• ISSN 1008-505X
  • CN 11-3996/S
Article Contents

Citation:

Rice yield, quality, and soil fertility in response to straw incorporation and rotation pattern

  •   【Objectives】  We compared the change in rice yield, quality, and soil fertility under three conventional rice-rotation patterns to set up a green cultivation mode in the study area.   【Methods】  Field experiments were conducted for two years consecutively in the Han Tang experimental base of Hanzhong Institute of Agricultural Science from 2018 to 2020. Indica Hybrid rice cultivar 'Quanxiangyou 1521' was used as test material in 2019 and conventional indica rice cultivar 'Huanghuazhan' in 2020. There were six crop rotation patterns and straw incorporation treatments: rape-rice rotation (R-R) with or without straw incorporation, Astragalus sinicus-rice rotation (G-R) with the incorporation of A. sinicus straw only, with the incorporation of A. sinicus and rice straws, winter fallow-rice rotation (F-R) with or without rice straw incorporation. After rice harvest, soil samples in 0-20 cm soil layer were collected to determine the soil nutrient contents, rice yield, yield components, and rice quality.   【Results】  Compared with the no straw incorporation treatment, returning straw to the soil (P < 0.05) increased active organic carbon by 4.09%-18.89%, organic carbon by 6.84%-24.06%, available N by 9.63%-17.43%, available P by 9.10%-41.05%, and available K by 3.72%-17.36%. Rotation patterns improved soil fertility in the order R-R > G-R > W-R. Rotation mode had a (P < 0.05) effect on grain number per spike, seed setting rate, and 1000-grain weight. Returning straw to the soil (P < 0.05) affected grain number per spike and the effective panicle of rice. Compared to G-R and W-R, R-R treatment (P < 0.05) increased the rice yield of 'Quanxiangyou 1521' and 'Huanghuazhan' by 1.71%, 8.95% and 5.51%, 6.41%, respectively. Rotation patterns did not affect rice processing quality and appearance. However, it affected rice taste, protein, and amylose content. G-R treatment (P < 0.05) increased the protein content and gel consistency by 11.01% and 4.69% and decreased amylose content by 2.56%, compared to R-R and W-R. Returning straw to the soil increased rice heading rate by 0.48%-3.12% and taste value by 0.45%-4.79%.   【Conclusions】  Returning straw to the soil annually under all the three rotation patterns can improve soil fertility, grain number per panicle, effective panicle, rice yield and appearance, processing quality, nutritional quality, and steaming quality of rice. Returning rice straw and Astragalus sinicus to the soil can improve indica rice yield and quality, a green cultivation mode suitable for high-quality agricultural development in this region.
  • 加载中
  • [1] 张丽莉, 武志杰, 陈利军, 等. 不同种植制度土壤氧化还原酶活性和动力学特征[J]. 生态环境学报, 2009, 18(1): 343–347. Zhang L L, Wu Z J, Chen L J, et al. Soil oxidoreductase activity and its kinetic characteristics under different cropping system[J]. Ecology and Environmental Sciences, 2009, 18(1): 343–347. doi:  10.3969/j.issn.1674-5906.2009.01.063
    [2] 黄国勤, 熊云明, 钱海燕, 等. 稻田轮作系统的生态学分析[J]. 生态学报, 2006, 26(1): 1159–1164. Huang G Q, Xiong Y M, Qian H Y, et al. Ecological analysis on crop rotation systems of paddy field[J]. Acta Ecologica Sinica, 2006, 26(1): 1159–1164.
    [3] 张鹏, 钟川, 周泉, 等. 不同冬种模式对稻田土壤碳库管理指数的影响[J]. 中国生态农业学报(中英文), 2019, 27(8): 1163–1171. Zhang P, Zhong C, Zhou Q, et al. Effects of different winter planting patterns on carbon management index of paddy field[J]. Chinese Journal of Eco﹣Agriculture, 2019, 27(8): 1163–1171.
    [4] 朱芸, 廖世鹏, 刘 煜, 等. 长江流域油−稻与麦−稻轮作体系周年养分收支差异[J]. 植物营养与肥料学报, 2019, 25(1): 64–73. Zhu Y, Liao S P, Liu Y, et al. Differences of annual nutrient budgets between rapeseed−rice and wheat−rice rotations in the Yangtze River Basin[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 64–73. doi:  10.11674/zwyf.18031
    [5] 王志强, 缪建群, 刘英, 等. 长江中游双季稻田不同轮作方式对土壤质量的影响[J]. 中国生态农业学报(中英文), 2020, 28(11): 1703–1714. Wang Z Q, Miu J Q, Liu Y, et al. Effect of various crops rotations on soil quality in double cropping rice field in the middle reaches of the Yangtze River[J]. Chinese Journal of Eco﹣Agriculture, 2020, 28(11): 1703–1714.
    [6] 刘颖颖, 卜容燕, 唐杉, 等. 连续秸秆–紫云英协同还田对双季稻产量、养分积累及土壤肥力的影响[J]. 植物营养与肥料学报, 2020, 26(6): 1008–1016. Liu Y Y, Bu R Y, Tang S, et al. Effect of continuous straw﹣Chinese milk vetch synergistic return to the field on yield, nutrient accumulation and soil fertility of double cropping rice[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1008–1016. doi:  10.11674/zwyf.19353
    [7] 周国朋, 谢志坚, 曹卫东, 等. 稻草高茬﹣紫云英联合还田改善土壤肥力提高作物产量[J]. 农业工程学报, 2017, 33(23): 157–163. Zhou G P, Xie Z J, Cao W D, et al. Co﹣incorporation of high rice stubble and Chinese milk vetch improving soil fertility and yield of rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 157–163. doi:  10.11975/j.issn.1002-6819.2017.23.020
    [8] 张帆. 冬季作物﹣双季稻轮作种植模式氮、磷、钾养分循环与产量可持续性特征[J]. 中国生态农业学报(中英文), 2019, 27(5): 705–716. Zhang F. Nitrogen, phosphorus and potassium cycling and sustainability of rice yield in a winter crop﹣double cropping rice rotation system[J]. Chinese Journal of Eco-Agriculture, 2019, 27(5): 705–716.
    [9] 高菊生, 曹卫东, 李冬初, 等. 长期双季稻绿肥轮作对水稻产量及稻田土壤有机质的影响[J]. 生态学报, 2011, 31(16): 4542–4548. Gao J S, Cao W D, Li D C, et al. Effects of long﹣term double﹣rice and green manure rotation on rice yield and soil organic matter in paddy field[J]. Acta Ecologica Sinica, 2011, 31(16): 4542–4548.
    [10] 张珺穜, 曹卫东, 徐昌旭, 等. 种植利用紫云英对稻田土壤微生物及酶活性的影响[J]. 中国土壤与肥料, 2012, 49(1): 19–25. Zhang J T, Cao W D, Xu C X, et al. Effects of incorporation of milk vetch (Astragalus sinicus) on microbial populations and enzyme activities of paddy soil in Jiangxi[J]. Soil and Fertilizer Sciences in China, 2012, 49(1): 19–25. doi:  10.3969/j.issn.1673-6257.2012.01.004
    [11] 韩上, 武际, 李敏, 等. 深耕结合秸秆还田提高作物产量并改善耕层薄化土壤理化性质[J]. 植物营养与肥料学报, 2020, 26(2): 276–284. Han S, Wu J, Li M, et al. Deep tillage with straw returning increase crop yield and improve soil physicochemical properties under topsoil thinning treatment[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 276–284. doi:  10.11674/zwyf.19154
    [12] 郭梨锦, 曹凑贵, 张枝盛, 等. 耕作方式和秸秆还田对稻田表层土壤微生物群落的短期影响[J]. 农业环境科学学报, 2013, 32(8): 1577–1584. Guo L J, Cao C G, Zhang Z S, et al. Short﹣term effects of tillage practices and wheat﹣straw returned to rice fields on topsoil microbial community structure and microbial diversity in central China[J]. Journal of Agro﹣Environment Science, 2013, 32(8): 1577–1584. doi:  10.11654/jaes.2013.08.013
    [13] 薛亚光, 魏亚凤, 李波, 等. 麦秸还田和耕作方式对水稻产量和品质的影响[J]. 中国农学通报, 2018, 34(22): 10–14. Xue Y G, Wei Y F, Li B, et al. Wheat straw returning and tillage patterns affecting grain yield and quality of rice[J]. Chinese Agricultural Science Bulletin, 2018, 34(22): 10–14. doi:  10.11924/j.issn.1000-6850.casb17070023
    [14] 朱芸. 油﹣稻与麦﹣稻轮作体系水稻产量差异及其养分机制初探[D]. 武汉: 华中农业大学硕士学位论文, 2019

