation, 2015, 29(3): 277–281, 329.
    [28] 姚素梅, 康跃虎, 茹振钢, 等. 喷灌对冬小麦植株氮素积累运转及籽粒蛋白质含量的影响[J]. 应用生态学报, 2013, 24(8): 2205–2210. Yao S M, Kang Y H, Ru Z G, et al. Effects of sprinkler irrigation on the plant nitrogen accumulation and translocation and kernel protein content of winter wheat[J]. Chinese Journal of Applied Ecology, 2013, 24(8): 2205–2210.
    [29] 张敏, 刘添, 李亚静, 等. 减少灌水次数对强筋小麦氮素积累转运和籽粒蛋白质含量的影响[J]. 麦类作物学报, 2019, 39(7): 802–809. Zhang M, Liu T, Li Y J, et al. Effect of irrigation times on nitrogen accumulation, transportation and grain protein content of strong gluten wheat[J]. Journal of Triticeae Crops, 2019, 39(7): 802–809.
    [30] 傅晓艺, 王红光, 刘志连, 等. 不同水分处理对小麦氮素和干物质积累与分配的影响[J]. 麦类作物学报, 2020, 40(8): 1–3, 5-10. Fu X Y, Wang H G, Liu Z L, et al. Effects of different water treatments on nitrogen and dry matter accumulation and distribution in wheat[J]. Journal of Triticeae Crops, 2020, 40(8): 1–3, 5-10.
    [31] Si Z Y, Zain M, Mehmood F, et al. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain[J]. Agricultural Water Management, 2020, 231: 10–16.
    [32] 刘小飞, 费良军, 孟兆江, 等. 水分养分协同对冬小麦干物质运转和氮吸收利用的影响[J]. 植物营养与肥料学报, 2018, 24(4): 905–914. Liu X F, Fei L J, Meng Z J, et al. Interactive effects of water and fertilization on biomass translocation and nitrogen uptake and utilization of winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 905–914. doi:  10.11674/zwyf.17399
    [33] 刘新宇, 张丽娟, 袁丽金, 等. 耕层水氮调控对小麦利用土壤深层累积硝态氮的影响[J]. 中国农业科学, 2010, 43(17): 3564–3571. Liu X Y, Zhang L J, Yuan L J, et al. Effects of topsoil water and nitrogen control on the utilization of nitrate accumulated in deep soil by wheat[J]. Scientia Agricultura Sinica, 2010, 43(17): 3564–3571. doi:  10.3864/j.issn.0578-1752.2010.17.010
    [34] 李莎莎, 马耕, 刘卫星, 等. 大田长期水氮处理对土壤氮素及小麦籽粒淀粉糊化特性的影响[J]. 作物学报, 2018, 44(7): 1067–1076. Li S S, Ma G, Liu W X, et al. Effects of long-term irrigation and nitrogen regimes on soil nitrogen content and paste property of wheat grain[J]. Acta Agronomica Sinica, 2018, 44(7): 1067–1076. doi:  10.3724/SP.J.1006.2018.01067
    [35] 石玉, 于振文, 何建宁, 等. 不同测墒补灌水平对小麦水氮利用及土壤硝态氮淋溶的影响[J]. 应用生态学报, 2016, 27(2): 445–452. Shi Y, Yu Z W, He J N, et al. Effects of supplemental irrigation by monitoring soil moisture on the water-nitrogen utilization of wheat and soil NO3-N leaching[J]. Chinese Journal of Applied Ecology, 2016, 27(2): 445–452.
    [36] 韩占江, 于振文, 王东, 等. 测墒补灌对冬小麦氮素积累与转运及籽粒产量的影响[J]. 生态学报, 2011, 31(6): 1631–1640. Han Z J, Yu Z W, Wang D, et al. Effects of supplemental irrigation based on measured soil moisture on nitrogen accumulation, distribution and grain yield in winter wheat[J]. Acta Ecologica Sinica, 2011, 31(6): 1631–1640.
    [37] 孙婉, 刘素君, 冯健超, 等. 水分和氮源类型对小麦根际土壤酶活性和氮素利用效率的影响[J]. 应用生态学报, 2020, 31(8): 2583–2592. Sun W, Liu S J, Feng J C, et al. Effects of water and nitrogen source types on soil enzyme activity and nitrogen utilization efficiency of wheat[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2583–2592.
    [38] Li H, Hao W, Liu Q, et al. Developing nitrogen management strategies under drip fertigation for wheat and maize production in the North China Plain based on a 3 year field experiment[J]. Journal of Plant Nutrition and Soil Science, 2019, 182(3): 335–345. doi:  10.1002/jpln.201700414
    [39] 吴强, 张永平, 董玉新, 等. 施氮量和灌水模式对小麦产量、品质和氮肥利用的影响[J]. 麦类作物学报, 2020, 40(3): 334–342. Wu Q, Zhang Y P, Dong Y X, et al. Effect of nitrogen application rates and irrigation modes on yield, nitrogen use efficiency and quality in wheat[J]. Journal of Triticeae Crops, 2020, 40(3): 334–342. doi:  10.7606/j.issn.1009-1041.2020.03.10
    [40] Wang D B, Li F S, Nong M L. Response of yield and water use efficiency to different irrigation levels at different growth stages of Kenaf and crop water production function[J]. Agricultural Water Management, 2017, 179: 177–183. doi:  10.1016/j.agwat.2016.06.026
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3) / Tables(8)

