• ISSN 1008-505X
  • CN 11-3996/S
Volume 27 Issue 10
Oct.  2021
Article Contents

Citation:

Effects of fertigation on yield, water and nitrogen utilization and economic productivity benefit of wolfberry (Lycium barbarum L.)

  •   【Objectives】  This study analyzed the effects of different water and nitrogen conditions on water and nitrogen utilization efficiency, yield and economic benefits of Lycium barbarum, so as to provide a theoretical basis for local Lycium barbarum cultivation to save water and increase yield and efficiency in Qaidam basin.   【Methods】  The experiment was conducted in the Qaidam Basin at Huaiten Tula irrigation area, Qinghai Province from 2018 to 2019. The tested wolfberry cultivar was Ningqi 7, which was two years old. The experiment was a randomized complete block design with two factors, each having three levels. The three irrigation levels were W1 (198 m3/hm2), W2 (158 m3/hm2), and W3 (119 m3/hm2), and the three N levels were N1 (345 kg/hm2), N2 (276 kg/hm2), and N3 (207 kg/hm2). The water storage in 0–100 cm soil profile, the water consumption, water use efficiency (WUE), yield and economic benefit of wolfberry were analyzed.   【Results】  Water and N interaction had a significant effect on soil water storage. The highest soil water storage was recorded in W2N2 treatment in the two trial years. The water use efficiency in water treatments was in order of W2>W3>W1, and that in W1 was79.4% and 59.3% lower than in W2 and W3. The highest WUE was recorded in W2N3 [17.26 kg/(hm2·mm)]. The average N partial productivity (NPP) for the two years was in order W2>W3>W1. Under the same irrigation level, the NPP decreased with the increase of N levels, and the highest NPP (15.71 kg/kg) was recorded in W2N3. The yield and economic benefit of wolfberry were increased with irrigation and N application. The overall yield and economic benefit among irrigation treatments were W2>W3>W1. The wolfberry yield and the net income of W2 and W3 were 49.4% and 29.1% higher; and 3.36 times and 2.88 times respectively higher than thatse of W1. Compared with W2N1, the wolfberry yield of W2N2 and W2N3 treatments increased by 10.6% and 16.7%, respectively, while the net income increased by 29.1% and 41.6%, respectively.  【Conclusions】  Only proper irrigation could significantly increase the water storage in 0–100 cm soil profile and decrease water consumption. Irrigation at 150–160 m3/hm2 and N rate of 200–220 kg/hm2 (W2N3) is the optimum combination for Lycium barbarum in Qaidam Basin.
  • 加载中
  • [1] 唐文惠. 柴达木盆地东部地区发展枸杞产业的气候条件分析[J]. 现代农业科技, 2019, (9): 74–77. Tang W H. Analysis of climatic conditions for developing wolfberry industry in eastern Qaidam Basin[J]. Modern Agricultural Science and Technology, 2019, (9): 74–77. doi:  10.3969/j.issn.1007-5739.2019.09.050
    [2] 葛根巴图, 魏巍, 张晓, 等. 柴达木盆地极端气候时空趋势及周期特征[J]. 干旱区研究, 2020, 43(9): 1–11. Ge-gen B T, Wei W, Zhang X, et al. Spatiotemporal trends and periodic features of climate extremes over the Qaidam Basin, China[J]. Arid Zone Research, 2020, 43(9): 1–11.
    [3] 王磊, 潘起来, 李润杰, 等. 水肥一体化技术在柴达木枸杞上的应用[J]. 青海大学学报(自然科学版), 2015, 33(2): 24–28. Wang L, Pang Q L, Li R J, et al. The application of fertigation in Qaidam wolfberry production[J]. Journal of Qinghai University[J]., 2015, 33(2): 24–28.
    [4] 刘晓丽, 马理辉, 李娟娟, 等. 滴灌水肥一体化对陕北沙地枸杞产量和品质的影响[J]. 灌溉排水学报, 2020, 39(S1): 13–16,25. Liu X L, Ma L H, Li J J, et al. Effect of drip fertigation on Lycium yield and quality in sandy land in Northern Shaanxi[J]. Journal of Irrigation and Drainage, 2020, 39(S1): 13–16,25.
    [5] Amagase H, Farnsworth N R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji)[J]. Food Research International, 2011, 44(7): 1702–1717. doi:  10.1016/j.foodres.2011.03.027
    [6] 李月梅. 水肥耦合技术模式助推柴达木枸杞产业提质增效[J]. 农业与技术, 2019, 39(13): 14–17. Li Y M. Water fertilizer coupling technology mode promotes the quality and efficiency of Chaidamu wolfberry industry[J]. Agriculture and Technology, 2019, 39(13): 14–17.
    [7] 叶英, 索有瑞, 韩丽娟, 等. 柴达木枸杞研究开发现状及产业前景分析[J]. 食品工业, 2014, 35(2): 210–213. Ye Y, Suo Y R, Han L J, et al. Analysis of the research status and prospects of Lycium barbarum from Qaidam Basin[J]. The Food Industry, 2014, 35(2): 210–213.
    [8] Wang J, Hu Y, Wang D, et al. Sulfated modification can enhance the immune-enhancing activity of Lycium barbarum poly-saccharides[J]. Cellular Immunology, 2010, 263(2): 219–223. doi:  10.1016/j.cellimm.2010.04.001
    [9] Wang C, Chang S, Inbaraj B S, et al. Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity[J]. Food Chemistry, 2010, 120(1): 184–192. doi:  10.1016/j.foodchem.2009.10.005
