• ISSN 1008-505X
  • CN 11-3996/S
Volume 27 Issue 10
Oct.  2021
Article Contents

Citation:

Adjusting sowing dates enhance the efficiency of climate and nutrient resources for spring maize

  •   【Objectives】  Temperature, light, and precipitation are the key meteorological factors affecting the growth and development of maize. This study was designed to understand the relationship between key meteorological factors and N absorption, crop yield to maximize the efficiency of climate and N resources of spring maize.  【Methods】  The spring maize cultivars, Xianyu 335 (XY335) and Zhengdan 958 (ZD958), were used as test materials in a two-year field experiment in Jilin Province. The treatments were three sowing dates: April 24th, May 4th, and May 14th, representing early, mid, and late sowing dates. The dry matter and N accumulation, N translocation rate, and grain formation before and after anthesis were investigated. We combined the Hybrid-Maize model with local meteorological data to comprehensively simulate and evaluate the yield difference among treatments. Further, light and temperature resources were matched at different sowing dates.   【Results】  For cultivar XY335, the dry matter accumulation in the early, middle, and late sowing dates were 21233, 21249, 20311 kg/hm2; the N accumulation was 184.2, 192.5, and 171.1 kg/hm2; N transfer rates were 35.1%, 45.7%, and 35.8%; and the rates of N contribution to grain were 19.4%, 29.6%, and 23.9%. For cultivar ZD958, the dry matter accumulation in the early, middle, and late sowing dates were 21031, 20637, and 20405 kg/hm2; N accumulation was 173.7, 163.4, and 154.9 kg/hm2; N transfer rates were 39.2%, 36.4%, and 25.6%; and the contribution rates of N transfer to grain were 32.7%, 25.4%, and 13.7%, respectively. XY335 had the highest yield under the middle sowing date, 9.9% and 17.4% higher than early and late sowing dates. ZD958 had a higher yield under early sowing date, 8.6% higher than the late sowing date. The yield of XY335 was mainly affected by the daily average temperature during the reproductive growth stage. In contrast, the yield of ZD958 was closely related to the total solar radiation of the whole growing period and the days of the vegetative growth period. The yield difference was mainly related to the dry matter and N accumulation across the VT-R6 period. XY335 had improved N transport efficiency after flowering, requiring a high average daily temperature in the reproductive growth stage. ZD958 needed longer days for high yield accumulation throughout the growth period.   【Conclusions】  Yield differences are caused by sowing dates and cultivars due to high dry matter and N accumulation after anthesis. This situation increases N transfer to grains and consequently improves yield. XY335 recorded an efficient N accumulation and transfer rate after anthesis. Our results suggest that the middle sowing date (May 4th) is suitable for the XY335 cultivar. However, the yield accumulation of ZD958 requires a long-term for high cumulative radiation, implying that early sowing (April 24th) is suitable for this cultivar.
  • 加载中
  • [1] 郭庆海. 中国玉米主产区的演变与发展[J]. 玉米科学, 2010, 18(1): 139–145. Guo Q H. Evolution and development of main maize producing areas in China[J]. Journal of Maize Sciences, 2010, 18(1): 139–145.
    [2] 曹庆军, 杨粉团, 陈喜凤, 等. 播期对吉林省中部春玉米生长发育、产量及品质的影响[J]. 玉米科学, 2013, 21(5): 71–75. Cao Q J, Yang F T, Chen X F, et al. Effects of sowing date on growth, yield and quality of spring maize in central Jilin Province[J]. Journal of Maize Sciences, 2013, 21(5): 71–75. doi:  10.3969/j.issn.1005-0906.2013.05.014
    [3] 王琪, 马树庆, 徐丽萍, 等. 东北地区春旱对春玉米幼苗长势的影响指标和模式[J]. 自然灾害学报, 2011, 20(5): 141–147. Wang Q, Ma S Q, Xu L P, et al. Effects of spring drought on spring maize seedling growth and its model in Northeast China[J]. Journal of Natural Disasters, 2011, 20(5): 141–147.
    [4] 曹铁华, 梁烜赫, 刘亚军, 等. 吉林省气候变化对玉米气象产量的影响[J]. 玉米科学, 2010, 18(2): 142–145. Cao T H, Liang X H, Liu Y J, et al. Effects of climate change on maize meteorological yield in Jilin Province[J]. Journal of Maize Sciences, 2010, 18(2): 142–145.
    [5] 聂居超, 李凤海, 史振声, 等. 播期对不同玉米品种产量的影响[J]. 杂粮作物, 2010, 30(4): 275–278. Nie J C, Li F H, Shi Z S, et al. Effects of sowing date on yield of different maize varieties[J]. Rain Fed Crops, 2010, 30(4): 275–278.
    [6] 路海东, 薛吉全, 郝引川, 等. 播期对雨养旱地春玉米生长发育及水分利用的影响[J]. 作物学报, 2015, 41(12): 1906–1914. Lu H D, Xue J Q, Hao Y C, et al. Effects of sowing date on growth and water use of spring maize in rainfed dryland[J]. Acta Agronomica Sinica, 2015, 41(12): 1906–1914. doi:  10.3724/SP.J.1006.2015.01906
    [7] 沈学善, 李金才, 屈会娟, 等. 种植密度对晚播冬小麦氮素同化积累分配及利用效率的影响[J]. 中国农业大学学报, 2009, 14(4): 41–46. Shen X S, Li J C, Qu H J, et al. Effects of planting density on nitrogen assimilation, accumulation, distribution and utilization efficiency of late sowing winter wheat[J]. Journal of China Agricultural University, 2009, 14(4): 41–46. doi:  10.3321/j.issn:1007-4333.2009.04.007
    [8] 杨宁, 潘学标, 张立祯, 等. 适宜播期提高农牧交错带春小麦产量和水氮利用效率[J]. 农业工程学报, 2014, 30(8): 81–90. Yang N, Pan X B, Zhang L Z, et al. Optimal sowing date to improve spring wheat yield and water and nitrogen use efficiency in agro-pastoral ecotone[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(8): 81–90. doi:  10.3969/j.issn.1002-6819.2014.08.010
    [9] Braunack M V, Bange M P, Johnston D B. Can planting date and cultivar selection improve resource use efficiency of cotton systems?[J]. Field Crops Research, 2012, 137: 1–11. doi:  10.1016/j.fcr.2012.08.018