    Zhu Y. Study on rice yield differences and nutrient mechanism between rapeseed﹣rice and wheat﹣rice rotation systems [D]. Wuhan: MS Thesis of Huazhong Agricultural University, 2019.
    [15] 郑继成, 张刚, 王德建, 等. 稻麦轮作下秸秆还田对稻麦产量和稻田可溶性有机碳含量的影响[J]. 中国生态农业学报(中英文), 2019, 27(3): 431–440. Zheng J C, Zhang G, Wang D J, et al. Effects of straw incorporation on crop yield and dissolved organic carbon concentration at rice growing season in rice﹣wheat rotation cropping system[J]. Chinese Journal of Eco﹣Agriculture, 2019, 27(3): 431–440.
    [16] 吴玉红, 郝兴顺, 田霄鸿, 等. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报, 2020, 46(2): 259–268. Wu Y H, Hao X S, Tian X H, et al. Effect of straw returning combined with NPK fertilization on soil carbon sequestration and economic benefits under rice–wheat rotation in Hanzhong basin[J]. Acta Agronomica Sinica, 2020, 46(2): 259–268. doi:  10.3724/SP.J.1006.2020.92013
    [17] 殷尧翥, 郭长春, 孙永健, 等. 稻油轮作下油菜秸秆还田与水氮管理对杂交稻群体质量和产量的影响[J]. 中国水稻科学, 2019, 33(3): 257–268. Yin Y Z, Guo C C, Sun Y J, et al. Effects of rape straw retention and water and nitrogen management on population quality and yield of hybrid rice under rice﹣rape rotation[J]. Chinese Journal of rice science, 2019, 33(3): 257–268.
    [18] 林郸, 李郁, 孙永健, 等. 不同轮作模式下秸秆还田与氮肥运筹对杂交籼稻产量及米质的影响[J]. 中国生态农业学报(中英文), 2020, 28(10): 1581–1590. Lin D, Li Y, Sun Y J, et al. Effects of straw returning and nitrogen application on yield and quality of hybrid indica rice under different rotation patterns[J]. Chinese Journal of Eco﹣Agriculture, 2020, 28(10): 1581–1590.
    [19] 高菊生, 黄 晶, 杨志长, 等. 绿肥和稻草联合还田提高土壤有机质含量并稳定氮素供应[J]. 植物营养与肥料学报, 2020, 26(3): 472–480. Gao J S, Huang J, Yang Z C, et al. Improving organic matter content and nitrogen supply stability of double cropping rice field through co﹣incorporation of green manure and rice straw[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 472–480.
    [20] 兰延, 黄国勤, 杨滨娟, 等. 稻田绿肥轮作提高土壤养分增加有机碳库[J]. 农业工程学报, 2014, 30(13): 146–152. Lan Y, Huang G Q, Yang B J, et al. Effect of green manure rotation on soil fertility and organic carbon pool[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(13): 146–152. doi:  10.3969/j.issn.1002-6819.2014.13.018
    [21] 高菊生, 徐明岗, 董春华, 等. 长期稻﹣稻﹣绿肥轮作对水稻产量及土壤肥力的影响[J]. 作物学报, 2013, 39(2): 343–349. Gao J S, Xu M G, Dong C H, et al. Effects of long﹣term rice﹣rice﹣green manure cropping rotation on rice yield and soil fertility[J]. Acta Agronomica sinica, 2013, 39(2): 343–349. doi:  10.3724/SP.J.1006.2013.00343
    [22] 鲍士旦. 土壤农业化学分析[M]. 北京: 中国农业出版社, 2000