    [10] 薛丽华, 赵连佳, 孙诗仁. 水氮耦合对滴灌冬小麦光合特性、产量及水氮利用效率的影响[J]. 中国农学通报, 2018, 34(30): 12–19. Xue L H, Zhao L J, Sun S R. Effects of water-nitrogen coupling on photosynthetic characteristics, yield and water and nitrogen use efficiency of winter wheat under drip irrigation[J]. Chinese Agricultural Science Bulletin, 2018, 34(30): 12–19. doi:  10.11924/j.issn.1000-6850.casb17080004
    [11] 周加森, 马阳, 吴敏, 等. 不同水肥措施下的冬小麦水氮利用和生物效应研究[J]. 灌溉排水学报, 2019, 38(9): 36–41. Zhou J S, Ma Y, Wu M, et al. Water and nitrogen utilization and biological effects of winter wheat under different water and fertilizer measures[J]. Journal of Irrigation and Drainage, 2019, 38(9): 36–41.
    [12] 杨丞, 汪洋, 张万洋, 等. 灌溉模式与施氮量互作对水稻茎蘖产量形成的影响[J]. 中国水稻科学, 2021, 35(2): 155–165. Yang C, Wang Y, Zhang W Y, et al. Effects of interaction between irrigation mode and nitrogen application rate on the tillering yield formation of rice[J]. Chinese Journal of Rice Science, 2021, 35(2): 155–165.
    [13] 马兴东, 郭晔红, 杜弢, 等. 干旱区栽培黑果枸杞光合特性和产量对施氮的响应[J]. 西北农业学报, 2020, 29(11): 1686–1694. Ma X D, Guo Y H, Du T, et al. Effects of nitrogen application on photosynthetic characteristics and yield of Lycium ruthenicum Mur[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(11): 1686–1694. doi:  10.7606/j.issn.1004-1389.2020.11.010
    [14] 卢九斤, 刘鑫慧, 许绍全, 等. 不同施氮措施对柴达木枸杞园土壤无机氮的影响[J]. 西北农业学报, 2020, 29(9): 1389–1398. Lu J J, Liu X H, Xu S Q, et al. Effects of nitrogen applications on soil inorganic nitrogen in wolfberry field of Qaidam[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(9): 1389–1398.
    [15] 尹志荣, 黄建成, 桂林国, 等. 不同滴灌量枸杞田间土壤水分运移特征[J]. 西北农业学报, 2020, 29(11): 1695–1702. Yin Z R, Huang J C, Gui L G, et al. Characteristics of soil water movement in wolfberry fields under different drip irrigation amounts[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(11): 1695–1702. doi:  10.7606/j.issn.1004-1389.2020.11.011
    [16] 李苗, 郑国保, 朱金霞. 不同生育期水分胁迫对干旱区枸杞果实生长产量和水分利用效率的影响[J]. 节水灌溉, 2020, (10): 20–25. Li M, Zheng G B, Zhu J X. Effects of water stress at different growth stages on growth, yield and water use efficiency of wolfberry fruits in arid region[J]. Water Saving Irrigation, 2020, (10): 20–25. doi:  10.3969/j.issn.1007-4929.2020.10.006
    [17] 王三英, 蔡国军, 张宝琳, 等. 配方施肥对枸杞品质及产量的影响[J]. 经济林研究, 2012, 30(3): 61–65. Wang S Y, Cai G J, Zhang B L, et al. Influence of formula fertilization on quality and yield in Lycium bararum[J]. Nonwood Forest Research, 2012, 30(3): 61–65.
    [18] 马兴东, 郭晔红, 李梅英, 等. 施氮对干旱区黑果枸杞光合-CO2响应及药效成分的影响[J]. 西北植物学报, 2020, 40(7): 1209–1218. Ma X D, Guo Y H, Li M Y, et al. Leaf CO2 response curve and fruit medicinal components of Lycium ruthenicum affected by nitrogen application in the arid area[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(7): 1209–1218.
    [19] 郑国保, 张彦红, 张源沛, 等. 不同灌水量对干旱区枸杞水分利用效率及产量和品质的影响[J]. 新疆农业科学, 2018, 55(12): 2212–2219. Zheng G B, Zhang Y H, Zhang Y P, et al. Effects of irrigation amount on water use efficiency, fruit yield and fruit quality of Lycium barbarum in arid area[J]. Xinjiang Agricultural Sciences, 2018, 55(12): 2212–2219.
    [20] 徐利岗, 王怀博, 鲍子云, 等. 基于土壤水分下限的宁夏枸杞滴灌灌溉制度试验研究[J]. 排灌机械工程学报, 2020, 38(5): 523–529. Xu L G, Wang H B, Bao Z Y, et al. Experimental study on soil moisture lower limit-based drip irrigation schedule for Lycium barbarum in Ningxia arid area[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(5): 523–529.
    [21] 曾晓春, 李维华, 强生才, 等. 秸秆覆盖和灌水量对枸杞生长和水分利用效率的影响[J]. 干旱地区农业研究, 2013, 31(3): 61–65. Zeng X C, Li W H, Qiang S C, et al. Effects of straw mulch and irrigation on growth and water use efficiency of Lycium[J]. Agricultural Research in the Arid Areas, 2013, 31(3): 61–65. doi:  10.3969/j.issn.1000-7601.2013.03.009
    [22] 宋仰超, 陈小莉, 任小龙, 等. 调亏灌溉与减氮施肥对枸杞生长及产量的影响[J]. 西北农业学报, 2019, 28(10): 1666–1673. Song Y C, Chen X L, Ren X L, et al. Effects of regulated deficit irrigation and reduced nitrogen fertilization on growth and yield of Lycium barbarum[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(10): 1666–1673.
    [23] 郑国保, 张源沛, 孔德杰, 等. 不同灌溉定额对枸杞土壤水分动态变化规律的影响[J]. 西北农业学报, 2012, 21(2): 117–120. Zheng G B, Zhang Y P, Kong D J, et al. Effect on changes of soil water dynamics of Lycium barbarum by different irrigation[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(2): 117–120. doi:  10.3969/j.issn.1004-1389.2012.02.024
    [24] 刘敏, 杨树青, 符鲜, 等. 微咸水滴灌条件下水氮互作对枸杞生长及产量的影响[J]. 节水灌溉, 2018, (1): 33–37. Liu M, Yang S Q, Fu X, et al. Effects of water nitrogen interaction on growth and yield of Lycium barbarum under brackish water drip irrigation[J]. Water Saving Irrigation, 2018, (1): 33–37. doi:  10.3969/j.issn.1007-4929.2018.01.008
    [25] 周乾. 不同水氮耦合和地膜覆盖对枸杞生长、产量及养分吸收影响的研究[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2014.