    [10] 霍中洋, 姚义, 张洪程, 等. 不同播期直播稻氮素吸收、利用效率的差异[J]. 扬州大学学报(农业与生命科学版), 2012, 33(4): 39–45,71. Huo Z Y, Yao Y, Zhang H C, et al. Differences in nitrogen uptake and use efficiency of direct-seeding rice at different sowing dates[J]. Journal of Yangzhou University (Agriculture and Life Science Edition), 2012, 33(4): 39–45,71.
    [11] Masclaux-Daubresse C, Quilleré I, Gallais A, Hirel B. The challenge of remobilisation in plant nitrogen economy. A survey of physioagronomic and molecular approaches[J]. Annals of Applied Biology, 2001, 138(1): 69–81. doi:  10.1111/j.1744-7348.2001.tb00086.x
    [12] Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, et al. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture[J]. Annals of Botany, 2010, 105(7): 1141–1157. doi:  10.1093/aob/mcq028
    [13] Chen Y L, Xiao C X, Chen X C, et al. Characterization of the plant traits contributed to high grain yield and high grain nitrogen concentration in maize[J]. Field Crops Research, 2014, 159: 1–9. doi:  10.1016/j.fcr.2014.01.002
    [14] 安志超, 黄玉芳, 汪洋, 等. 不同氮效率夏玉米临界氮浓度稀释模型与氮营养诊断[J]. 植物营养与肥料学报, 2019, 25(1): 123–133. An Z C, Huang Y F, Wang Y, et al. Dilution model of critical nitrogen concentration and diagnosis of nitrogen nutrition in summer maize with different nitrogen efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 123–133. doi:  10.11674/zwyf.18020
    [15] 侯鹏, 陈新平, 崔振岭, 等. 基于Hybrid-Maize模型的黑龙江春玉米灌溉增产潜力评估[J]. 农业工程学报, 2013, 29(9): 103–112, 295. Hou P, Chen X P, Cui Z L, et al. Potential evaluation of irrigation and yield increase for spring maize in Heilongjiang based on Hybrid Maize model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(9): 103–112, 295.
    [16] 陈明, 寇雯红, 李玉环, 等. 气候变化对东北地区玉米生产潜力的影响与调控措施模拟——以吉林省为例[J]. 应用生态学报, 2017, 28(3): 821–828. Chen M, Kou W H, Li Y H, et al. Effects of climate change on maize productivity potential in Northeast China and the simulation of regulation measures: A case study of Jilin Province[J]. Chinese Journal of Applied Ecology, 2017, 28(3): 821–828.
    [17] Alexandrov V A, Hoogenboom G. Vulnerability and adaptation assessments of agricultural crops under climate change in the Southeastern USA[J]. Theoretical and Applied Climatology, 2000, 67(1–2): 45–63. doi:  10.1007/s007040070015
    [18] Babel M S, Turyatunga E. Evaluation of climate change impacts and adaptation measures for maize cultivation in the western Uganda agro-ecological zone[J]. Theoretical and Applied Climatology, 2015, 119(1–2): 239–254. doi:  10.1007/s00704-014-1097-z
    [19] 霍中洋, 葛鑫, 张洪程, 等. 施氮方式对不同专用小麦氮素吸收及氮肥利用率的影响[J]. 作物学报, 2004, 30(5): 449–454. Huo Z Y, Ge X, Zhang H C, et al. Effects of nitrogen application on nitrogen uptake and nitrogen use efficiency of wheat[J]. Acta Agronomica Sinica, 2004, 30(5): 449–454. doi:  10.3321/j.issn:0496-3490.2004.05.008
    [20] 石玉, 于振文, 王东, 等. 施氮量和底追比例对小麦氮素吸收转运及产量的影响[J]. 作物学报, 2006, 32(12): 1860–1866. Shi Y, Yu Z W, Wang D, et al. Effects of nitrogen application rate and ratio of base and topdressing on nitrogen uptake, transport and yield of wheat[J]. Acta Agronomica Sinica, 2006, 32(12): 1860–1866. doi:  10.3321/j.issn:0496-3490.2006.12.014
    [21] Meng Q F, Hou P, Wang L. Understanding production potentials and yield gaps in intensive maize production in China[J]. Field Crops Research, 2013, 143: 91–97. doi:  10.1016/j.fcr.2012.09.023
    [22] Grassini P, Yang H S, Cassman K G. Limits to maize productivity in Western Corn-Belt: A simulation analysis for fully irrigated and rainfed conditions[J]. Agricultural and Forest Meteorology, 2009, 149(8): 1254–1265. doi:  10.1016/j.agrformet.2009.02.012
    [23] 李绍长, 白萍, 吕新, 等. 不同生态区及播期对玉米籽粒灌浆的影响[J]. 作物学报, 2003, 29(5): 775–778. Li S C, Bai P, Lü X, et al. Effects of different ecological zones and sowing date on grain filling of maize[J]. Acta Agronomica Sinica, 2003, 29(5): 775–778. doi:  10.3321/j.issn:0496-3490.2003.05.025
    [24] 董红芬, 李洪, 李爱军, 等. 玉米播期推迟与生长发育、有效积温关系研究[J]. 玉米科学, 2012, 20(5): 97–101. Dong H F, Li H, Li A J, et al. Study on the relationship between sowing date delay and growth and effective accumulated temperature of maize[J]. Journal of Maize Sciences, 2012, 20(5): 97–101. doi:  10.3969/j.issn.1005-0906.2012.05.021
    [25] 李挺, 牛春丽, 王淑惠. 播期对夏玉米阶段发育和产量性状的影响[J]. 安徽农业科学, 2005, 33(7): 1156–1158. Li T, Niu C L, Wang S H. Effects of sowing date on development and yield traits of summer maize[J]. Journal of Anhui Agricultural Sciences, 2005, 33(7): 1156–1158. doi:  10.3969/j.issn.0517-6611.2005.07.004
    [26] 马国胜, 薛吉全, 路海东, 等. 关中灌区夏播陕单8806玉米密度与播期耦合技术研究[J]. 中国农学通报, 2007, 23(3): 185–189. Ma G S, Xue J Q, Lu H D, et al. Coupling technology of maize density and sowing date of summer sowing Shandan 8806 in Guanzhong Irrigation Area[J]. Chinese Agricultural Science Bulletin, 2007, 23(3): 185–189. doi:  10.3969/j.issn.1000-6850.2007.03.040
    [27] Andrade F H, Uhart S A, Cirilo A. Temperature affects radiation use efficiency in maize[J]. Field Crops Research, 1993, 32(1/2): 17–25.
    [28] 吕硕, 杨晓光, 赵锦, 等. 气候变化和品种更替对东北地区春玉米产量潜力的影响[J]. 农业工程学报, 2013, 29(18): 179–190. Lü S, Yang X G, Zhao J, et al. Effects of climate change and variety replacement on yield potential of spring maize in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(18): 179–190. doi:  10.3969/j.issn.1002-6819.2013.18.022
    [29] 吕硕. 气候变化对吉林梨树县春玉米的影响及品种适应研究[D]. 北京: 中国农业大学博士学位论文, 2016.