    Bao S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000.
    [23] 于荣, 徐明岗, 王伯仁. 土壤活性有机质测定方法的比较[J]. 中国土壤与肥料, 2005, (2): 49–52. Yu R, Xu M G, Wang B. Study on methods for determining labile organic matter of soils[J]. Soil and Fertilizer Sciences, 2005, (2): 49–52. doi:  10.3969/j.issn.1673-6257.2005.02.014
    [24] Chen S, Xu C, Yan J, et al. The influence of the type of crop residue on soil organic carbon fractions: an 11﹣year field study of rice﹣based cropping systems in southeast China[J]. Agriculture, Ecosystems and Environment, 2016, 223: 261–269. doi:  10.1016/j.agee.2016.03.009
    [25] 龙瑞平, 张朝钟, 戈芹英, 等. 不同轮作模式下基于机插粳稻稳产和氮肥高效的氮肥运筹方式[J]. 植物营养与肥料学报, 2020, 26(4): 646–656. Long R P, Zhang C Z, Ge Q Y, et al. Nitrogen management in machinery transplanted japonica rice under different rotation systems for stable grain yield and higher nitrogen use efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 646–656. doi:  10.11674/zwyf.19183
    [26] 周永进, 吴文革, 许有尊, 等. 油菜秸秆还田培肥土壤的效应及对后作水稻产量的影响[J]. 扬州大学学报(农业与生命科学版), 2015, 36(1): 53–58. Zhou Y J, Wu W G, Xu Y Z, et al. Effects of returned rapeseed straw on soil fertility and yield of subsequent rice[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2015, 36(1): 53–58.
    [27] 高嵩涓, 周国朋, 曹卫东. 南方稻田紫云英作冬绿肥的增产节肥效应与机制[J]. 植物营养与肥料学报, 2020, 26(12): 2115–2126. Gao S J, Zhou G P, Cao W D. Effects of milk vetch (Astragalus sinicus) as winter green manure on rice yield and rate of fertilizer application in rice paddies in south China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2115–2126.
    [28] 胡宏祥, 程燕, 马友华, 等. 油菜秸秆还田腐解变化特征及其培肥土壤的作用[J]. 中国生态农业学报, 2012, 20(3): 297–302. Hu H X, Cheng Y, Ma Y H, et al. Decomposition characteristics of returned rapeseed straw in soil and effects on soil fertility[J]. Chinese Journal of Eco﹣Agriculture, 2012, 20(3): 297–302.
    [29] 武际, 郭熙盛, 鲁剑巍, 等. 水旱轮作制下连续秸秆覆盖对土壤理化性质和作物产量的影响[J]. 植物营养与肥料学报, 2012, 18(3): 587–594. Wu J, Guo X S, Lu J W, et al. Effects of continuous straw mulching on soil physical and chemical properties and crop yields in paddy﹣upland rotation system[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(3): 587–594. doi:  10.11674/zwyf.2012.11304
    [30] Huang S, Zeng Y J, Wu J F, et al. Effect of crop residue retention on rice yield in China: A meta﹣analysis[J]. Field Crops Research, 2013, 154: 188–194. doi:  10.1016/j.fcr.2013.08.013
    [31] 聂江文, 王幼娟, 吴邦魁, 等. 双季稻田冬闲期土壤细菌数量及结构对施氮的响应[J]. 植物营养与肥料学报, 2019, 25(6): 889–896. Nie J W, Wang Y J, Wu B K, et al. Response of soil bacterial quantity and community to nitrogen fertilization in double﹣cropping rice field during winter fallow period[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(6): 889–896. doi:  10.11674/zwyf.18229
    [32] Zhang Y, Chen X P, Ma W Q, et al. Elucidating variations in nitrogen requirement according to yield, variety and cropping system for Chinese rice production[J]. Pedosphere, 2017, 27(2): 358–363. doi:  10.1016/S1002-0160(17)60323-0
    [33] 李继福, 薛欣欣, 李小坤, 等. 水稻﹣油菜轮作模式下秸秆还田替代钾肥的效应[J]. 植物营养与肥料学报, 2016, 22(2): 317–325. Li J F, Xue X X, Li X K, et al. Substituting effect of crop residues for potassium fertilizer in rice﹣rapeseed rotation system[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 317–325. doi:  10.11674/zwyf.14516
    [34] 尤锦伟, 王俊, 胡红青, 等. 秸秆还田对再生稻田土壤有机碳组分的影响[J]. 植物营养与肥料学报, 2020, 26(8): 1451–1458. You J W, Wang J, Hu H Q, et al. Effects of straw returning on soil organic carbon components in ratoon rice field[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1451–1458. doi:  10.11674/zwyf.19438
    [35] 袁嫚嫚, 邬刚, 胡润, 等. 秸秆还田配施化肥对稻油轮作土壤有机碳组分及产量影响[J]. 植物营养与肥料学报, 2017, 23(1): 27–35

    Yuan M M, Wu G, Hu R, Effects of straw returning plus fertilization on soil organic carbon components and crop yields in rice﹣rapeseed rotation system[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(1): 27–35.
    [36] 成臣, 汪建军, 程慧煌, 等. 秸秆还田与耕作方式对双季稻产量及土壤肥力质量的影响[J]. 土壤学报, 2018, 55(1): 247–257. Cheng C, Wang J J, Chen H H, et al. Effects of straw returning and tillage system on crop yield and soil fertility quality in paddy field under double﹣cropping﹣rice system[J]. Acta Pedologica Sinica, 2018, 55(1): 247–257. doi:  10.11766/trxb201707090275
    [37] 柴如山, 黄晶, 罗来超, 等. 我国水稻秸秆磷分布及其还田对土壤磷输入的贡献[J]. 中国生态农业学报(中英文), 2021, 29(6): 1095–1104. Chai R S, Huang J, Luo L C, et al. Distribution of rice straw phosphorus resources in China and its utilization potential under straw return[J]. Chinese Journal of Eco﹣Agriculture, 2021, 29(6): 1095–1104.
    [38] 严奉君, 孙永健, 马均, 等. 不同土壤肥力条件下麦秆还田与氮肥运筹对杂交稻氮素利用、产量及米质的影响[J]. 中国水稻科学, 2015, 29(1): 56–64

    Yan F J, Sun Y J, Ma J, et al. Effects of wheat straw mulching and nitrogen management on grain yield, rice quality and nitrogen utilizationin hybrid rice under different soil fertility conditions[J], Chinese Journal of Rice Science, 2015, 29(1): 56–64.
    [39] 全国明, 章家恩, 杨军, 稻鸭共作对稻米品质的影响[J]. 生态学报, 2008, 28(7): 3475−3483

    Quan G P, Zhang J E, Yang J, et al. Impacts of integrated rice﹣duck farming system on rice quality[J]. Acta Ecologica Sinica, 2008, 28(7): 3475−3483.
    [40] 汤文光, 唐海明, 罗尊长, 等. 不同种植模式对稻田土壤重金属含量及晚稻稻米品质的影响[J]. 作物学报, 2011, 37(8): 1457–1464. Tang W G, Tang H M, Luo Z C, et al. Impacts of winter planting patterns on soil heavy metal content and grain quality in late rice in double cropping rice area[J]. Acta Agronomica Sinica, 2011, 37(8): 1457–1464. doi:  10.3724/SP.J.1006.2011.01457
    [41] 刘威. 冬种绿肥和稻草还田对水稻生长、土壤性质及周年温室气体排放影响的研究[D]. 武汉: 华中农业大学博士学位论文, 2015. Liu W. Studies on the effects of winter green manure cultivation and rice straw retention on rice growth, soil properties and annual greenhouse gas emissions[D]. Wuhan: PhD Dissertation of Huazhong Agricultural University, 2015. 55–60.
    [42] 胡雅杰, 钱海军, 吴培, 等. 秸秆还田条件下氮磷钾用量对软米粳稻产量和品质的影响[J]. 植物营养与肥料学报, 2018, 24(3): 817–824. Hu Y J, Qian H J, Wu P, et al. Effects of nitrogen, phosphorus and potassium fertilizer rates on yield and grain quality of soft japonica rice under straw returning condition[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 817–824. doi:  10.11674/zwyf.17347
    [43] 陈梦云, 李晓峰, 程金秋, 等. 秸秆全量还田与氮肥运筹对机插优质食味水稻产量及品质的影响[J]. 作物学报, 2017, 43(12): 1802–1816. Chen M Y, Li X F, Cheng J Q, et al. Effects of total straw returning and nitrogen application regime on grain yield and quality in mechanical transplanting japonica rice with good taste quality[J]. Acta Agronomica Sinica, 2017, 43(12): 1802–1816. doi:  10.3724/SP.J.1006.2017.01802
    [44] 曾研华, 吴建富, 潘晓华, 等. 稻草不同还田方式对双季水稻产量及稻米品质的影响[J]. 植物营养与肥料学报, 2013, 19(3): 534–542. Zeng Y H, Wu J F, Pan X H, et al. Study on yield and quality of double cropping rice in different straw return approaches[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(3): 534–542. doi:  10.11674/zwyf.2013.0302
    [45] 严奉君. 秸秆覆盖与水氮管理对水稻产量与米质及土壤理化性质的影响[D]. 四川雅安: 四川农业大学硕士学位论文, 2015