Article Metrics

Article views(403) PDF downloads(52) Cited by()

Related
Proportional views

Mechanism of improving water and nitrogen use efficiency and reducing soil nitrate leaching by suitable irrigation during the anthesis stage of wheat

    Corresponding author: SHI Yu, shiyu@sdau.edu.cn
  • College of Agriculture, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an, Shandong 271018, China

Abstract:   【Objectives】  This study investigated the effects of soil water content during the flowering period of wheat on N accumulation and transfer and soil NO3-N leaching to provide a theoretical basis for water conservation to promote high wheat yield and efficient N use.   【Methods】  Field experiments were conducted during 2018–2019 and 2019–2020 wheat-growing seasons using Jimai 22 as the test cultivar. Three water treatments were set up during the anthesis stage: no watering (W0), watering 0–40 cm soil depth to a relative moisture content of 70% (W1) and 85% (W2). The wheat N accumulation and translocation at anthesis and maturing stage were determined; wheat yield and N fertilizer efficiency were investigated at the maturing stage, and soil nitrate-nitrogen content in 0–200 cm soil depth was analyzed.   【Results】  After anthesis, the average N transfer in the vegetative organ of W1 at maturity was 11.6% and 7.3% higher than W0 and W2, and the N transfer rate in W1 was 9.5% and 6.1% higher than W0 and W2. At the maturity stage, the grain N distribution in W1 was 22.5% and 12.9% higher than W0 and W2, but the N distribution in the leaf and spike axis and glume in W1 was (P < 0.05) lower than in W0 and W2, thus increasing N harvest index. Compared with W0 and W2, W1 treatment reduced NO3-N content in 60–120 cm soil depth, increased wheat N uptake by 11.4% and 6.5%. The apparent excess soil N in W1 treatment was 51.0% and 40.9% lower than W0 and W2, reducing the risk of NO3-N leaching into the deeper soil layer. W1 reduced the residual inorganic N in 0–200 cm soil layer and the apparent excess soil N, which benefited absorption and utilization by wheat roots. Compared with W0 and W2, a thousand-grain weight of W1 treatment was 11.0% and 5.4% higher, grain yield was 25.9% and 11.8% higher, and the water use efficiency was 17.0% and 12.7% higher in the two growing seasons. Similarly, N use efficiency was 13.0% and 4.9% higher in W1 than W0 and W2, and the N uptake efficiency was 11.4% and 6.5% higher on average.  【Conclusions】  Irrigating 0–40 cm soil layer to a moisture content of 70% during the flowering period benefits N transfer from vegetative organs to grains in the middle and late grain filling stages and at maturity, thereby promoting grain N accumulation, yield, N harvest index, and water use efficiency. Irrigating to 70% of the soil water capacity at the flowering stage reduces the NO3-N content in 60–120 cm soil depth, thereby decreasing the risk of NO3-N leaching, which improves wheat N use efficiency and uptake for production. Excessive irrigation leads to excessive downward movement of NO3-N, which affects root absorption. Insufficient water, on the other hand, decreases the transport of N to the grains.