    Lü S. Effects of climate change on spring maize and variety adaptation in Lishu County, Jilin Province[D]. Beijing: PhD Dissertation of China Agricultural University, 2016.
    [30] 肖尧, 熊敏, 丁成龙, 等. 播期对高产春玉米产量及光合特性的影响[J]. 扬州大学学报(农业与生命科学版), 2014, 35(2): 65–71. Xiao Y, Xiong M, Ding C L, et al. Effects of sowing date on yield and photosynthetic characteristics of high-yielding spring maize[J]. Journal of Yangzhou University (Agriculture and Life Science Edition), 2014, 35(2): 65–71.
    [31] 黄秋婉, 刘志娟, 杨晓光, 等. 东北三省西部春玉米适应气候变化的高产高效灌溉方案分析[J]. 中国农业科学, 2020, 53(21): 4470–4484. Huang Q W, Liu Z J, Yang X G, et al. Analysis of high-yield and high-efficiency irrigation scheme for spring maize adaptation to climate change in the west of Northeast China[J]. Scientia Agricultura Sinica, 2020, 53(21): 4470–4484. doi:  10.3864/j.issn.0578-1752.2020.21.015
    [32] 廖育林, 鲁艳红, 谢坚, 等. 紫云英配施控释氮肥对早稻产量及氮素吸收利用的影响[J]. 水土保持学报, 2015, 29(3): 190–195, 201. Liao Y L, Lu Y H, Xie J, et al. Effects of controlled release nitrogen fertilizer on early rice yield and nitrogen uptake and utilization[J]. Journal of Soil and Water Conservation, 2015, 29(3): 190–195, 201.
    [33] 屈会娟. 播期播量对冬小麦群体质量和籽粒产量与品质的影响[D]. 郑州: 河南农业大学硕士学位论文, 2007.