    Yan F J. Effects of straw mulch and water﹣nitrogen fertilizer management on yield of rice, grain quality and the properties of soil[D]. Ya’an, Sichuan: MS Thesis of Sichuan Agricultural University, 2015.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2) / Tables(5)

Article Metrics

Article views(160) PDF downloads(1) Cited by()

Related
Proportional views

Rice yield, quality, and soil fertility in response to straw incorporation and rotation pattern

    Corresponding author: HAO Xing-shun, 372770515@qq.com
    Corresponding author: TIAN Xiao-hong, txhong@nwsuaf.edu.cn
  • 1. Hanzhong Agricultural Research Institute, Shaanxi 723000, China
  • 2. College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100 , China

Abstract:   【Objectives】  We compared the change in rice yield, quality, and soil fertility under three conventional rice-rotation patterns to set up a green cultivation mode in the study area.   【Methods】  Field experiments were conducted for two years consecutively in the Han Tang experimental base of Hanzhong Institute of Agricultural Science from 2018 to 2020. Indica Hybrid rice cultivar 'Quanxiangyou 1521' was used as test material in 2019 and conventional indica rice cultivar 'Huanghuazhan' in 2020. There were six crop rotation patterns and straw incorporation treatments: rape-rice rotation (R-R) with or without straw incorporation, Astragalus sinicus-rice rotation (G-R) with the incorporation of A. sinicus straw only, with the incorporation of A. sinicus and rice straws, winter fallow-rice rotation (F-R) with or without rice straw incorporation. After rice harvest, soil samples in 0-20 cm soil layer were collected to determine the soil nutrient contents, rice yield, yield components, and rice quality.   【Results】  Compared with the no straw incorporation treatment, returning straw to the soil (P < 0.05) increased active organic carbon by 4.09%-18.89%, organic carbon by 6.84%-24.06%, available N by 9.63%-17.43%, available P by 9.10%-41.05%, and available K by 3.72%-17.36%. Rotation patterns improved soil fertility in the order R-R > G-R > W-R. Rotation mode had a (P < 0.05) effect on grain number per spike, seed setting rate, and 1000-grain weight. Returning straw to the soil (P < 0.05) affected grain number per spike and the effective panicle of rice. Compared to G-R and W-R, R-R treatment (P < 0.05) increased the rice yield of 'Quanxiangyou 1521' and 'Huanghuazhan' by 1.71%, 8.95% and 5.51%, 6.41%, respectively. Rotation patterns did not affect rice processing quality and appearance. However, it affected rice taste, protein, and amylose content. G-R treatment (P < 0.05) increased the protein content and gel consistency by 11.01% and 4.69% and decreased amylose content by 2.56%, compared to R-R and W-R. Returning straw to the soil increased rice heading rate by 0.48%-3.12% and taste value by 0.45%-4.79%.   【Conclusions】  Returning straw to the soil annually under all the three rotation patterns can improve soil fertility, grain number per panicle, effective panicle, rice yield and appearance, processing quality, nutritional quality, and steaming quality of rice. Returning rice straw and Astragalus sinicus to the soil can improve indica rice yield and quality, a green cultivation mode suitable for high-quality agricultural development in this region.

    HTML

  • 农作物种植制度是影响土壤质量和农田可持续生产的重要农业措施[1]。稻田轮作可以改善土壤理化性质,增加土壤微生物多样性,提高土壤有机碳,实现稻田可持续发展[2-3]。油菜-水稻是水稻生产的优良种植制度[4],冬闲休耕同时利用冬闲田种植冬季绿肥并于次年春季翻压还田,达到“以地养地”的绿肥-水稻轮作方式是稻田绿色可持续发展的重要措施[5-6],大量研究表明[7-10] 冬种绿肥还田能增加水稻产量,培肥稻田土壤,改善土壤微生物群落结构,提高微生物活性,且连续多年种植增产节肥效应显著。

    秸秆还田不仅可以提高农田土壤汇碳功能、改善土壤结构、培肥地力、提高作物产量及品质,还可以减少环境污染等问题[11-12]。为此, 前人对单一水旱轮作体系下秸秆还田对水稻产量、米质及土壤质量的影响进行了大量研究[13-15]。吴玉红等[16]研究表明稻麦轮作体系秸秆还田可以显著增加水稻产量和稻田活性有机碳,增强土壤汇碳功能。稻油轮作体系油菜秸秆还田可以促进水稻群体质量,增加水稻有效穗和穗粒数,从而提高水稻产量,且可以显著降低稻米垩白粒率和垩白度、提高稻米食味品质[17-18];绿肥-水稻轮作绿肥翻压还田可以稳定稻田氮素供应,增加土壤有机碳库,提高水稻产量[19-21]。上述研究主要针对单一轮作模式下旱作茬口作物秸秆单一还田对稻田土壤质量及水稻产量的影响,而对多元化水旱轮作模式下冬种作物和水稻秸秆双重还田对稻田土壤养分、水稻产量和米质影响的研究较少。汉中北依秦岭南屏巴山,是优质籼稻的最佳适生区,常年种植面积120万亩,占陕西省水稻种植的70%,同时也是南水北调中线工程水源涵养地,因此探索水稻提质丰产的绿色栽培措施对保障该地区农业绿色高质量发展及一江清水送北京具有重要意义。本文研究油菜-水稻、紫云英-水稻、冬闲-水稻3种水旱轮作模式下周年秸秆还田对水稻产量、品质和土壤养分的影响,为汉中地区多元化轮作模式下秸秆还田和水稻提质丰产提供科学依据。

  • 1.   材料与方法

      1.1.   供试材料

    • 试验于2018年9月至2020年9月进行在陕西省汉中市农业科学研究所韩塘试验基地(33°8′3″N,107°0′40″E)进行,海拔约500 m,属亚热带湿润季风性气候,年平均气温约14 ℃,年均降水量800~1000 mm,无霜期235天,年均日晒时数约1400 h,≥10 ℃的年积温为4480 ℃。供试土壤为水稻土,试验前土壤基本理化性质为有机碳9.61 g/kg、全氮0.78 g/kg、碱解氮82.93 mg/kg、速效磷7.8 mg/kg、速效钾70.98 mg/kg、pH 6.18,依据全国第二次土壤普查养分分缺标准,本试验土壤肥力水平属于中等偏下水平。