    Zhou Q. Effects of different water and nitrogen coupling and mulching on growth, yield and nutrient uptake of medlar[D]. Yangling, Shaanxi: MS Thesis of Northwest Agriculture & Forestry University, 2014.
    [26] 马波, 田军仓. 基于水氮耦合的枸杞灌溉制度优化[J]. 水土保持学报, 2020, 34(6): 235–243. Ma B, Tian C J. Optimization of irrigation scheduling for Lycium barbarum L. based on water and nitrogen coupling[J]. Journal of Soil and Water Conservation, 2020, 34(6): 235–243.
    [27] 郑国保, 张源沛, 朱金霞, 等. 灌水频率对枸杞品质、产量和耗水特性的影响[J]. 中国农学通报, 2013, 29(31): 206–210. Zheng G B, Zhang Y P, Zhu J X, et al. Research on the quality, yield and water consumption characteristic of Lycium barbarum by irrigation frequency[J]. Chinese Agricultural Science Bulletin, 2013, 29(31): 206–210. doi:  10.3969/j.issn.1000-6850.2013.31.038
    [28] 李文玲, 孙西欢, 张建华, 等. 水氮耦合对膜下滴灌设施番茄水氮生产函数影响研究[J]. 灌溉排水学报, 2021, 40(1): 47–54. Li W L, Sun X H, Zhang J H, et al. The effect of water-nitrogen coupling on water-nitrogen production functions of greenhouse tomato under mulched drip irrigation[J]. Journal of Irrigation and Drainage, 2021, 40(1): 47–54.
    [29] 邓箴, 尹娟, 尹亮. 不同水肥处理对宁夏枸杞产量及水肥利用效率的影响[J]. 节水灌溉, 2021, (3): 25–30. Deng Z, Yin J, Yin L. Effects of different water and fertilizer treatments on yield and water-fertilizer use efficiency of Lycium barbarum in Ningxia[J]. Water Saving Irrigation, 2021, (3): 25–30. doi:  10.3969/j.issn.1007-4929.2021.03.005
    [30] 尹志荣, 雷金银, 桂林国, 等. 不同滴灌量对不同品种枸杞生长、产量和品质的影响[J]. 灌溉排水学报, 2018, 37(10): 28–34. Yin Z R, Lei J Y, Gui L G, et al. Impact of drip irrigation amount on growth, yield and quality of different varieties of wolfberry[J]. Journal of Irrigation and Drainage, 2018, 37(10): 28–34.
    [31] 李智, 尹娟, 郑艳军. 不同灌溉定额对枸杞光合特性及产量的影响[J]. 节水灌溉, 2016, (9): 71–73,78. Li Z, Yin J, Zheng Y J. Effects of different irrigation quota on photosynthesis characteristics and yield of Lycium[J]. Water Saving Irrigation, 2016, (9): 71–73,78. doi:  10.3969/j.issn.1007-4929.2016.09.015
    [32] 马旭, 郑艳军, 李文证, 等. 不同灌溉定额对枸杞生长和产量的影响[J]. 节水灌溉, 2016, (10): 6–9,14. Ma X, Zheng Y J, Li W Z, et al. The influence of different irrigation quota on growth and yield of wolfberry[J]. Water Saving Irrigation, 2016, (10): 6–9,14. doi:  10.3969/j.issn.1007-4929.2016.10.002
    [33] 张智, 李曼宁, 杨志, 等. 基于多指标协同的草莓水肥耦合综合调控[J]. 农业机械学报, 2020, 51(2): 267–276. Zhang Z, Li M N, Yang Z, et al. Comprehensive regulation of water and fertilizer coupling based on multi-index collaboration of strawberry[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 267–276. doi:  10.6041/j.issn.1000-1298.2020.02.029
    [34] 李仙岳, 丁宗江, 闫建文, 等. 沙区降解膜覆盖下滴灌农田水氮交互效应与模型研究[J]. 农业机械学报, 2018, 49(7): 261–270. Li X Y, Ding Z J, Yan J W, et al. Interaction effect and model of water and nitrogen under degradable film mulching in drip irrigated sandy farmland[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 261–270. doi:  10.6041/j.issn.1000-1298.2018.07.031
    [35] 丛鑫, 张立志, 徐征和, 等. 水氮互作对冬小麦水肥利用效率与经济效益的影响[J]. 农业机械学报, 2021, 52(3): 315–324. Cong X, Zhang L Z, Xu Z H, et al. Effects of irrigation and nitrogen interaction on water and fertilizer use efficiency and economic benefits of winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3): 315–324. doi:  10.6041/j.issn.1000-1298.2021.03.035
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3) / Tables(3)