    Qu H J. Effects of sowing date and amount on population quality, grain yield and quality of winter wheat[D]. Zhengzhou: MS Thesis of Henan Agricultural University, 2007.
    [34] 江晓东, 梁红丽, 李伟燕, 等. 长江下游地区不同播期玉米光合特性研究[J]. 江苏农业科学, 2018, 46(6): 78–81. Jiang X D, Liang H L, Li W Y, et al. Photosynthetic characteristics of maize at different sowing dates in the lower reaches of the Yangtze River[J]. Jiangsu Agricultural Sciences, 2018, 46(6): 78–81.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3) / Tables(3)

Article Metrics

Article views(234) PDF downloads(27) Cited by()

Related
Proportional views

Adjusting sowing dates enhance the efficiency of climate and nutrient resources for spring maize

    Corresponding author: LIU Jian-zhao, justin0117@yeah.net
    Corresponding author: CAI Hong-guang, caihongguang1981@163.com
  • 1. Agricultural Resources and Environment Institute, Jilin Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Agro-Environment in Northeast Region, Ministry of Agriculture and Rural Affaires. Changchun, Jilin 130033, China
  • 2. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
  • 3. Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an, Shandong 271018, China

Abstract:   【Objectives】  Temperature, light, and precipitation are the key meteorological factors affecting the growth and development of maize. This study was designed to understand the relationship between key meteorological factors and N absorption, crop yield to maximize the efficiency of climate and N resources of spring maize.  【Methods】  The spring maize cultivars, Xianyu 335 (XY335) and Zhengdan 958 (ZD958), were used as test materials in a two-year field experiment in Jilin Province. The treatments were three sowing dates: April 24th, May 4th, and May 14th, representing early, mid, and late sowing dates. The dry matter and N accumulation, N translocation rate, and grain formation before and after anthesis were investigated. We combined the Hybrid-Maize model with local meteorological data to comprehensively simulate and evaluate the yield difference among treatments. Further, light and temperature resources were matched at different sowing dates.   【Results】  For cultivar XY335, the dry matter accumulation in the early, middle, and late sowing dates were 21233, 21249, 20311 kg/hm2; the N accumulation was 184.2, 192.5, and 171.1 kg/hm2; N transfer rates were 35.1%, 45.7%, and 35.8%; and the rates of N contribution to grain were 19.4%, 29.6%, and 23.9%. For cultivar ZD958, the dry matter accumulation in the early, middle, and late sowing dates were 21031, 20637, and 20405 kg/hm2; N accumulation was 173.7, 163.4, and 154.9 kg/hm2; N transfer rates were 39.2%, 36.4%, and 25.6%; and the contribution rates of N transfer to grain were 32.7%, 25.4%, and 13.7%, respectively. XY335 had the highest yield under the middle sowing date, 9.9% and 17.4% higher than early and late sowing dates. ZD958 had a higher yield under early sowing date, 8.6% higher than the late sowing date. The yield of XY335 was mainly affected by the daily average temperature during the reproductive growth stage. In contrast, the yield of ZD958 was closely related to the total solar radiation of the whole growing period and the days of the vegetative growth period. The yield difference was mainly related to the dry matter and N accumulation across the VT-R6 period. XY335 had improved N transport efficiency after flowering, requiring a high average daily temperature in the reproductive growth stage. ZD958 needed longer days for high yield accumulation throughout the growth period.   【Conclusions】  Yield differences are caused by sowing dates and cultivars due to high dry matter and N accumulation after anthesis. This situation increases N transfer to grains and consequently improves yield. XY335 recorded an efficient N accumulation and transfer rate after anthesis. Our results suggest that the middle sowing date (May 4th) is suitable for the XY335 cultivar. However, the yield accumulation of ZD958 requires a long-term for high cumulative radiation, implying that early sowing (April 24th) is suitable for this cultivar.