    • 1.2.   试验设计

    • 试验采用随机区组试验设计,设油菜-水稻、紫云英-水稻、冬闲-水稻三种轮作模式,每种轮作模式设秸秆不还田和秸秆还田,共6个处理(见表1),每个处理3次重复。小区面积20 m2(4 m×5 m),各小区田埂用农膜包裹膜隔开,避免水肥相互渗透,田埂宽约0.4 m;试验区间和四周设有灌溉渠,渠宽0.5 m,采用当地习惯灌溉模式和田间管理方式。

      处理 Treatment秸秆还田量 Straw returning amount
      20192020
      油菜-水稻 (R-R),秸秆不还田
      Rape-rice rotation (R-R), no straw returning
      00
      油菜-水稻,秸秆还田
      Rape-rice rotation (R-R), straw returning
      油菜秸秆 5900
      Rape straw 5900
      油菜秸秆 Rape straw 6836
      水稻秸秆 Rice straw 8364
      绿肥-水稻 (G-R),秸秆不还田
      Green manure-rice rotation (G-R), no straw retuning
      00
      绿肥-水稻 (G-R),秸秆还田
      Green manure-rice rotation (G-R), straw retuning
      紫云英 18000
      Green manure 18000
      水稻秸秆 Rice straw 10850.94;
      紫云英 Green manure 18000
      冬闲-水稻 (W-R),秸秆不还田
      Winter fallow-rice rotation (W-R), no straw returning
      00
      冬闲-水稻 (W-R),秸秆还田
      Winter fallow-rice rotation (W-R), straw returning
      0水稻秸秆 6068
      Rice straw 6068
      注(Note):养分含量 Nutrient content:油菜秸秆 Rape straw (N 0.69%、P 0.06%、K 1.21%), 水稻秸秆 Rice straw (N 0.71%、P 0.05%、K 1.89%), 紫云英 Green manure (N 2.96%、P 0.017%、K 2.28% ); 油菜草谷比2.7 Straw/grain ratio of rape was 2.7; 油菜-水稻、绿肥-水稻、冬闲-水稻轮作体系水稻草谷比分别为 0.81、1.08、0.65 Straw/grain ratio of rice in rape-rice, green manure-rice and winter fallow-rice was 0.81, 1.08, 0.65, respectively.

      Table 1.  Amount of straw returned in rice season in each treatment in 2019 and 2020

    • 1.3.   田间管理

    • 油菜供试品种‘沣油737’,油菜施肥量为N 165 kg/hm2、P2O5 99 kg/hm2、K2O 90 kg/hm2,Na2B4O7·10H2O 15 kg/hm2,氮肥70%做底肥,30%做追肥,磷钾肥及硼肥均做基肥。水稻供试品种2019年供试水稻品种为杂交籼稻‘荃香优1521’,系汉中市农业科学研究所自育品种,移栽密度16.5 cm×29.7cm。2020年供试水稻品种为常规优质籼稻‘黄华占’(米质为国标2级),汉中市主推优质水稻品种,移栽密度16.5 cm×26.4 cm。两年水稻施肥量均为N 180 kg/hm2、P2O5 90 kg/hm2、K2O 92.5 kg/hm2,其中氮肥分移栽前基施、移栽后5天追施、移栽后10天追施,比例为6∶2∶2,磷钾肥一次基施。供试紫云英品种为‘闽紫7号’,播种量30 kg/hm2。水稻季栽培同油菜-水稻轮作模式。试验设计见表1,秸秆还田方式为秸秆全量粉碎翻压还田,绿肥在盛花期粉碎翻压还田。作物田间管理见表2

      项目Item2018—20192019—2020
      油菜 Rape绿肥 Chinese milk vetch水稻 Rice油菜 Rape绿肥 Chinese Milk Vetch水稻 Rice
      供试品种
      Cultivar
      沣油 737
      Fengyou 737
      闽紫 7 号
      Minzi No. 7
      荃香优 1521
      Quanixangyou 1521
      沣油 737
      Fengyou 737
      闽紫 7 号
      Minzi No. 7
      黄华占
      Huanghuazhan
      插秧或播种日期
      Transplanting or seedling date
      2018.09.262018.09.282019.05.272019.09.282019.09.282020.05.26
      收获或翻压日期
      Harvest or incorporating date
      2019.05.232019.04.202019.09.272020.05.242020.04.242020.09.24

      Table 2.  Crop cultivars and seedling (transplanting), harvesting (incorporation) date

    • 1.4.   测定项目与方法

      1.4.1.   考种及计产
    • 收获时各小区调查具代表性稻株30穴,计数有效穗数并计算平均值,并随机取10穴进行考种,测定每穗粒数、实粒数、千粒重,计算结实率等性状。各小区四边各除去两行共184穴,剩余按实收单独脱粒计产。

    • 1.4.2.   样品采集及测定方法
    • 土壤样品采集:2019年9月和2020年9月水稻收获后,采集0—20 cm土壤,每个小区采集混合样点,剔除植物残体和其他杂物,置于阴凉通风处摊晾风干,粉碎,过1 mm和0.25 mm 筛备用。土壤养含量测定方法参考《土壤农化分析》[22],即有机碳采用重铬酸钾外加热法,碱解氮采用扩散法,速效磷采用Olsen法,速效钾采用火焰光度计法。硝态氮和铵态氮采用连续流动分析仪法,活性有机碳采用333.3 mmol KMnO4氧化分光光度计法[23]测定。

      稻米品质测定:依据国标GB/T17891-2017《优质稻谷》、农业部标准NY/T 593-2013《食用稻品种品质》测定外观品质和加工品质,据农业部标准NY 147-88《稻米品质测定》,测定稻米胶稠度和直链淀粉含量。

    • 1.5.   数据处理

    • 采用Excel 2010、DPS7.5软件处理试验数据,多重比较采用最小显著性差异法(LSD)。

    2.   结果与分析

      2.1.   不同轮作模式下秸秆还田对水稻产量及产量构成因素的影响

    • 轮作模式(R)对2019年和2020年水稻产量影响显著,秸秆还田(R)及二者交互作用(R×S)对两年度水稻产量影响均不显著。3种轮作模式下,‘荃香优1521’和‘黄华占’产量均表现为油菜-水稻轮作(R-R)>紫云英-水稻轮作(G-R)>冬闲-水稻轮作(W-R),油菜-水稻轮作模式(R-R)下‘荃香优1521’和‘黄华占’产量分别较G-R和W-R增产1.71%、8.95%和5.51%、6.41%(图1)。

      Figure 1.  Effects of returning straw to the soil on rice yield under different rotation