    HTML

  • 黄淮海麦区是我国小麦主产区,水资源短缺是限制该区小麦生产的主要因素[1]。不合理的灌溉不仅无益于小麦高产,还会影响氮素的吸收利用以及土壤氮素的淋失[2-3]。氮素是小麦生长发育的主要元素,土壤中的氮素主要以有机氮的形态存在,有机氮通过矿化过程形成主要以硝态氮形式存在的无机氮,土壤硝态氮能被小麦直接吸收利用[4],同时土壤硝态氮积累和运移亦受土壤水分含量的影响,土壤水分含量过高会导致硝态氮淋溶损失[5]。因此,合理利用灌溉水,提高水分和氮素利用效率[6-7],对作物高产及水土资源保护具有重要意义。

    前人研究表明,适当增加灌溉量可提高小麦籽粒产量[8-9],与不灌水处理比较,灌水处理产量及其构成因素均增加,其中籽粒产量提高了27.03%[10]。与全生育期不灌水相比,拔节期和开花期灌溉处理的开花前营养器官氮素积累量增加了43.02%,茎鞘和叶片的氮素转运量分别提高了70.45%和72.34%[11]。亦有研究指出,开花期补灌达到一定范围时,籽粒产量不再增加[12]。小麦开花后渍水籽粒产量和氮素积累量均显著降低[13],开花期适量灌溉有利于提高营养器官贮存氮素向籽粒的转移量及对籽粒的贡献率[14]。硝态氮是氮素淋失的主要形态,土壤水分对硝态氮积累和运移的影响显著高于其他环境因素[15]。土壤水分含量与耕层土壤硝态氮含量呈负相关[16],如雒文鹤等[17]研究表明,越冬期灌600 m2/hm2处理硝态氮含量主要积累在160 cm土层处,而越冬期和拔节期各灌溉600 m2/hm2的处理硝态氮迁移至200 cm土层以下,说明灌水量越多,硝态氮越向深层淋溶。不同水分调控下植株的氮素吸收利用存在显著差异[18],适宜的土壤水分含量能提高小麦水分和氮素利用效率[19],同等施肥条件下,拔节期和开花期均微喷定量灌溉37.5 mm,比同期均传统畦灌75 mm处理的氮肥表观利用效率和水分利用效率分别增加了6.75%和27.32%[20]

    前人研究大多集中在小麦主要生育时期的灌溉方式、灌溉频次等方面,围绕小麦开花期土壤含水量对植株氮素积累与转移及土壤硝态氮含量的研究较少。本研究在黄淮海麦区高产栽培条件下,依据小麦开花期0—40 cm土层土壤相对含水量设置不同测墒补灌处理,探究开花期土壤水分含量对小麦氮素积累与转移及土壤硝态氮含量的影响,以期为实现小麦高产、水氮资源高效利用提供理论依据。

  • 1.   材料与方法

      1.1.   试验地概况

    • 于2018—2019和2019—2020年两个小麦生长季,在山东省济宁市兖州区小孟镇史家王子村进行大田试验,试验田土壤质地为壤土,试验田地力均匀。该地区属于温带大陆性季风气候,年均气温为13.6℃,年均降雨量621.2 mm。两个小麦生长季播前试验田0—20 cm土层土壤养分和0—40 cm土层田间持水量、土壤容重如表1表2所示,小麦生育期各月降雨量如图1所示。

      年份
      Year
      有机质 (g/kg)
      Organic matter
      全氮 (g/kg)
      Total N
      碱解氮 (mg/kg)
      Alkali hydrolysable N
      速效磷 (mg/kg)
      Available P
      速效钾 (mg/kg)
      Available K
      2018—201914.891.1511836.6114
      2019—202014.501.1411534.5114

      Table 1.  Soil nutrient contents in 0−20 cm soil layer in the experimental field before sowing

      土层深度 (cm)
      Soil layer
      土壤田间持水量 Soil field capacity (%)土壤容重 Soil bulk density (g/cm3)
      2018—20192019—20202018—20192019—2020
      0—2028.1829.311.451.42
      20—4025.0726.231.501.48

      Table 2.  Field capacity and soil bulk density in 0−40 cm soil layer in the experimental field before sowing

      Figure 1.  Monthly precipitation during wheat growing season

    • 1.2.   供试品种与试验设计

    • 小麦供试品种为‘济麦22’。在前期试验的基础上,本田间试验设置3个开花期水分处理:不灌水 (W0)、0—40 cm土层土壤相对含水量补灌至70% (W1) 和85% (W2),3次重复。于小麦拔节期和开花期灌水前测土壤含水量,依据0—40 cm土层目标土壤含水量利用公式计算灌水量[12]

      式中:M为灌水量 (mm);γ为土壤平均容重 (g/cm3);H为土层深度 (cm);βi为土壤补灌目标含水量 (%);βj为土壤灌前平均含水量 (%)。各处理拔节期0—40 cm土层土壤相对含水量均补灌至70%,两个生长季小麦拔节期和开花期各处理灌水量如表3所示,利用微喷带均匀灌溉,并用水表控制计量。