    HTML

  • 玉米是我国第一大粮食作物,其种植面积居我国粮食作物首位[1],在保障粮食安全方面发挥着举足轻重的作用。吉林省地处“黄金玉米带”,玉米单产水平较高,适合种植玉米 [2]。然而吉林省也存在着霜冻和春旱的农业气象灾害,是影响玉米稳产增产的主要原因[3-4]。播种日期是影响玉米产量的重要因素,适宜的播期可以充分利用生育期内的光温资源和雨热条件,提升玉米抗逆性,更加充分发挥吉林省玉米主产区自然条件和土壤肥力的作用[5]。研究表明过晚播种会降低玉米灌浆速率,单株干物质积累量呈下降趋势[6]。不同的播期由于其光温资源分配等生态条件的差异,使作物生长过程中营养物质的转运分配发生变化[7]。小麦和棉花,不同播期处理间氮素累积量差异不显著,但早播处理下收获指数较高、产量高进而提高了氮素利用效率[8-9]。水稻在播期处理间的相关分析表明,产量与多个生育时期的氮素吸收量、氮素吸收速率及氮素利用效率呈显著正相关[10]。玉米叶片中的氮素对籽粒的贡献率大约占50%~90%,这跟基因型密切相关[11-13],且不同基因型品种具有不同的硝酸还原酶活性,导致氮素的同化能力不同[14]。因此,品种和播期均会对玉米氮效率产生影响。但不同基因型玉米品种在播期处理下其氮素转运的响应机制鲜有报道。

    此外,近些年研究的热点是基于长期气象数据,结合当地土壤、栽培等,采用作物生长模型预测作物在不同太阳辐射、温度等气候条件下产量潜力,为实现光温资源与作物生长的最佳匹配提供参考和指导。侯鹏等[15]通过Hybrid-Maize模型,利用玉米的实际品种特性及区域气象条件确定了黑龙江省玉米区域的灌溉增产潜力;陈明等[16]借助CERES-maize模型表明推迟播期有利于玉米增产。但Alexandrov等[17]和Babel等[18]等提出提前播种可提高玉米产量。

    基于此,本研究拟通过两年田间试验,通过比较不同播期对玉米生长及产量的影响,解析不同氮效率基因型对播期的响应机制;并通过Hybrid-maize 模型进行产量潜力比对分析,探明东北中部影响玉米产量的关键气象因子,为当地玉米生产提供理论指导。

  • 1.   材料与方法

      1.1.   试验地概况

    • 试验于2014—2015年在吉林省中部农安县进行。该地属大陆性季风气候,地势平坦,四季分明,年均气温4.7℃,平均无霜期145天,年均降雨量507.7 mm,有效积温2770℃~2800℃。供试土壤为黑钙土,0—20 cm土壤有机质25.0 g/kg、速效氮121 mg/kg、速效磷24.2 mg/kg、速效钾167 mg/kg、pH 7.90,2014—2015年的降雨及积温等气象信息见图1

      Figure 1.  Rainfall and daily mean temperature during the growth period of spring maize at the experiment station in 2014–2015

    • 1.2.   试验设计

    • 试验为双因素裂区设计,主因素播期,分别为早播(4月24日)、中播(5月4日)、晚播(5月14日);副因素品种,分别为先玉335 (XY335)、郑单958 (ZD958)。各个处理均施N 200 kg/hm2、P2O5 75 kg/hm2、K2O 82.5 kg/hm2。氮肥为尿素(含 N 46%),磷肥为磷酸二铵(含 N 18%、P2O5 46%),钾肥为氯化钾(含 K2O 60%),磷肥钾肥一次性基施,氮肥50 kg/hm2作底肥施用,150 kg/hm2在拔节期作追肥施用。小区面积40 m2,每个处理重复3次,播种密度6万株/hm2。2014年于9月23日统一测产,2015年于9月28日统一测产。

    • 1.3.   样品采集与测定方法

    • 在玉米播种前采集0—20 cm耕层土壤样品,采用常规方法测定土壤养分。分别在第6片展叶期(V6)、开花期(VT)、生理成熟期(R6) 3个时期取植株地上部。每个小区选取有代表性的植株3株,成熟期选取5株。地上部植株按照茎、叶、籽粒、穗轴4部分分开,烘干称重后粉碎,采用凯氏定氮法测定各器官氮含量。成熟期收获中间2 行玉米,装入尼龙网袋晒干脱粒称重,以籽粒含水量14%折算小区产量。采用常规方法考种,取10株标准穗,人工调查穗行数和行粒数,计算得出穗粒数,然后脱粒,取5组称量300粒重,折算百粒重。