      表3表明,杂交籼稻和常规籼稻产量构成要素差异较大,‘荃香优1521’千粒重显著高于‘黄华占’,而‘黄华占’穗粒数、结实率、有效穗显著高于‘荃香优1521’。2个供试水稻品种产量构成因素对轮作方式和秸秆还田处理响应差异较大。2019年度轮作模式对‘荃香优1521’穗粒数、结实率和千粒重影响显著,穗粒数表现为G-R>R-R>W-R;结实率和有效穗表现为W-R>G-R>R-R;千粒重为R-R>G-R>W-R。秸秆还田对穗粒数影响显著,对有效穗影响极显著。与秸秆不还田处理相比,秸秆还田处理R-R、G-R、W-R模式下穗粒数和有效穗增幅分别为6.91%、4.77%、−4.62%和0.95%、3.30%、19.97%。2020年度轮作方式和秸秆还田对‘黄华占’穗粒数和有效穗影响显著,不同轮作模式间,穗粒数表现为G-R>R-R>W-R;有效穗表现为R-R>G-R>W-R。三种模式下秸秆还田处理较秸秆不还田处理,穗粒数和有效穗增幅分别为0.62%~21.93%和1.87%~18.42%。

      年份
      Year
      水稻品种
      Rice cultivar
      处理
      Treatment
      每穗粒数
      Grain number
      per panicle
      结实率
      Seed setting rate
      (%)
      有效穗 (×104 /hm2)
      Effective panicle
      number
      千粒重
      1000-grain weight
      (g)
      2019荃香优 1521
      QXY1512
      R-R135.69±2.23 ab89.06 ±1.72 b274.63±23.97 bc31.51±1.08 ab
      R-R+S145.07±4.58 ab91.12±1.82 ab277.23 ±14.64 bc32.20 ±0.34 a
      平均 Mean140.3890.09275.9331.86
      G-R139.82±3.56 ab91.18±1.42 ab271.53 ±5.36 bc31.42±0.89 ab
      G-R+S146.49±11.67 a91.76±2.31 a280.80±9.40 b31.54 ±0.56 ab
      平均 Mean143.1691.47276.1731.48
      W-R138.29±2.43ab91.54±2.68 a254.80 ±4.50 c30.60±0.18 b
      W-R+S131.98±9.41 b91.55±1.52 a305.68 ±0.49 a30.94±0.40 ab
      平均 Mean135.1491.55280.2430.77
      F
      F value
      轮作 Rotation (R)23.55*4.21*0.254.16*
      秸秆 Straw (S)59.15*0.9611.93**0.06
      R×S0.082.438.57**0.99
      2020黄华占
      HHZ
      R-R150.24±8.89 bc94.84±0.86 a308.74±2.79 a22.19±1.14 a
      R-R+S151.17±6.76 b95.90±0.36 a330.38±3.75 a22.10±0.15 a
      平均 Mean150.7195.37319.5622.15
      G-R137.24±5.18 d94.92±0.33 a304.18±34.42 a22.05±0.52 a
      G-R+S167.34±0.70 a94.89±1.51 a309.88±14.88 a21.89±0.94 a
      平均 Mean152.2994.91307.0321.97
      W-R140. 29±0.10 cd95.84±0.37 a259.75±5.58 b22.35±0.89 a
      W-R+S141. 30±0.79 cd94.85±0.66 a307.60±22.32 a22.88±1.16 a
      平均 Mean140.8095.35283.6822.62
      F
      F value
      轮作Rotation (R)7.77**0.394.23*0.52
      秸秆 Straw (S)17.64**0.00096.01*0.03
      R×S16.11**1.491.450.17
      注(Note):R-R—油菜-水稻 Rape-rice rotation; G-R—绿肥-水稻 Green manure-rice rotation; W-R—冬闲-水稻轮作—Winter fallow-rice rotation; S—秸秆还田 Straw returning; 表中数值均为平均值±标准差 Data are mean±SD (n=3);同列数值后不同字母表示处理间差异达 5%显著水平 Values followed by different letters indicate difference among treatments at the 0.05 level; *—P < 0.05; **—P < 0.01.

      Table 3.  Yield components of hybrid rice under different straw incorporation and rotation pattern

    • 2.2.   不同轮作模式下秸秆还田对稻田土壤养分的影响

    • 表4表明,年际间0—20 cm土层土壤养分2020年较2019年呈增加趋势。2019年度轮作模式对0—20 cm土层活性有机碳、有机碳、碱解氮、速效磷、pH影响显著,秸秆还田对活性有机碳、有机碳、速效磷、速效钾和pH影响显著或极显著,二者交互作用对有机碳、碱解氮和速效钾影响极显著,对速效磷影响显著。2019年中活性有机碳、有机碳、碱解氮、速效钾和pH均表现为R-R>G-R>W-R,速效磷含量则表现为W-R>R-R>G-R。三种作模式中秸秆还田处理较秸秆不还田处理活性有机碳、有机碳、速效磷、速效钾分别提高1.94%~17.72%、13.68%~37.45%、13.24%~28.40%、0.23%~24.59%。R-R、G-R、W-R模式下碱解氮含量,秸秆还田处理较秸秆不还田处理分别提高13.24%、18.15、19.09%。2020年轮作模式对活性有机碳、有机碳、碱解氮及速效钾影响显著,除活性有机碳G-R最高外,其他指标均以R-R最高。秸秆还田对活性有机碳、碱解氮及速效磷影响极显著,与秸秆不还田处理相比,秸秆还田处理活性有机碳、碱解氮及速效磷分别提高6.23%~20.06%、6.01%~15.76%和4.96%~53.69%。

      年份
      Year
      处理
      Treatment
      活性有机碳 (g/kg)
      Labile organic carbon
      有机碳 (g/kg)
      Organic carbon
      碱解氮 (mg/kg)
      Available N
      速效磷 (mg/kg)
      Available P
      速效钾 (mg/kg)
      Available K
      pH
      2019R-R5.67 ±0.37 a9.24±0.56 cd105.01±5.25 a9.67±1.20 b71.01±11.06 b6.28±0.11 a
      R-R+S5.78±0.34 a12.70±0.47 a114.63±0.88 a10.95±1.34 b88.47±10.47 a6.17±0.12 ab
      平均 Mean5.7310.97109.8210.3179.746.23
      G-R4.57±0.19 b8.48±0.04 d79.63±0.88 c7.18±0.56 c73.56±3.09 b6.02±0.08 b
      G-R+S5.38±0.20 a9.64±0.07 bc94.08±11.40 b8.14±0.61 c74.50 ±4.12 b6.09±0.11 b
      平均 Mean4.989.0686.867.6674.036.06
      W-R5.63±0.08 a8.97±0.02 cd77.88±6.13 c10.00±0.93 b75.09±3.50 b6.15±0.13 ab
      W-R+S5.80±1.46 a10.48±1.20 b92.75±525 b12.84±0.05 a75.26±7.97 b6.05±0.08 b
      平均 Mean5.729.7385.3211.4275.186.10
      F F value
      轮作 Rotation (R)6.65*22.10**33.42**2.5639.99**5.27*
      秸秆 Straw (S)4.68*73.07**1.496.53*23.02**1.13*
      R×S2.998.96**10.86**7.48*2.70**1.74
      2020R-R5.38±0.20 b10.03±0.21 b113.83±8.38 b13.28±0.39 d86.94±6.29 ab6.30±0.03 a
      R-R+S5.78±0.34 b11.40±0.53 a120.67±8.25 a20.41±0.74 a94.42±5.91 a6.25±0.09 a
      平均 Mean5.5810.72117.2516.8590.686.28
      G-R5.57±0.50 b10.00±0.48 b87.75±3.13 de14.14±0.03 d77.09±8.91 b6.30±0.07 a
      G-R+S6.91±0.39 a10.01±0.53 b101.58±10.38 c18.22±1.00 b82.66±5.97 b6.23±0.15 a
      平均 Mean6.2410.0094.6716.1879.886.27
      W-R5.62±0.08 b9.14±0.30 b84.00±3.50e15.94±1.23 c76.24±5.32 b6.32±0.19 a
      W-R+S5.97±0.23 b9.49±1.19 b92.75±1.75 d16.73±0.17 bc83.96±4.44 ab6.29±0.05 a
      平均 Mean5.809.3288.3816.3480.106.31
      F F value
      轮作 Rotation (R)5.85*4.30*110.86**1.085.55*0.37
      秸秆 Straw (S)18.57**2.4634.67**144.95**0.271.65
      R×S4.014.581.5730.47**2.220.06
      注(Note):R-R—油菜-水稻 Rape-rice rotation; G-R—绿肥-水稻 Green manure-rice rotation; W-R—冬闲-水稻轮作 Winter fallow-rice rotation; S—秸秆还田 Straw returning; 表中数值均为平均值±标准差 Data are mean±SD (n=3);同列数值后不同字母表示处理间差异达 5% 显著水平 Values followed by different letters indicate difference among treatments at the 0.05 level; *—P<0.05; **—P < 0.01.