      年份 Year处理 Treatment拔节期 Jointing stage开花期 Anthesis stage总灌水量 Total
      2018—2019W062.59062.59
      W162.5942.30104.89
      W262.5965.75128.34
      2019—2020W064.79064.79
      W164.7944.00108.79
      W264.7968.46133.25

      Table 3.  Irrigation quantity at jointing and anthesis stage of wheat in 2018–2019 and 2019–2020

      试验采用裂区设计,小区面积为40 m2 (20 m × 2 m),不同小区间设置2 m隔离区,以防水分渗漏。小麦全生育期施N 240 kg/hm2、P2O5 150 kg/hm2和K2O 150 kg/hm2,N 105 kg/hm2及全部磷、钾肥播种前底施,N 135 kg/hm2于拔节期追施,所用肥料为尿素、磷酸二铵和硫酸钾。分别于2018年10月9日和2019年10月18日播种,2019年6月14日和2020年6月15日收获。在三叶期定苗,留苗密度为180株/m2,其他管理措施同高产田。

    • 1.3.   测定项目与方法

      1.3.1.   土壤含水量的计算
    • 于小麦播种前和成熟期,采用烘干法测定并计算0—200 cm土层土壤含水量,用于计算耗水量;于拔节期和开花期灌水前,采用烘干法测定并计算0—40 cm土层土壤含水量,用于计算灌溉量。用土钻取土,每20 cm分为一层,取后立即装入铝盒,称鲜土质量,105℃烘干至恒重并称干土质量,计算土壤质量含水量和土壤相对含水量[21]

      土壤质量含水量 = (鲜土质量 − 干土质量)/干土质量 × 100%

      土壤相对含水量 = 土壤质量含水量/田间持水量 × 100%

    • 1.3.2.   植株全氮含量测定
    • 于小麦开花期、开花后每隔7天至成熟期取植株样品。开花期植株分为茎+叶鞘、叶和穗;开花后至成熟期,植株分为茎+叶鞘、叶、穗轴+颖壳和籽粒。每个处理取40个单茎,3次重复,烘干并称取干物质重量。采用半微量凯氏定氮法测定植株各器官的含氮量[22]

    • 1.3.3.   植株氮素积累转移相关计算[23]
    • 各器官氮素积累量 (kg/hm2) = 氮素含量 × 干物质质量

      各器官的氮素分配 = 各器官的氮素积累量/单茎氮素积累量 × 100%

      营养器官氮素转移量 (kg/hm2) = 开花期营养器官氮素积累量−成熟期营养器官氮素积累量

      营养器官氮素转移率 = 营养器官氮素转移量/开花期营养器官氮素积累量 × 100%

      营养器官氮素对籽粒贡献率 = 营养器官氮素转移量/成熟期籽粒氮素积累量 × 100%

    • 1.3.4.   氮素吸收利用相关计算[24]
    • 氮素吸收效率 = 植株氮素积累量/施氮量 × 100%

      氮素利用效率 = 籽粒产量/植株氮素积累量 × 100%

      氮素收获指数 = 籽粒氮素积累量/植株氮素积累量

      氮肥生产效率 = 施氮区产量/施氮量 × 100%

    • 1.3.5.   土壤无机氮含量测定
    • 于小麦成熟期,取0—200 cm土层土壤样品,每20 cm为一层。称取5 g土壤样品,加入25 mL KCl溶液 (0.01 mol/L) 浸提,振荡30 min过滤,取待测液5 mL,使用AA3型流动分析仪测定土壤硝态氮和铵态氮含量[25]

    • 1.3.6.   土壤氮素表观盈亏量的计算[26]
    • 氮素表观盈亏量 (kg/hm2) = 播前0—200 cm土层土壤无机氮积累量 (kg/hm2) + 施氮量 (kg/hm2) − 成熟期0—200 cm土层土壤无机氮残留量 (kg/hm2) − 植株氮素吸收量 (kg/hm2)

    • 1.3.7.   籽粒产量及其构成因素测定[27]
    • 于小麦成熟期取样并收获,每个处理取样60穗,3次重复,测定穗粒数和千粒重;收获前每个处理选定3 m2,调查并计算单位面积穗数,3次重复;收获后籽粒自然风干后,测定籽粒产量。

    • 1.3.8.   水分利用效率的计算[27]
    • 水分利用效率[kg/(hm2·mm)] = 籽粒产量/农田耗水量

    • 1.4.   数据处理

    • 采用Microsoft Excel 2003和SigmaPlot 12.5软件进行数据整理和图表制作,采用SPSS 13.0软件利用LSD法进行数据差异显著性分析。