    • 1.4.   相关指标计算方法[19-20]

    • 营养器官氮素转运量(kg/hm2) = 开花期营养器官氮素积累量-成熟期营养器官氮素积累量;

      氮素转运效率(%) = 营养器官氮素转运量/开花期营养器官氮素积累量×100

      氮素转运对籽粒氮的贡献率(%) = 营养器官氮素转运量/成熟期籽粒氮素积累量×100

      开花后氮素同化量(kg/hm2) = 成熟期籽粒氮素积累量-营养器官氮素转运量;

    • 1.5.   模型分析

    • 基于农安地区气象站数据信息,采用美国内布拉斯加州林肯大学开发研制的Hybrid-Maize 模型进行玉米生长预测和分析[21-22],以评估不同播期玉米群体最优产量潜力及与太阳辐射、温度等气象条件的响应关系。

    • 1.6.   数据统计与分析

    • 试验数据采用Excel 2016和Origin 8.5进行整理分析与绘图制作,用SPSS 21.0软件进行多重比较(LSD法)。

    2.   结果与分析

      2.1.   不同播期处理下干物质累积、产量及其组分

    • 表1可知,XY335在早、中、晚播期的干物质积累量(生物量)两年平均分别为21233、21249、20311 kg/hm2;ZD958在早、中、晚播期的干物质积累量两年平均分别为21031、20637、20405 kg/hm2。不同播期间比较,XY335品种在两个试验年份均为中播处理下产量较高,两年较早播处理、晚播处理平均分别增加9.9%、17.4%。从产量形成来看,其百粒重较早播处理、晚播处理相应增加2.8%、3.4%。ZD958品种在两个试验年份均为晚播处理下产量最低,两年平均较早播处理、中播处理分别减少8.6%、5.4%。品种间进行比较,综合两年结果,XY335产量中播处理高于ZD958,增幅为8.4%,百粒重增幅为3.1%。2015年,XY335品种在中播处理和晚播处理下的产量均显著高于ZD958 (P<0.05),产量增幅分别为16.3%和5.9%。

      年份
      Year
      播期
      Sowing date
      (month/day)
      品种
      Cultivar
      产量
      Yield
      (kg/hm2)
      收获穗数
      Ear number
      (ear/hm2)
      百粒重
      100-kernel weight
      (g)
      穗粒数
      Kernel per ear
      生物量
      Biomass
      (kg/hm2)
      20144/24XY335101235544929.846819842
      ZD958108706121829.244920535
      5/4XY335108015769230.244919119
      ZD958107805993429.345819493
      5/14XY33591055833329.144018548
      ZD958102866153927.746418791
      LSD0.051184.01548.0 1.118.32126.2
      20154/24XY335116266057726.244822624
      ZD958118655160326.041521526
      5/4XY335131035705127.343423378
      ZD958112685576926.640921781
      5/14XY335112565865426.546522074
      ZD958106315801325.440622019
      LSD0.051065.03330.80.7832.81557.8

      Table 1.  Maize yield and its component under different sowing dates

    • 2.2.   不同处理下干物质及氮的积累动态

    • 随着生育时期的推进,植株干物质积累量和氮素积累量均呈逐渐增加的趋势(图2图3)。年度间比较,XY335和ZD958品种2015年V6—VT和VT—R6时期的干物质积累量和氮素积累量均高于2014年,干物质积累量平均增幅分别为29.1%和15.6%,氮素积累量平均增幅分别为44.9%和63.4%,这可能与两年间玉米生育期的降水、光温资源匹配情况不同有关。播期间进行比较,XY335在两年间均表现为中播处理下,VT—R6期干物质积累量和氮素积累量最高,2014年VT—R6期中播处理下干物质积累量较早播处理和晚播处理分别增加8.5%和12.5%,氮素积累量较早播处理和晚播处理分别增加39.1%、57.7%;2015年VT—R6期中播处理下干物质积累量较早播处理和晚播处理分别增加6.8%、11.7%,氮素累积量分别增加14.8%、29.8%。综合两年来看,XY335中播处理花后干物质积累量较其他处理增加9.8%,氮素积累量较其他处理增加35.4%。ZD958在2014年表现为V6—VT期早播处理下干物质累积量最高,2014年V6—VT期早播处理下干物质积累量较中播和晚播处理分别提高39.6%、40.8%,氮素积累量较中播和晚播处理分别增加107.7%和69.0%;ZD958在2015年V6—R6期晚播处理氮素累积量较早播处理和中播处理分别降低0.2%和3.6%。两年平均,早、中、晚3个播期XY335氮素积累量分别为184.2、192.5、171.1 kg/hm2;ZD958氮素积累量分别为173.7、163.4、154.9 kg/hm2

