Citation: | ZHANG Fan, CHEN Meng-ru, XING Ying-ying, DANG Fei-fei, LI Yuan, WANG Xiu-kang. Optimization of fertilizer and drip irrigation levels for efficient potato production based on entropy weight method and TOPSIS[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(4): 732-744. DOI: 10.11674/zwyf.2022426 |
The effects of drip irrigation and fertilizer levels on the growth, yield, quality, water and fertilizer utilization efficiency and economic benefits of potato were studied under fertigation system.
The orthogonal test design method was adopted and total of 10 treatments were setup, including three drip irrigation levels of crop evapotranspiration (ETC) of 100% (W1), 80% (W2), and 60% (W3); three fertilizer (N-P2O5-K2O) levels of 240-120-300 kg/hm2 (F1), 180-90-225 kg/hm2 (F2), and 120-60-150 kg/hm2 (F3); three potato cultivars of Feiurita (V1), Longshu 7 (V2) and Qingshu 9 (V3); and a no fertilizer control (W3F0V1). The chlorophyll content, net photosynthetic rate and water consumption of potato were measured during growing stage, and the dry matter accumulation, yield, yield components, and quality of potato were determined at harvest. The water use efficiency (WUE), fertilizer partial productivity (PFP), and economic benefits were analyzed and calculated.
Irrigation and fertilizer levels affected potato yield components, starch content, vitamin C content, crude protein content, PFP, and net income significantly. F2 treatment had the highest yield, dry matter accumulation, starch content, vitamin C content, crude protein content, and net income, which were 19.28%, 1.13%, 1.62%, 3.79%, 8.79%, 34.64% higher than F1, and 21.48%, 3.07%, 6.27%, 6.08%, 11.18%, 27.94% higher than F3 treatment, respectively. All the above indexes increased with increasing irrigation levels, but the reducing sugar content was the highest under W2. Cultivar Qingshu 9 had higher leaf chlorophyll, starch, crude protein, and vitamin C content, and higher WUE and PFP than the other two cultivars. According to entropy weight method and TOPSIS analysis, the optimum treatment combinations were F2W2V3, F1W1V1 and F3W2V1. Treatment F2W2F3 had the highest yield, tuber weight, commodity potato yield, maximum single tube weight, crude protein content, WUE and net income, which were 49.22 t/hm2, 1096.7 g/plant, 794.3 g/plant, 433.9 g, 0.214 mg/g, 20.21 kg/m3 and 44832 yuan/hm2, respectively. Treatment F1W1V1 and F3W2V1 ranked the second and the third with the yield 41.79 and 37.67 t/hm2, tuber weight 906.5 and 836.7 g, commodity potato yield 711.4 and 607.3 g/plant, maximum tube weight 395.6 and 357.1 g/tube, and net income 34584 and 32023 yuan/hm2.
The optimum combination of high yield, high quality, high water and fertilizer utilization efficiency and high economic benefits is 80% ETC and N-P2O5-K2O 180-90-225 kg/hm2. Under this water and fertilizer combination, cultivar Qingshu 9 produces higher index values than the other two cultivars in northwest Shaanxi.
[1] |
唐建昭, 肖登攀, 王靖, 等. 不同生产目标条件的马铃薯水氮管理优化[J]. 农业工程学报, 2021, 37(20): 108–116. DOI: 10.11975/j.issn.1002-6819.2021.20.012
Tang J Z, Xiao D P, Wang J, et al. Optimizing irrigation and nitrogen management for potato production under multi-objective production conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 108–116. DOI: 10.11975/j.issn.1002-6819.2021.20.012
|
[2] |
Devaux A, Goffart J, Kromann P, et al. The potato of the future: Opportunities and challenges in sustainable agri-food systems[J]. Potato Research, 2021, 64(4): 681–720. DOI: 10.1007/s11540-021-09501-4
|
[3] |
侯翔皓, 张富仓, 胡文慧, 等. 灌水频率和施肥量对滴灌马铃薯生长、产量和养分吸收的影响[J]. 植物营养与肥料学报, 2019, 25(1): 85–96. DOI: 10.11674/zwyf.18014
Hou X H, Zhang F C, Hu W H, et al. Effects of irrigation frequency and fertilizer rate on growth, tuber yield and nutrient uptake of drip-irrigated potato[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 85–96. DOI: 10.11674/zwyf.18014
|
[4] |
张佳莹, 李扬, 王靖, 等. 品种和气象因子对马铃薯主要品质的影响[J]. 中国生态农业学报(中英文), 2022, 30(2): 216–225. DOI: 10.12357/cjea.20210561
Zhang J Y, Li Y, Wang J, et al. The impacts of cultivar maturity and meteorological factors on main quality of potato[J]. Chinese Journal of Eco-Agriculture, 2022, 30(2): 216–225. DOI: 10.12357/cjea.20210561
|
[5] |
张富仓, 高月, 焦婉如, 等. 水肥供应对榆林沙土马铃薯生长和水肥利用效率的影响[J]. 农业机械学报, 2017, 48(3): 270–278. DOI: 10.6041/j.issn.1000-1298.2017.03.034
Zhang F C, Gao Y, Jiao W R, et al. Effects of water and fertilizer supply on growth, water and nutrient use efficiencies of potato in sandy soil of Yulin area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 270–278. DOI: 10.6041/j.issn.1000-1298.2017.03.034
|
[6] |
Djaman K, Irmak S, Koudahe K, et al. Irrigation management in potato (Solanum tuberosum L.) production: A review[J]. Sustainability, 2021, 13(3): 1504. DOI: 10.3390/su13031504
|
[7] |
Camargo D C, Montoya F, Corcoles J I, et al. Modeling the impacts of irrigation treatments on potato growth and development[J]. Agricultural Water Management, 2015, 150: 119–128. DOI: 10.1016/j.agwat.2014.11.017
|
[8] |
闫文渊, 秦军红, 段绍光, 等. 水氮耦合对马铃薯光合特性、块茎形成和品质的影响[J]. 园艺学报, 2022, 49(7): 1491–1504.