    2.   结果与分析

      2.1.   开花期土壤水分含量对小麦植株氮素积累与转移的影响

      2.1.1.   开花期营养器官贮存氮素转移动态和籽粒氮素积累动态
    • 图2可知,两个小麦生长季,各水分处理营养器官氮素转移动态和籽粒的氮素积累动态变化规律一致。开花后0~7天营养器官氮素转移量以W0处理最高,7~14天表现为W0和W2处理显著高于W1处理,籽粒氮素积累量在开花后0~14天均以W0处理最高;14~35天开花后营养器官氮素转移量和籽粒的氮素积累量均表现为W1处理显著高于其它处理。

      Figure 2.  Effects of soil moisture content during anthesis on the dynamics of N transfer in vegetative organs and accumulation of grains during anthesis

    • 2.1.2.   成熟期各器官中氮素的分配
    • 表4可知,两个小麦生长季,处理间成熟期各器官中氮素的分配规律一致。籽粒氮素分配量和分配比例均以W1处理最高,籽粒氮素分配量W1比W0和W2处理分别平均提高22.5%和12.9%。茎鞘分配量和分配比例均为W0处理显著高于其他处理;叶片和穗轴+颖壳的分配量和分配比例均为W2处理显著高于W0处理,W1处理最低。开花期适量灌溉有利于叶片和穗轴+颖壳中的氮素向籽粒中转移,提高籽粒氮素积累量。

      年份
      Year
      处理
      Treatment
      氮积累量 Nitrogen accumulation (kg/hm2)分配比例 Distribution proportion (%)
      籽粒
      Grain
      茎鞘
      Stem+sheath

      Leaf
      穗轴+颖壳
      Spike axis+glume
      籽粒
      Grain
      茎鞘
      Stem+sheath

      Leaf
      穗轴+颖壳
      Spike axis+glume
      2018—2019W0187.73 c44.51 a15.49 b15.78 b71.24 b16.89 a5.88 b5.99 b
      W1229.18 a36.37 c12.24 c14.08 c78.52 a12.46 c4.19 c4.82 c
      W2203.22 b37.72 b16.25 a17.10 a74.09 b13.75 b5.92 a6.23 a
      2019—2020W0185.53 c42.55 a14.33 b12.58 b72.76 b16.69 a5.62 b4.94 b
      W1227.96 a33.52 c13.03 c11.19 c79.79 a11.73 c4.56 c3.92 c
      W2201.75 b35.55 b16.94 a13.77 a75.27 b13.26 b6.32 a5.14 a
      注(Note):W0—开花期不灌水 No irritation at anthesis stage; W1—开花期将 0—40 cm 土层土壤相对含水量补灌至 70% Watering 0–40 cm soil moisture content to 70% of field water capacity at anthesis stage; W2 —开花期将 0—40 cm 土层土壤灌溉至田间持水量的 85% Watering 0–40 cm soil moisture content to 85% of field water capacity at anthesis stage. 同列数据后不同字母表示同一年份不同处理间差异显著 Values followed by different letters in same column indicate significant difference among treatments in the same year (P < 0.05).

      Table 4.  Effects of soil moisture content during anthesis on N distribution in various organs of wheat at maturity

    • 2.1.3.   开花期营养器官贮存氮素向籽粒的转移
    • 表5可知,在两个生长季,成熟期营养器官氮素积累量均以W0处理最高;籽粒氮素积累量和营养器官贮存氮素转移量均表现为W1处理显著高于W2处理,以W0处理最低,氮素转移量W1比W0和W2处理分别平均提高11.63%和7.27%;营养器官贮存氮素转移率亦均表现为W1处理显著高于W0、W2处理,氮素转移率W1比W0和W2处理分别平均增加9.49%和6.11%;各处理间营养器官贮存氮素转移量对籽粒氮素积累量的贡献率无显著差异。W1处理营养器官贮存氮素转移量和转移率较高,从而获得较高的成熟期籽粒氮素积累量,而增加灌水量的W2处理不利于氮素向籽粒的转移。