Article Metrics

Article views(211) PDF downloads(14) Cited by()

Related
Proportional views

Effects of fertigation on yield, water and nitrogen utilization and economic productivity benefit of wolfberry (Lycium barbarum L.)

    Corresponding author: CHEN Xiao-li, cxlrxl@aliyun.com
  • 1. College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
  • 2. Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China

Abstract:   【Objectives】  This study analyzed the effects of different water and nitrogen conditions on water and nitrogen utilization efficiency, yield and economic benefits of Lycium barbarum, so as to provide a theoretical basis for local Lycium barbarum cultivation to save water and increase yield and efficiency in Qaidam basin.   【Methods】  The experiment was conducted in the Qaidam Basin at Huaiten Tula irrigation area, Qinghai Province from 2018 to 2019. The tested wolfberry cultivar was Ningqi 7, which was two years old. The experiment was a randomized complete block design with two factors, each having three levels. The three irrigation levels were W1 (198 m3/hm2), W2 (158 m3/hm2), and W3 (119 m3/hm2), and the three N levels were N1 (345 kg/hm2), N2 (276 kg/hm2), and N3 (207 kg/hm2). The water storage in 0–100 cm soil profile, the water consumption, water use efficiency (WUE), yield and economic benefit of wolfberry were analyzed.   【Results】  Water and N interaction had a significant effect on soil water storage. The highest soil water storage was recorded in W2N2 treatment in the two trial years. The water use efficiency in water treatments was in order of W2>W3>W1, and that in W1 was79.4% and 59.3% lower than in W2 and W3. The highest WUE was recorded in W2N3 [17.26 kg/(hm2·mm)]. The average N partial productivity (NPP) for the two years was in order W2>W3>W1. Under the same irrigation level, the NPP decreased with the increase of N levels, and the highest NPP (15.71 kg/kg) was recorded in W2N3. The yield and economic benefit of wolfberry were increased with irrigation and N application. The overall yield and economic benefit among irrigation treatments were W2>W3>W1. The wolfberry yield and the net income of W2 and W3 were 49.4% and 29.1% higher; and 3.36 times and 2.88 times respectively higher than thatse of W1. Compared with W2N1, the wolfberry yield of W2N2 and W2N3 treatments increased by 10.6% and 16.7%, respectively, while the net income increased by 29.1% and 41.6%, respectively.  【Conclusions】  Only proper irrigation could significantly increase the water storage in 0–100 cm soil profile and decrease water consumption. Irrigation at 150–160 m3/hm2 and N rate of 200–220 kg/hm2 (W2N3) is the optimum combination for Lycium barbarum in Qaidam Basin.

    HTML

  • 柴达木盆地水资源短缺,但可开发土地资源相对丰富,气候常年干燥,年均降雨量不足250 mm,该地区耕地面积3.97×104 hm2,占柴达木地区土地面积的0.16%,是我国典型的大陆性荒漠气候干旱区[1-2]。枸杞具有抗旱耐盐碱的特性,是理想的经济生态兼用树种,在防治沙化和水土保持方面发挥着巨大的环保作用。目前枸杞产业是当地农业产业结构调整的重要手段,也是改善生态环境、增加农业和农民收入的有效途径[3-5]。当前柴达木盆地枸杞生产中,多数农民仍按照“丰水高产”的理论采用大水漫灌或全生育期充分灌溉等模式进行枸杞种植,漫灌方式下枸杞全年用水量为12×103~13.5×103 m3/hm2,不仅造成水资源浪费,还会带来水分利用效率低、树冠营养生长旺盛以及果实品质下降等一系列问题[6-8]。节水滴灌条件下,水用量大幅减少为3450~4500 m3/hm2,种植30000 hm2枸杞一年可节水2.7亿m3,节水率达60%以上[9]。因此,基于枸杞种植节水增产提质的目标,制定科学合理的施肥灌溉制度,成为实际生产中亟待解决的科学问题。