      Table 4.  Nutrient contents and pH in 0-20 cm soil layer under different straw incorporation and rotation pattern

    • 2.3.   不同轮作模式下秸秆还田对黄华占外观品质和加工品质的影响

    • 表5表明,轮作模式仅对整精米率影响显著,对糙米率和精米率及外观品质影响不显著。不同轮作模式下,米粒长/宽变异较小,垩白粒率和垩白度均表现为G-R<W-R<R-R;糙米率、精米率和整精米率均表现为G-R>R-R>W-R,说明绿肥﹣水稻模式改善外观品质和加工品质优于油菜-水稻和冬闲-水稻模式。秸秆还田对黄华占整精米率影响显著,R-R、G-R、W-R模式下秸秆还田处理(S)较秸秆不还田处理(NS),整精米率分别提高3.12%、0.48%、1.32%。

      处理
      Treatment
      米粒长/宽
      Grain length/width
      垩白粒率 (%)
      Chalk grain
      垩白度 (%)
      Chalkiness
      糙米率 (%)
      Brown rice
      精米率 (%)
      Milled rice
      整精米率 (%)
      Head rice
      R-R3.03±0.02 a12.73±2.27 a3.85±0.99 a79.31±0.55 b69.21±0.73 ab63.20±1.80 bc
      R-R+S3.03±0.02 a14.02±2.09 a4.18±0.75 a79.47±0.21 ab69.67±0.30 a65.17±0.46 a
      平均 Mean3.0313.384.0279.3969.4464.19
      G-R3.04±0.01 a12.01±0.74 a3.49±0.21 a80.04±0.31 a69.90±0.54 a65.03±1.11 ab
      G-R+S3.03±0.01 a10.31±0.57 a2.91±0.14 a79.68±0.11 ab69.53±0.50 a65.34±1.14 a
      平均 Mean3.0311.163.2079.8669.7265.19
      W-R3.03±0.04 a11.15±1.99 a3.25±0.48 a79.31±0.50 ab68.65±0.51 b63.08±1.80 c
      W-R+S3.06±0.02 a12.56±2.18 a3.65±0.81 a79.57±0.05 ab69.65±0.34 a63.91±1.66 abc
      平均 Mean3.0511.863.4579.4469.1563.50
      FF value
      轮作 Rotation (R)1.302.182.323.282.384.78*
      秸秆 Straw (S)0.740.120.030.00422.644.72*
      R×S0.601.330.831.053.331.09
      注(Note):R-R—油菜-水稻 Rape-rice rotation; G-R—绿肥-水稻 Green manure-rice rotation; W-R—冬闲-水稻轮作—Winter fallow-rice rotation; S—秸秆还田 Straw returning; 表中数值均为平均值±标准差 Data are mean±SD (n=3);同列数值后不同字母表示处理间差异达 5% 显著水平 Values followed by different letters indicate difference among treatments at the 0.05 level. *—P < 0.05; **—P < 0.01.

      Table 5.  Effects of straw incorporation on nutritional and cooking quality of rice under different rotation patterns

    • 2.4.   不同轮作模式下秸秆还田对黄华占营养及蒸食品质的影响

    • 轮作模式(R)对黄华占籽粒蛋白质含量影响极显著,秸秆还田(S)影响不显著,二者(R×S)交互作用影响显著(图2A),三种模式间相比,G-R模式蛋白质含量显著高于R-R和W-R模式,分别增加11.19%和10.82%。轮作模式(R)对黄华占直链淀粉含量影响显著(图2B),秸秆还田(S)及二者(R×S)交互作用影响不显著,三种模式间相比,W-R模式显著高于R-R和G-R模式,分别增加3.58%和4.456%。轮作模式(R)、秸秆还田(S),二者(R×S)交互作用对黄华占胶稠度影响均不显著(图2C)。轮作模式(R)和秸秆还田(S)对黄华占食味值影响极显著或显著(图2D),三种模式间相比,R-R模式高于W-R和G-R模式,食味值分别增加1.30%和3.73%。R-R、G-R、W-R模式下秸秆还田处理(S)较秸秆不还田处理(NS),食味值增幅分别为4.79%、0.45%和0.63%。

      Figure 2.  Effects of different treatments on protein(a), amylose(a), gel consistency(c), taste value (d)

    3.   讨论

      3.1.   不同轮作模式下秸秆还田对水稻产量及产量构成要素的影响

    • 不同轮作模式中前茬作物残留在土壤中的养分和秸秆对后茬水稻产量影响较大[24-25]。本研究中两年水稻产量均表现为油菜-水稻模式中水稻产量最高,其次是紫云英-水稻模式,冬闲-水稻模式最低,这与龙瑞平等[25]研究结果一致。一方面油菜-水稻模式中油菜种植中施肥促进了油菜的生长,残留的根茬或秸秆还入土壤和上茬盈余养分的共同作用下对土壤肥力提高作用更明显,对后茬水稻的生长促进作用更大[26]。同时适宜的水稻群体质量可以促进灌浆后期干物质积累,提高物质转化率,地上部长势过旺或不足,均不利于成熟期籽粒中养分累计,本研究中油菜-水稻、绿肥-水稻、冬闲-水稻轮作体系水稻收获时草谷比分别为0.81、1.08、0.65。紫云英-水稻模式中绿肥翻压还田后可以提高稻田土壤养分,增加水稻产量[27],本研究也证实了与冬季休闲相比,冬种紫云英提高了水稻产量,但增产效应低于冬种油菜,可能是因为紫云英种植不施肥,虽然自身固氮翻压还田后对稳定土壤氮素贡献较大,但对磷和钾提高不大,而油菜茬口对稻田氮磷钾养分的提升比较全面[28],所以稻田肥力和水稻产量都低于油菜-水稻模式。冬闲-水稻轮作模式中,冬闲季既不施肥又无外源有机物料投入,且本试验中土壤基础地力较低,导致土壤肥力下降,所以冬闲-水稻模式水稻产量最低。