      年份
      Year
      处理
      Treatment
      营养器官氮素积累量 (kg/hm2)
      N accumulation in vegetative organs
      成熟期籽粒氮素积累量
      N accumulation in
      grain at maturity
      (kg/hm2)
      氮素转移量
      N transfer
      amount
      (kg/hm2)
      氮素转移率
      N transfer
      rate
      (%)
      对籽粒氮素贡献率
      Contribution to
      grain N
      (%)
      开花期 Anthesis成熟期 Maturity
      2018—2019W0215.58 a75.78 a187.73 c139.79 c64.85 b74.47 a
      W1217.26 a62.69 c229.18 a154.57 a71.14 a67.44 a
      W2216.38 a71.07 b203.22 b145.30 b67.15 b71.50 a
      2019—2020W0215.16 a69.47 a185.53 c145.69 c67.71 b78.53 a
      W1221.92 a57.73 c227.96 a164.19 a73.99 a72.03 a
      W2218.07 a66.27 b201.75 b151.80 b69.61 b75.24 a
      注(Note):W0—开花期不灌水 No irritation at anthesis stage; W1—开花期将 0—40 cm 土层土壤相对含水量补灌至 70% Watering 0–40 cm soil moisture content to 70% of field water capacity at anthesis stage; W2 —开花期将 0—40 cm 土层土壤灌溉至田间持水量的 85% Watering 0–40 cm soil moisture content to 85% of field water capacity at anthesis stage. 同列数据后不同字母表示同一年份不同处理间差异显著 Values followed by different letters in same column indicate significant difference among treatments in the same year (P < 0.05).

      Table 5.  Effects of soil moisture content during anthesis on the N transfer from vegetative organs to grains at anthesis stage in wheat

    • 2.2.   开花期土壤水分含量对成熟期0—200 cm土层土壤硝态氮含量的影响

    • 图3可知,2018—2019年小麦生长季成熟期,W0处理0—40 cm土层土壤硝态氮含量显著高于W1和W2处理;40—60 cm土层土壤硝态氮含量表现为W0和W2处理显著高于W1处理;60—120 cm土层表现为W2处理最高,W1次之,W0最低;120—200 cm土层土壤硝态氮含量各处理无显著差异。2019—2020年小麦生长季成熟期,0—20 cm土层土壤硝态氮含量表现为W0处理最高,W2次之,W1最低;20—40 cm土层土壤硝态氮含量各处理无显著差异;40—60 cm土层W2处理显著高于W0和W1处理;60—120 cm土层表现为W2处理最高,W1次之,W0最低;120—200 cm土层土壤硝态氮含量各处理无显著差异。在成熟期,W1处理60—120 cm土层硝态氮含量显著低于W2,开花期适量灌溉减少硝态氮向深层土壤淋溶的风险,有利于小麦根系的吸收。

      Figure 3.  Effects of soil moisture content during anthesis on the nitrate-nitrogen content in the soil at maturity

    • 2.3.   开花期土壤水分含量对小麦成熟期0—200 cm土层土壤氮素表观盈亏的影响

    • 表6可知,在两个小麦生长季中,小麦整个生育期氮素均表观为盈余,W0处理显著高于W2处理,W1处理最低。开花期不灌水的W0处理植株吸收氮素量最少,土壤氮素表观盈余量最高。适量灌溉的W1处理提高了小麦植株对氮素的吸收,W1比W0和W2处理氮素吸收量分别平均提高11.4%和6.5%,降低了0—200 cm土层土壤中无机氮的残留量,土壤氮素表观盈余量最低,W1比W0和W2处理土壤表观盈余量平均分别降低51.0%和40.9%。而灌水较多的W2处理促进了硝态氮向深层土壤的淋溶,造成土壤深层硝态氮的积累,增加了淋溶的风险。

      年份
      Year
      处理
      Treatment
      氮素输入 N input氮素输出 N output表观盈余
      Apparent surplus
      (kg/hm2)
      无机氮起始量
      Initial soil Nmin
      施氮量
      N input
      小麦氮素吸收
      N uptake by wheat
      无机氮残留量
      Nmin residue
      2018—2019W0477.89 a240 a263.51 c416.37 a38.01 a
      W1477.89 a240 a291.87 a406.56 a19.46 c
      W2477.89 a240 a274.30 b411.45 a32.14 b
      2019—2020W0469.35 a240 a255.00 c413.46 a40.90 a
      W1469.35 a240 a285.69 a404.54 a19.12 c
      W2469.35 a240 a268.02 b408.21 a33.12 b
      注(Note):W0—开花期不灌水 No irritation at anthesis stage; W1—开花期将 0—40 cm 土层土壤相对含水量补灌至 70% Watering 0–40 cm soil moisture content to 70% of field water capacity at anthesis stage; W2 —开花期将 0—40 cm 土层土壤灌溉至田间持水量的 85% Watering 0–40 cm soil moisture content to 85% of field water capacity at anthesis stage. 同列数据后不同字母表示同一年份不同处理间差异显著 Values followed by different letters in same column indicate significant difference among treatments in the same year (P < 0.05).