    前人有关水肥一体化试验多集中于小麦、水稻等粮食作物[10-12],有关枸杞的试验研究相对匮乏,且前人对于枸杞的相关研究多关注施肥或灌水单因素[13-20],基于枸杞生产、经济效益和环境效益来确定水肥管理多目标优化的研究仍然匮乏。因此,本研究以滴灌水肥一体化为背景,重点研究不同灌溉和施肥制度对枸杞产量、水分利用效率、氮肥偏生产力和经济效益的影响,分析和量化枸杞产量、水分利用效率、氮肥偏生产力和经济效益对灌溉量和施氮量的响应,以枸杞的多重目标为基础,通过空间分析确定适宜的灌溉量和施氮量,以达到高产高效和节水节肥的目的,同时为滴灌水肥一体化技术推广提供指导意义。

  • 1.   材料与方法

      1.1.   试验区概况

    • 试验区位于青海省海西州德令哈市怀头他拉灌区防沙治沙公司枸杞园(96°44′19.01″E,37°21′34.91″N,海拔约2868 m)。当地属于高原大陆气候,年平均气温为3℃,年最冷月份为1月,平均气温为–13℃,最热月份为7—8月,平均气温为17℃~23℃,降水量少,蒸发量大,5月至9月降水量占全年的80%以上,年降水量大约160 mm;日照充足,太阳辐射强烈,无霜期短,无霜期日数为90天左右。供试土壤深厚,为沙壤土,质地疏松,容重1.5 g/cm3,土壤微团聚体中粒径小于0.2 mm的组分比例高达65.3%,大于0.25 mm占20.04%。试验区0—100 cm土层土壤其他物理性状如表1所示。试验前0—50 cm土壤全氮为0.36 g/kg、全磷为0.58 g/kg、全钾为2.35 g/kg、有效氮为108.2 mg/kg、有效磷为3.97 mg/kg、速效钾为2.60 mg/kg、有机质0.37 g/kg。2018、2019年试验处理期间有效降水量分别为133.4、103.6 mm,生育期日降雨量和日平均温度如图1所示。

      土层深度 (cm)
      Soil depth
      土壤容重 (g/cm3)
      Soil bulk density
      土壤孔隙度 (%)
      Soil porosity
      饱和导水率 (mm/mm)
      Saturated hydraulic conductivity
      饱和体积含水量 (%)
      Saturated volume water content
      0—201.56±0.0730.2±2.620.63±0.2022.1±1.44
      20—401.54±0.0938.74±3.510.83±0.5324.43±0.84
      40—601.50±0.0535.33±1.751.75±0.3431.67±0.43
      60—801.52±0.0430.12±2.090.51±0.2827.25±0.72
      80—1001.50±0.0742.56±1.480.43±0.1929.12±0.65

      Table 1.  Soil physical properties of 0–100 cm soil layer at the experimental site

      Figure 1.  Daily rainfall and daily average temperature during wolf berry growing season in 2018 and 2019

    • 1.2.   试验设计

    • 本试验以当地高水高氮灌溉处理为对照(W1N1),其灌水量为198 m3/hm2,施氮量为345 kg/hm2。灌水量设置为减水20%灌溉(158 m3/hm2,W2)、减水40%灌溉(119m3/hm2,W3),施氮量设置为减氮20%施肥(276 kg/hm2, N2)、减氮40%施肥(207 kg/hm2, N3),采用二因素三水平完全随机组合大田试验,共设9个处理,3次重复,各处理随机区组排列。供试枸杞品种为两年生‘宁杞7号’,苗木由怀头他拉镇防沙治沙公司提供,于2015年4月23日定植。供试氮磷钾肥分别为尿素、过磷酸钙和硫酸钾。试验采用垄沟栽培,垄高15 cm,垄宽50 cm,每个小区垄长15 m,垄上全部铺设黑色地布,其可以保水保墒,利于枸杞生长。滴灌带放置于垄沟土层下5 cm处,滴灌带距离枸杞株干10 cm。小区面积为7.5 m2,试验区总面积202.5 m2,枸杞株行距0.5 m×3.0 m,单行定植。病虫害防治措施与当地相同。

      水肥一体化灌溉时间:各处理分别于6月初枸杞萌芽展叶期、7月初开花坐果期、7月末夏盛果期、8月中旬秋盛果期灌水施肥一次,9月中旬与11月初对枸杞进行补灌,只灌水不施肥,全年共灌溉6次,施肥4次,对照组每次灌溉2 h,滴灌带流量为1.5 L/h,灌溉过程中对灌溉情况进行检查,防止水分外流。灌溉水主要来自当地机井与巴音河水库,水质矿化度小于1 g/L。灌溉工具采用水桶与管径1 cm滴灌带。

    • 1.3.   测定项目与方法

      1.3.1.   土壤水分测定
    • 采用Trime-IPH管式TDR系统测定土壤含水量(SWC),TDR测管安放于距离样本株树干0.3 m处,观测深度100 cm,每隔20 cm一层。分别在萌芽展叶期、开花坐果期、夏盛果期与秋盛果期测量土壤含水量,降雨及灌溉前后均加测一次。

      土壤蓄水量SWS (mm) = SWCi×BDi×D/100

      式中:SWCi为第i层土壤含水量 (%);BDii层土壤容重(g/cm3);D为土壤深度(cm),本研究中为20 cm。

      枸杞生育期内耗水量采用水量平衡法计算:

      耗水量ET (mm)=P+I+ΔS–U–R–D

      式中:P为有效降雨量(mm);I为灌水量(mm);ΔS为不同阶段土壤水分变化量(mm);U为地下水补给量(mm);R为径流量(mm);D为深层渗漏量(mm)。由于试验区地下水埋藏较深(>40 m),地势平坦且降雨量较小,同时滴灌湿润深度较浅,U、R和 D参数均忽略不计。

      水分利用效率WUE [kg/(hm2·mm)]=Y/ET

      式中:Y为枸杞干果产量(kg/hm2);ET为枸杞全生育期总耗水量(mm)。

      氮肥偏生产力NPP (kg/kg)=Y/N

      式中:Y为枸杞干果产量(kg/hm2);N为氮肥施用量(kg/hm2)。

    • 1.3.2.   枸杞产量测定
    • 从7月末至8月末共采摘两批枸杞果实,每批每隔7天采摘一次,枸杞随采随称鲜果重。两批果实总鲜果重即为当年鲜果总产量。各处理鲜果混合均匀后送至当地烘干房烘干(75℃,烘烤4~5 h),统计两批枸杞果实的干果总质量,即为相应处理的年干果产量。

    • 1.3.3.   经济效益计算
    • 净收益为总收入与总成本的差值,其中总收入=枸杞干果产量×市场价格;总成本包括施肥费用、灌溉水费用、农田管理费用(包括旋耕、水肥灌溉、修剪树枝、除虫杂草等)、人工费(包括采摘果实及烘干费用等)。

    • 1.4.   数据整理与分析

    • 试验数据采用SPSS 19.0进行方差分析及相关性分析,多重比较采用Duncan法,并采用Origin 2018。

    2.   结果与分析

      2.1.   水氮互作对0—100 cm土层土壤蓄水量的影响

    • 图2可知,水氮互作对0—100 cm土层土壤蓄水量影响显著。2018年高水(W1)处理下,N2和N3全生育期平均土壤蓄水量显著高于N1处理,N2和N3处理间没有显著差异;低水(W3)处理下,N1和N2全生育期平均土壤蓄水量显著高于N3处理,且N1和N2间没有显著差异。中水(W2)处理下,N2水平枸杞各生育时期土壤蓄水量显著高于N1和N3水平,平均土壤蓄水量分别提高29.5%和34.1%。经过一年种植及秋季补灌,2019年0—100 cm土壤蓄水量显著高于2018年,其中高水(W1)处理下,萌芽期至盛花期(S1~S2) 3个施肥水平间蓄水量差异不显著,而盛花期至秋盛果期(S2~S4),蓄水量表现为N3>N1>N2,且处理间差异达到显著水平;中水(W2)处理下,各施氮处理间变化规律与2018年一致,表现为N2>N3>N1;低水(W3)处理下,整个生育期内各施肥处理平均土壤蓄水量表现为N3>N2>N1。可以看出不同灌溉处理下各施氮水平间土壤蓄水量变化不尽相同,水肥耦合效应明显。

      Figure 2.  Effects of water and nitrogen interaction on soil water storage (0–100 cm) at different growth stages of wolfberry

    • 2.2.   水氮互作对枸杞耗水量和水氮利用效率的影响

    • 水氮互作对枸杞耗水量和水氮利用效率影响显著 (表2)。与高氮(N1)处理相比,W1、W2和W3灌水处理下N2和N3处理的耗水量分别增加1.7%~5.8%、10.8%~38.7%和19.2%~31.0% (P<0.05)。在同一施氮处理下,枸杞耗水量随灌溉水平的提高而增加。与高灌溉量(W1)相比,W2和W3处理下的耗水量分别降低23.9%~53.4%和72.9%~102.7% (P<0.05)。不同灌水处理间的水分利用效率表现为W2>W3>W1。与W1相比,W2和W3分别提高79.4%和59.3%。方差分析表明,水分利用效率最高的水氮处理为W2N3 (灌水158 m3/hm2,施氮207 kg/hm2),两年平均为17.26 kg/(hm2·mm)。水氮互作对枸杞氮肥偏生产力的影响显著(P<0.05)。两年平均氮肥偏生产力表现为W2>W3>W1,在相同灌溉水平下,氮肥偏生产力随施氮量增加显著降低,各处理中以W2N3处理的平均氮肥偏生产力最高,为15.71 kg/kg。方差分析表明,灌水、施肥及其二者互作对枸杞水氮利用效率存在显著影响。