      水旱轮作体系中秸秆还田可以增加水稻穗粒数和有效穗,提高水稻产量[29],由于秸秆还田促增产效果因秸秆种类及还田数量存在差异[18]。本试验中不同轮作模式下秸秆还田促增产效应不尽相同,油菜-水稻和绿肥-水稻轮作模式秸秆还田较秸秆不还田处理显著增加了水稻穗粒数和有效穗,提高水稻产量,且同一模式2020年水稻增产幅度高于2019年,一方面因为杂交稻和常规稻因养分需求量不同对秸秆还田响应差异较大,另一方面可能与秸秆还田的增产效应受秸秆还田量和还田年限的影响,一般认为随着还田年限增加增产效应逐渐增强[30]。本研究中不同轮作模式秸秆还田数量和种类差异较大,R-R和G-R模式2020年水稻季有3季作物秸秆进入土壤,2019年仅有1季旱作茬口作物秸秆还田,2020年较2019年土壤肥力提高显著,从而增产效益显著。冬闲-水稻模式中2年秸秆还田处理水稻产量均表现为减产趋势,该模式施肥和外源有机物料投入相对较少,土壤肥力提升不显著,同时冬闲免耕增强了土壤细菌的丰度和多样性[31],水稻季秸秆还田初期微生物易与水稻秧苗争养分,不利于水稻的生长,从而导致减产。

    • 3.2.   不同轮作模式下秸秆还田对稻田土壤养分的影响

    • 水旱轮作体系中,旱作茬口的施肥及秸秆对稻田肥力水平影响较大[32]。龙瑞平等[25]研究表明水旱轮作系统中,油菜茬口残留的肥力高于小麦和蚕豆茬口,本研究3种轮作模式下,土壤有机碳、速效磷、速效钾均表现为油菜-水稻模式最高、绿肥-水稻模式次之,冬闲-水稻模式最低。前人研究表明秸秆还田可以提高稻田土壤有机碳,增加土壤养分[33-36]。本试验中,3种轮作模式中,秸秆还田均不同程度增加了土壤活性有机碳、有机碳、碱解氮、速效磷和速效钾含量,各指标增幅差异较大,其中速效磷增幅最大,本研究结果显示秸秆还田和轮作模式对速效磷影响显著,3种轮作模式下两年最大增幅分别为28.40%和53.69%,可能主要因为试验基础土壤速效磷含量较低,同时有研究表明秸秆还田是向土壤输入磷素的重要途径[37],但又因不同模式还田有机物料数量、类型差异较大,磷素增幅差异大,总之,3种轮作模式下秸秆周年还田有利于提高稻田土壤肥力。

    • 3.3.   不同轮作模式下秸秆还田对稻米品质的影响

    • 稻米品质是品种自身特性、气候条件和栽培措施因素等交互作用的结果[38],且稻米品质性状对上述影响因素的响应不同。全国明等[39]认为出糙率、精米率、粒形等品质主要由品种的遗传特性决定,受栽培环境的影响较小,而整精米率、垩白、胶稠度、直链淀粉和蛋白质含量等则易受栽培条件的调控。汤文光等[40]研究结果表明,与冬闲-双季稻相比,黑麦草-双季稻、紫云英-双季稻、油菜-双季稻和马铃薯-双季稻4种模式,增加了同一水稻品种稻米的出糙率、整精米率、胶稠度和直链淀粉含量,降低了垩白米率和垩白度,精米率和蛋白质含量则表现不一致。本研究中轮作模式对黄华占整精米率影响显著,而对其他外观和加工品质影响不显著,对蛋白质含量、直链淀粉含量和食味值影响显著,对胶稠度影响不显著,且不同轮作模式表现不一,绿肥-紫云英模式相对其他模式降低了垩白粒率和垩白度,提高了糙米率、精米率和精整米率,增加了蛋白质含量、降低了直连淀粉含量、增加了胶稠度,在改善外观品质和加工品质,提高营养品质和蒸食品质方面优于油菜-水稻和冬闲-水稻。紫云英含氮量高,翻压还田提高了土壤氮素供应水平,较其他模式降低了碳氮比,产生的养分更易被水稻吸收利用,从而促进地上部生长,收获时水稻叶片光合活性更强,从而影响了氮碳供应和灌浆过程,说明紫云英-水稻轮作有利于提高稻米品质,这与刘威[41]研究结果一致。

      关于秸秆还田对稻米品质的影响,大量研究表明[42-44]秸秆还田对改善稻米的外观、营养及蒸煮食味品质有一定作用,陈梦云等[43]研究表明小麦秸秆全量还田显著增加了后茬水稻稻米的蛋白质含量, 降低了垩白率和垩白度。曾研华等[44]研究表明,稻草还田有利于改善稻米加工品质。本研究也表明秸秆还田降低了黄华占垩白米率,提高了整精米率,有利于改善稻米的外观品质和加工品质,同时秸秆还田对蛋白质含量影响显著,油菜-水稻、绿肥-水稻模式下秸秆还田降低了蛋白质含量,秸秆还田养分释放对土壤碳氮比影响较大,从而成熟期籽粒灌浆氮碳物质供应[45]。本研究中轮作模式和秸秆还田交互作用对稻米蛋白质含量影响显著,对其他指标影响不显著,而林郸等[18]研究表明不同轮作模式下前茬作物秸秆还田对杂交籼稻精米率、垩白和蛋白质含量均有显著或极显著影响,可见轮作模式和秸秆还田对稻米外观、加工、营养及蒸食品质的影响不一,有关协同提高或同步改善其稻米品质的研究有待进一步深入探究。

    4.   结论
    • 3种轮作模式下,水稻产量两年均表现为油菜-水稻轮作(R-R)最高,紫云英-水稻轮作(G-R)次之,冬闲-水稻轮作(W-R)最低,秸秆还田条件下随着还田年限增加,水稻增产效应逐渐增强,增产幅度表现为G-R>R-R>W-R。周年秸秆全量还田可以提高3种模式下土壤肥力,增加水稻穗粒数和有效穗,提高水稻产量,改善稻米外观品质和加工品质,提高营养品质和蒸食品质。周年秸秆全量还田是,3种水旱轮作模式中提高土壤肥力,持续提高水稻产量的有效途径。紫云英-水稻模式改善稻米品质优势更强,且紫云英稻草联合还田条件下可以同时兼顾籼稻高产和优质,是一种适合本区域农业高质量发展的绿色栽培模式。

Reference (45)
WeChat followshare

Top

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return