      Table 6.  Effects of soil moisture content during anthesis on apparent N surplus and deficiency in soil

    • 2.4.   开花期土壤水分含量对小麦籽粒产量及其构成因素和水分利用效率的影响

    • 表7可知,在两个小麦生长季中,处理间单位面积穗数无显著差异;W1、W2处理穗粒数无显著差异,但均显著高于W0;W1处理千粒重显著高于W2处理,二者均显著高于W0处理,W1比W0和W2处理小麦千粒重分别平均增加11.0%和5.4%;籽粒产量以W1处理最高,W2次之,W0最低,W1比W0和W2处理小麦籽粒产量分别平均提高25.9%和11.8%。W1处理较高的千粒重是其获得高产的主要原因,且W1处理水分利用效率均显著高于其他处理,W1比W0和W2处理水分利用效率分别平均提高17.0%和12.7%。两个生长季处理间各指标变化规律基本一致,W1处理的籽粒产量和水分利用效率最高。

      年份
      Year
      处理
      Treatment
      穗数
      Spike number
      (× 104/hm2)
      穗粒数
      Grain number
      per spike
      千粒重
      1000 grain
      weight (g)
      产量
      Grain yield
      (kg/hm2)
      水分利用效率
      Water use efficiency
      [kg/(hm2·mm)]
      2018—2019W0637.10 a41.77 b36.88 c7364.93 c15.32 b
      W1637.83 a46.08 a40.40 a9397.39 a17.68 a
      W2636.36 a45.72 a38.46 b8434.76 b15.27 b
      2019—2020W0639.50 a41.03 b37.12 c7281.80 c18.96 b
      W1640.36 a43.33 a41.74 a9045.82 a20.85 a
      W2638.63 a43.06 a39.50 b8069.36 b17.63 b
      注(Note):W0—开花期不灌水 No irritation at anthesis stage; W1—开花期将 0—40 cm 土层土壤相对含水量补灌至 70% Watering 0–40 cm soil moisture content to 70% of field water capacity at anthesis stage; W2 —开花期将 0—40 cm 土层土壤灌溉至田间持水量的 85% Watering 0–40 cm soil moisture content to 85% of field water capacity at anthesis stage. 同列数据后不同字母表示同一年份不同处理间差异显著 Values followed by different letters in same column indicate significant difference among treatments in the same year (P < 0.05).

      Table 7.  Effects of soil moisture content during anthesis on wheat grain yield, yield components, and water use efficiency

    • 2.5.   开花期土壤水分含量对小麦氮素利用的影响

    • 表8可知,两个小麦生长季,氮素吸收效率、氮素利用效率和氮肥生产效率均表现为W1处理显著高于W2处理,二者均显著高于W0处理。W1比W0和W2处理氮素吸收效率分别均平提高11.4%和6.5%,氮素利用效率分别平均提高了13.0%和4.9%;W1处理的氮素收获指数最高,W0和W2无显著差异。开花期0—40 cm土层土壤相对含水量补灌至70%处理既节约了水资源,又提高了氮素利用效率,同时获得了最高的籽粒产量,因此该处理是本试验条件下的小麦高产、水氮高效利用的灌溉措施。

      年份
      Year
      处理
      Treatment
      氮素吸收效率 (kg/kg)
      N uptake efficiency
      氮素利用效率 (kg/kg)
      N use efficiency
      氮素收获指数
      N harvest index
      氮肥生产效率 (kg/kg)
      N productive efficiency
      2018—2019W01.10 c27.95 c0.71 b30.69 c
      W11.22 a32.20 a0.79 a39.16 a
      W21.14 b30.75 b0.74 b35.14 b
      2019—2020W01.06 c28.56 c0.73 b30.34 c
      W11.19 a31.66 a0.80 a37.69 a
      W21.12 b30.11 b0.75 b33.62 b
      注(Note):W0—开花期不灌水 No irritation at anthesis stage; W1—开花期将 0—40 cm 土层土壤相对含水量补灌至 70% Watering 0–40 cm soil moisture content to 70% of field water capacity at enthesis stage; W2 —开花期将 0—40 cm 土层土壤灌溉至田间持水量的 85% Watering 0–40 cm soil moisture content to 85% of field water capacity at enthesis stage. 同列数据后不同字母表示同一年份不同处理间差异显著 Values followed by different letters in same column indicate significant difference among treatments in the same year (P < 0.05).