      灌溉处理
      Irrigation treatment
      施氮水平
      N level
      20182019
      耗水量
      ET
      (mm)
      水分利用效率
      WUE
      [kg/(hm2·mm)]
      氮肥偏生产力
      NPP
      (kg/kg)
      耗水量
      ET
      (mm)
      水分利用效率
      WUE
      [kg/(hm2·mm)]
      氮肥偏生产力
      NPP
      (kg/kg)
      W1N1227 b8.01 d5.26 d225 a9.24 e6.03 e
      N2244 a8.24 d7.28 c226 a9.75 e7.99 d
      N3247 a7.83 d9.35 b193 b11.23 d10.47 c
      W2N1211 c11.94 c7.30 c180 c16.97 b8.85 d
      N2209 c13.71 b10.38 b200 b16.50 b11.96 c
      N3208 c14.64 a14.71 a174 c19.88 a16.71 a
      W3N1190 d13.74 c7.57 c164 d14.48 c6.88 e
      N2193 d13.75 c8.91 b177 c15.17 c9.73 c
      N3192 d12.84 c13.77 a179 c15.52 c13.42 b
      方差分析Analysis of variance
      W**********
      Nns***ns****
      W×N****ns****
      注(Note):N1—N 345 kg/hm2; N2—N 276kg/hm2; N3—N 207 kg/hm2; W1—198 m3/hm2; W2—158 m3/hm2; W3—119 m3/hm2; ET—Evapotranspiration; WUE—Water use efficiency; NPP—N partial productivity. 同列数据后不同小写字母表示相同年份不同水氮处理间差异显著 (P < 0.05) Values followed by different small letters in the same column mean significant difference among treatments under different irrigation and nitrogen in same year at the 0.05 level. *—Significant difference at the 0.05 level; **—Significant difference at the 0.01 level; ns—No significant difference.

      Table 2.  Effects of water and nitrogen interaction on ET, WUE and NPP of wolfberry

    • 2.3.   水氮互作对枸杞产量和经济效益的影响

    • 表3可知,水氮互作对枸杞干果产量、鲜果产量及经济效益的影响存在显著差异(表3)。可以看出,W2N3处理在2018和2019年平均干重、净收益及产投比均达到最大值,分别为3252 kg/hm2、39500元/hm2及2.03,而平均鲜重量最大值出现在W2N2处理为8927 kg/hm2。不同灌水处理间产量和经济效益整体表现为W2>W3>W1,与W1处理相比,W2和W3处理产量分别提高49.4%和29.1%,净收益分别提高3.36和2.88倍,产投比分别提高49.1%和43.5%。在同一灌水处理下,枸杞的净收益随施氮量的降低而逐渐增加。与W2N1相比,W2N2和W2N3处理产量分别提高10.6%和16.7%,净收益分别提高29.1%和41.6%。同时发现,两年试验期间枸杞价格差距较大,也是造成经济效益产生差距的直接原因之一。

      年份
      Year
      灌溉处理
      Irrigation
      treatment
      氮水平
      N level
      产量 Yield (kg/hm2)经济效益 Economic benefit (×104 yuan/hm2)
      干重
      Dry weight
      鲜重
      Fresh weight
      总收入
      Total revenue
      总成本
      Total cost
      净收益
      Net profit
      产投比
      Output/Input
      2018W1N11815 g5640 f4.543.880.66 e1.17 e
      N22010 e6480 e5.033.661.37 d1.37 d
      N31935 f6210 e4.843.441.40 d1.41 d
      W2N12520 d6915 d6.303.782.52 c1.67 c
      N22865 b8580 a7.163.603.57 b1.99 b
      N33045 a7185 d7.613.414.20 a2.23 a
      W3N12610 c7770 c6.533.722.81 c1.76 c
      N22660 c8145 b6.153.512.64 c1.75 c
      N32850 b8070 b7.133.293.83 b2.16 b
      2019W1N12079 f6569 e4.894.250.63 e1.07 d
      N2 2204 ef7075 d5.184.111.07 d1.26 c
      N32167 f 6868 de5.093.941.15 d1.29 c
      W2N13054 b8185 c7.184.123.06 c1.52 b
      N23300 a9273 a7.764.023.63 a1.88 a
      N33459 a8544 b8.133.833.70 a1.83 a
      W3N12374 e7242 d5.583.232.35 c1.73 b
      N22685 d8592 b6.313.842.47 c1.64 b
      N32778 c8224 c6.533.403.13 b1.62b
      注(Note):N1—N 345 kg/hm2; N2—N 276kg/hm2; N3—N 207 kg/hm2; W1—198 m3/hm2; W2—158 m3/hm2; W3—119 m3/hm2; 尿素 2 元/kg,过磷酸钙 2 元/kg,硫酸钾 3 元/kg,灌溉用水 0.3 元/m3;劳务费按照每人每天 150 元,各处理其余成本费用按实际情况计算;2018 年枸杞干果均价 25 元/kg,2019 年为 23.5 元/kg. 同列数据后不同小写字母表示同一年份不同水氮处理间差异显著 (P < 0.05). Urea 2 yuan/kg, superphosphate 2 yuan/kg, potassium sulfate 3 yuan/kg, irrigation water 0.3 yuan/m3; labor service fee is to 150 yuan per person per day, the remaining cost of each treatment according to the actual situation calculated. The average price of dried fruit is 25 yuan/kg in 2018, and 23.5 yuan/kg in 2019; Values followed by different small letters in the same column mean significant difference among treatments under different irrigation and nitrogen in same year at the 0.05 level.