      Figure 2.  Dynamics of dry matter accumulation of maize under different sowing dates

      Figure 3.  Dynamics of N accumulation of maize under different sowing dates

      品种间进行比较,综合两年,XY335中播处理氮素积累量在V6、VT和R6期较ZD958平均增加15.3%。2015年,XY335在V6—R6期的总氮素积累量均高于ZD958,早播、中播和晚播处理下的增幅分别为14.1%、21.1%、16.0%。2014年无明显差异。

    • 2.3.   不同播期处理下氮素转运及对籽粒氮的贡献率

    • 表2可知,播期对XY335和ZD958的氮素转运均有显著影响。两年平均,XY335在早、中、晚播期的氮素转运率分别为35.1%、45.7%、35.8%;氮素对籽粒氮的贡献率分别为19.4%、29.6%、23.9%。ZD958在早、中、晚播期的氮素转运率分别为39.2%、36.4%、25.6%;氮素对籽粒氮的贡献率分别为32.7%、25.4%、13.7%。XY335品种,2014和2015年中播处理的氮素转运均明显增多,两年间其转运量较早播处理、晚播处理平均分别增加59.4%、43.7%,转运率分别增加30.1%、27.6%,对籽粒氮的贡献率分别增加52.1%、23.7%; ZD958品种两年间晚播处理的氮素转运明显偏低,早播和中播处理氮素转运量较晚播处理分别增加114.4%、55.1%,转运率分别增加53.3%、42.2%,差异均达显著水平(P<0.05)。

      年份
      Year
      播期
      Sowing date
      (month/day)
      品种
      Cultivar
      转运量
      Translocation amount
      (kg/hm2)
      转运率
      Translocation efficiency
      (%)
      CRTGN
      (%)
      同化量
      Assimilation amount
      (kg/hm2)
      20144/24XY33524.0037.1120.7991.45
      ZD95843.7647.7240.1165.34
      5/4XY33543.8151.0730.32100.67
      ZD95828.9142.9433.0158.65
      5/14XY33525.1734.9324.9275.83
      ZD95822.1135.6517.85101.77
      LSD0.0514.212.815.231.5
      20154/24XY33530.6033.0818.09138.54
      ZD95829.4030.7625.3886.44
      5/4XY33543.2040.2728.82106.70
      ZD95823.9929.8917.85110.43
      5/14XY33535.4036.6822.87119.37
      ZD95812.0015.559.45114.98
      LSD0.0513.610.68.817.8
      注(Note):CRTGN—氮素转运对籽粒氮的贡献率 Contribution rate of N transport to grain nitrogen.

      Table 2.  Nitrogen transport and contribution rate to grain nitrogen under different sowing dates

      品种间进行比较,综合两年,XY335中播处理氮素转运量较ZD958平均增加35.4%。2014年,两品种早播处理和晚播处理氮素转运存在明显差异,其中早播处理ZD958氮素转运明显高于XY335,转运量、转运率和对籽粒氮的贡献率分别增加82.3%、28.6%和92.9%;晚播处理两年间XY335氮素转运均优于ZD958,其转运量和对籽粒氮的贡献率在两年间平均分别增加77.5%、75.1%。这表明播期能显著影响玉米氮素转运状况。

    • 2.4.   基于Hybrid-Maize模型对不同播期玉米的产量分析

    • 通过Hybrid-Maize模型模拟得出两年间农安地区不同播期下玉米的理论产量、生物量及光温资源配置情况。由表3可知,在各个处理中,理论产量和实际产量中均存在一定的产量差和生物量差。两品种的模拟产量与全生育期太阳总辐射量成正比,与营养生长期日均温呈反比。但实际产量与模拟产量的变化规律不完全一致,XY335品种实际产量与生殖生长期的日均温成正比,XY335品种在中播处理下达最高实际产量,为12.0 t/hm2,而ZD958的实际产量与营养生长期的天数显著相关(P < 0.05),其晚播处理下实际产量最低,仅为10.5 t/hm2,营养生长天数较早播和中播处理分别缩短13.5和8天。从模拟与实际产量差来看,两品种均在早播处理下的产量差最大,这是由于两品种在早播处理下的模拟产量较高,这与早播处理在全生育期的日辐射量较高,且营养生长期的日均温较低有关。