      Table 8.  Effects of soil moisture content during anthesis on N use efficiencies of wheat

    3.   讨论
    • 水分不仅影响土壤氮素的有效性,而且能够调控作物对氮素的吸收和利用[28]。有研究表明,与不灌水相比,灌水显著增加了植株氮素积累量和营养器官贮存氮素向籽粒的转运量[14],而随灌水量的减少,茎鞘和穗的氮素积累量逐渐降低,氮素转运量表现为先升高后降低的趋势[29]。在小麦营养生长阶段水分正常供应的前提下,开花期土壤水分含量对小麦籽粒氮素积累和营养器官氮素向籽粒转移的影响较大[30]。Si等[31]研究认为,开花后土壤水分含量过高,小麦开花后植株氮素积累量和成熟期籽粒氮素积累量均显著降低,可见开花期适宜的土壤水分含量能够加快小麦植株营养器官贮存氮素向籽粒的转移,利于提高氮素转移比例[32]。本研究发现,开花期0—40 cm土层土壤相对含水量补灌至70%的W1处理在籽粒灌浆中后期加速了营养器官贮存氮素向籽粒的转移,灌浆中后期籽粒氮素积累量亦显著增加,且叶片和穗轴+颖壳中的氮素向籽粒转移比例高,从而提高了开花后营养器官氮素向籽粒的转移量和转移率,成熟期获得了最高的籽粒氮素积累量;而开花期0—40 cm土层土壤相对含水量补灌至85%的W2处理,籽粒灌浆中后期营养器官氮素向籽粒的转移量和转移率显著低于W1处理,不利于籽粒氮素的积累,可见开花期适宜的土壤水分含量可通过提高籽粒灌浆中后期营养器官贮存氮素向籽粒的转移量来提高籽粒氮素的积累量。

      有研究表明,适宜的灌溉可以降低硝态氮向深层土壤淋溶的风险,有利于小麦对土壤硝态氮的吸收利用[2]。同时,耕层水分适度胁迫亦促进小麦中下层根系发育,提高小麦对土壤深层硝态氮的利用[33]。开花期灌溉降低耕层土壤中硝态氮含量,随灌水量增加,土壤中的硝态氮由耕层向深层移动[34]。可见,适宜的土壤水分含量可以达到节水节氮的效果[35]。本研究结果表明,与开花期补灌水较多的W2处理相比,W1处理成熟期60—120 cm土层土壤硝态氮含量较低,且降低了土壤中无机氮的残留量和表观盈余量。说明开花期0—40 cm土层土壤相对含水量补灌至70%的W1处理能够减少硝态氮向深层土壤淋溶,保持耕层土壤硝态氮含量稳定,维持了土壤氮素的平衡,降低了淋溶的风险。

      适宜的补充灌溉可提高小麦籽粒产量和氮素利用效率[36],拔节+开花灌2水处理的籽粒产量较全生育期不灌水高26.0%,氮素利用效率和氮肥农学利用效率分别高14.6%和9.1%[37]。但有研究表明,与定量灌溉相比,减少15%灌溉量的喷灌处理小麦籽粒产量和氮素利用效率分别提升了11.24%和6.23%[38]。可见,适宜的土壤水分含量显著提高了小麦籽粒产量、氮素利用效率和氮素生产效率[39],而且有利于提高水分利用效率,减少水分的流失[40]。本试验表明,相较于开花期补灌较多的W2处理,节水灌溉的W1处理籽粒产量和水分利用效率均显著提高,W1处理是获得高产的节水灌溉量。适量灌溉提高籽粒灌浆中后期营养器官贮存氮素向籽粒的转移量,且叶片和穗轴+颖壳中的贮存氮素向籽粒中转移的比例较高,从而促进了营养器官氮素向籽粒中的转移,提高了氮素利用效率和氮素收获指数。综上可知,开花期0—40 cm土层土壤相对含水量补灌至70%的W1处理不仅达到高产节水的目的,还能提高小麦对氮素的利用。

    4.   结论
    • 开花期0—40 cm土层土壤相对含水量补灌至70%处理显著提高了小麦成熟期营养器官贮存氮素向籽粒的转移量和转移率,促进了小麦籽粒氮素积累;提高了小麦成熟期籽粒氮素的分配量和分配比例,降低了叶片和穗轴+颖壳的分配量和分配比例;同时降低了60—120 cm土层土壤硝态氮含量和土壤氮素表观盈余量,提高了小麦氮素吸收效率和氮素利用效率,小麦籽粒产量和水分利用效率亦最高。灌溉过多导致硝态氮过多向下移动,影响根系吸收,水分不足则降低氮素向籽粒的运转。因此,开花期补灌0—40 cm土壤水分含量至70%可显著提高小麦氮素和水分利用效率,又可降低土壤硝态氮的淋洗风险。

Reference (40)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return