      Table 3.  Effects of water and nitrogen interaction on yield and economic benefit of wolfberry

    • 2.4.   水氮用量与枸杞产量、水分利用效率及经济效益的回归分析

    • 通过建立3个模型来分析枸杞干果产量、水分利用效率和经济效益随灌溉量和施氮量的变化(图3)。灌溉量和施氮量与枸杞产量(Y)、水分利用效率(WUE)和经济效益(EB)的回归方程分别为:

      Figure 3.  Relationships of yield, water use efficiency (WUE) and economic benefit with irrigation rates and N fertilizer rates

      Y=8.85N+130.44W−0.006N2−0.453W2−0.02WN−6136 (R2=0.875**)

      WUE=0.007N+0.857W−7.29×10–6N2−0.003W2−1.15×10–4WN−40.83 (R2=0.887**)

      EB= −3.10×10−4N+0.257W−1.65×10−5N2−8.97W2+1.17×10−5WN−14.04 (R2=0.909**)

      根据各指标与水氮施用量建立的二元二次回归方程计算出各指标最大化下的相应水氮变量值。产量、WUE和经济效益达到最大值时的灌溉量和施氮量分别为165 mm、224 kg/hm2,140 mm、250 kg/hm2和180 mm、240 kg/hm2。可以看出,WUE若想达到最大值,灌溉量需较小;水肥投入量偏少时,无法实现产量与经济效益的最优化。由此可见,生产中很难同时获得所有指标的最大化。因此,本研究综合评价产量、水肥利用及经济效益表现,以达到各指标90%为目标,灌水量为150~160 m3/hm2,施氮200~220 kg/hm2是兼顾产量和经济效益的最佳水肥配比,从而实现减肥节水增效的多重目标。

    3.   讨论

      3.1.   水肥一体化对枸杞水氮利用的影响

    • 合理的水肥条件能够促进作物根系生长发育,增大根系与土壤接触面积,有利于根系对土壤水分的吸收利用,从而提高水氮利用效率[21-22]。郑国保等[23]研究表明,0—60 cm土层土壤含水量随灌水量增加变化剧烈。刘敏等[24]研究表明,水氮配施量分别为2850 m3/hm2、750 kg/hm2 (中水中氮水平),可以同时满足枸杞高产及水氮有效利用。本试验研究表明,2018年各生育时期各处理土壤蓄水量变化较为明显,其中W2N2处理全生育期土壤蓄水量显著高于其他处理。W2N2与W2N3处理在连续两年试验期间水分利用效率均较高,但氮肥偏生产力W2N3处理显著高于W2N2,说明合理的水氮配比才能保证水氮高效利用。适宜的土壤水分环境有利于枸杞植株根系生长,提高枸杞产量、肥料利用率及果实品质。随时间推移,过量灌溉导致冗余水分在土壤中积聚,下渗到枸杞根系层以下造成水资源浪费及养分淋失[25];当灌水量与施肥量都比较低时,土壤水分不足,会造成溶解养分不足,大量养分将聚集在土壤浅层,无法被根系吸收利用,从而影响枸杞的生长发育。

    • 3.2.   水肥一体化对枸杞产量和经济效益的影响

    • 水氮耦合可以在一定程度上提高水肥利用效率及节约成本,产量、水肥利用效率与经济效益是衡量枸杞高产高效的主要指标,适宜的水氮运筹能提高作物水肥利用效率,从而获得最佳产量和经济效益[26]。前人通过水氮生产函数(作物产量和耗水量的拟合)得出最佳水氮优化方案,实现作物高产与高效统一[27-28]。邓箴等[29]研究表明,灌溉定额232~246 mm,肥料施量(N–P2O5–K2O) 为420–269–330 kg/hm2是兼顾宁夏枸杞节水节肥的最优水肥方案。本试验研究表明,与高水高肥处理相比,W2N2与W2N3 (节水灌溉20%,减肥20%~40%) 处理均增产显著。这是由于适宜的水分与养分环境有利于提高气孔导度及光合速率等指标,从而有利于产量增加[30-32]。此外本研究发现,枸杞年际间价格受市场供需关系影响波动较大,直接影响农户收益,建议实际生产中制定合理的价格区间,保证农户枸杞种植的利益最大化,也为节水减肥增效的水肥一体化技术推广提供科学支撑。

    • 3.3.   兼顾产量和经济效益的最佳水肥投入

    • 前人通过多变量回归和空间分析结合,建立水肥投入与作物产量和水肥利用效率之间的关系[33-34]。研究表明,各指标对应的最佳水氮配比不尽相同,甚至出现相反的效应。如丛鑫等[35]对小麦的研究发现,过量的水肥投入并不会使得产量和经济效益持续增长,还会造成水肥资源浪费及地下水污染等问题。因地制宜,制定合理的灌溉施肥制度对当地枸杞可持续发展及环境保护具有重要意义。本研究通过建立水肥投入模型从空间角度分析灌溉和施氮对枸杞产量、水分利用效率、氮肥偏生产力和经济效益的影响,确定不同水氮条件下枸杞产量、水肥利用效率和经济效益最大化的灌溉量和施氮量(灌水150~160 m3/hm2,施氮200~220 kg/hm2),为枸杞田间生产提供理论依据。

    4.   结论
    • 水氮互作显著影响生育期土壤蓄水量、耗水量、水分利用效率、产量及经济效益。适度灌水(W2),0—100 cm土层土壤蓄水量最高,耗水量较低。适度灌水条件下,减少氮肥施用量(N3)可提高枸杞水分利用效率及氮肥偏生产力,同时提高枸杞产量和净收益,可以实现枸杞生产节水减肥及增产增收。综合考虑,柴达木盆地枸杞生产的适宜灌水量为150~160 m3/hm2,施氮量为200~220 kg/hm2

Reference (35)

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return