      播期
      Sowing date
      (month/day)
      品种
      Cultivar
      产量 (t/hm2)
      Yield
      生物量 (t/hm2)
      Biomass
      全生育期
      Whole growth stage
      营养生长期
      Vegetative stage
      生殖生长
      Reproductive stage
      模拟
      Potential
      实际
      Actual
      差值
      D-value
      模拟
      Potential
      实际
      Actual
      差值
      D-value
      日均温
      DMT
      (℃)
      日辐射
      TSR
      (MJ/m2)
      降水量
      Precipitation
      (mm)
      天数
      Days
      日均温
      DMT
      (℃)
      天数
      Days
      日均温
      DMT
      (℃)
      4/24XY33512.510.91.627.121.25.919.4280630182.019.377.019.3
      ZD95812.711.41.326.221.05.219.5287531884.519.476.519.5
      5/4XY33512.112.00.124.421.23.219.7270030376.520.074.519.4
      ZD95811.411.00.424.620.64.019.7270030379.020.272.019.1
      5/14XY33511.710.21.524.020.33.720.3254927368.021.473.019.2
      ZD95811.010.50.522.120.41.720.3261327371.021.472.019.3
      注(Note):DMT—Daily mean temperature; TSR—Total solar radiation.

      Table 3.  Yield potential and light temperature resource allocation of maize varieties at different sowing dates

    3.   讨论
    • 本研究通过两年田间定位试验对不同播期处理下玉米品种产量、氮效率的响应机制进行了分析。证实了通过品种选择和播期优化的管理措施可以实现品种与既定环境的光温资源耦合和玉米高产。研究表明,播期不同会对玉米生育进程的光热资源需求产生影响,而温度和光照是影响玉米生长发育的关键气象因子[23-24],适宜的播期可以使玉米在生长过程中充分利用气候和养分资源,提升作物抗逆性,实现产量与效率同步提升[25-26]

      两年间,XY335品种均表现为在中播处理下产量最高,比早播和晚播处理分别增加9.9%和17.4%。Hybrid-Maize 模型分析表明,两年间的模拟产量均值与营养生长期日均温呈负相关,与全生育期的日辐射呈正相关。XY335品种在中播处理下实际产量较高,主要表现为生殖生长期日均温较高,其实际产量与生殖生长期日均温表现出高度一致性。生殖生长阶段是物质向籽粒转移的关键时期[27],该时期日均温增加,会提高玉米灌浆进程[28],进而使籽粒产量增加[29]。两年间,ZD958品种均表现为晚播处理下产量最低,其产量较早播处理和中播处理分别降低8.6%、5.4%,ZD958实际产量与营养生长期的天数呈正相关,这可能与早播可避开花期高温高湿的不利条件,促进玉米光合作用有关[30],同时也表明XY335和ZD958品种具有明显的差异。从模拟与实际产量差来看,两品种均在早播处理下的产量差最大,晚播处理下,降水量较低,均为273 mm,这也是造成产量下降的主要原因。从光温资源匹配角度来看,XY335品种的籽粒形成与生殖生长期日均温有关,而ZD958品种的籽粒形成与全生育期日辐射总量及营养生长期天数有关;从水分条件来看,Hybrid-Maize模型模拟得出XY335品种随播期后移其对降水需求量逐渐降低,但ZD958则无此规律。黄秋婉等[31]研究表明,春玉米的潜在产量和雨养产量差异明显,表明降水对春玉米产量的限制较大。因此,光温水资源三者的统筹配置合理,才更加有利于籽粒形成。

      干物质积累和氮素积累是影响玉米籽粒干重的重要因素,播期和作物品种会影响氮素吸收积累[10,32]。前人研究表明,适宜的播期有利于提高作物氮素转运率,提高营养器官中干物质的输出能力[33]。本研究中,XY335在中播处理下产量最高,其玉米花后的干物质积累量较其他处理平均增加9.8%,氮素积累量较其他处理增加35.4%。这表明适宜播期使玉米花后养分积累和干物质积累得到协同提高,促进养分转运量,进而促进籽粒形成[34]

      综合两年结果,XY335品种产量在中播处理高于ZD958品种,增幅为8.4%,百粒重增幅为3.1%;XY335品种氮素累积量在V6、VT和R6期较ZD958品种平均增加15.3%,氮素转运量平均增加35.4%。这主要是由于XY335后期叶片的氮素转运效率更高[34],而氮的高效吸收主要表现在氮素向籽粒的转运增多,提高氮素转运量可达到增产效果。

    4.   结论
    • 播期和品种不同造成的产量差异,主要与开花后的干物质累积量与氮素累积量有关,提升氮素转运量可有效促进增产。XY335在花后氮素转运效率优势明显,其产量增加受生殖生长阶段日均温影响较大,ZD958产量增加与营养生长期天数、全生育期总辐射量相关性较大。在本试验条件下,XY335适宜在5月4日左右播种,ZD958适宜早播。

Reference (34)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return