Yan W Y, Qin J H, Duan S G, et al. The effect of water-nitrogen coupling on potato photosynthesis, tuber formation and quality[J]. Acta Horticulturae Sinica, 2022, 49(7): 1491–1504.
|
[9] |
Woli P, Hoogenboom G, Alva A. Simulation of potato yield, nitrate leaching, and profit margins as influenced by irrigation and nitrogen management in different soils and production regions[J]. Agricultural Water Management, 2016, 171: 120–130. DOI: 10.1016/j.agwat.2016.04.003
|
[10] |
Abdo A I, Elrys A S, Abdel-fattah M K, et al. Mitigating nitrate accumulation in potato tubers under optimum nitrogen fertilization with K-humate and calcium chloride[J]. Journal of Cleaner Production, 2020, 259: 121108. DOI: 10.1016/j.jclepro.2020.121108
|
[11] |
Xing Y Y, Mi F Y, Wang X K. Effects of different nitrogen fertilizer types and application rates on maize yield and nitrogen use efficiency in Loess Plateau of China[J]. Journal of Soils and Sediments, 2022, 22(7): 1938–1958. DOI: 10.1007/s11368-022-03210-2
|
[12] |
Wang X K, Guo T, Wang Y et al. Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA[J]. Agricultural Water Management, 2020, 237: 106180. DOI: 10.1016/j.agwat.2020.106180
|
[13] |
Xing Y Y, Zhang T, Jiang W T, et al. Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China[J]. Agricultural Water Management, 2022, 261: 107351. DOI: 10.1016/j.agwat.2021.107351
|
[14] |
Wang X K, Xie K. Multi-objective optimization of potato varieties and effective ways to improve potato (Solanum tuberosum L.) tuber quality in the Loess Plateau of China[J]. Applied Ecology and Environmental Research, 2022, 20(1): 743–769. DOI: 10.15666/aeer/2001_743769
|
[15] |
孙鑫, 张富仓, 杨玲, 等. 基于熵权法和TOPSIS法优化马铃薯钾肥种类和滴灌量组合[J]. 植物营养与肥料学报, 2022, 28(2): 279–290. DOI: 10.11674/zwyf.2021356
Sun X, Zhang F C, Yang L, et al. Optimal combination of potassium fertilizer and drip irrigation for potato production based on entropy weight method and TOPSIS analysis[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 279–290. DOI: 10.11674/zwyf.2021356
|
[16] |
Zhang S H, Fan J L, Zhang F C, et al. Optimizing irrigation amount and potassium rate to simultaneously improve tuber yield, water productivity and plant potassium accumulation of drip-fertigated potato in Northwest China[J]. Agricultural Water Management, 2022, 264: 107493. DOI: 10.1016/j.agwat.2022.107493
|
[17] |
王英, 张富仓, 王海东, 等. 滴灌频率和灌水量对榆林沙土马铃薯产量、品质和水分利用效率的影响[J]. 应用生态学报, 2019, 30(12): 4159–4168. DOI: 10.13287/j.1001-9332.201912.021
Wang Y, Zhang F C, Wang H D, et al. Effects of the frequency and amount of drip irrigation on yield, tuber quality and water use efficiency of potato in sandy soil of Yulin, northern Shaanxi, China[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4159–4168. DOI: 10.13287/j.1001-9332.201912.021
|
[18] |
王晓港, 蔡明, 吴娜, 等. 间作及施氮量对宁南旱区马铃薯生理特性及品质的影响[J]. 干旱地区农业研究, 2022, 40(4): 69–76, 98. DOI: 10.7606/j.issn.1000-7601.2022.04.08
Wang X G, Ca M, Wu N, et al. Effects of intercropping and nitrogen application on physiological characteristics and quality of potatoes in arid areas of Southern Ningxia[J]. Agricultural Research in the Arid Areas, 2022, 40(4): 69–76, 98. DOI: 10.7606/j.issn.1000-7601.2022.04.08
|
[19] |
Guo J J, Fan J L, Xiang Y Z, et al. Coupling effects of irrigation amount and nitrogen fertilizer type on grain yield, water productivity and nitrogen use efficiency of drip-irrigated maize[J]. Agricultural Water Management, 2022, 261: 107389. DOI: 10.1016/j.agwat.2021.107389
|
[20] |
郭涛, 刘婉如, 方玉川, 等. 水肥供应对马铃薯根层养分及产量的影响[J]. 干旱地区农业研究, 2020, 38(4): 143–151. DOI: 10.7606/j.issn.1000-7601.2020.04.18
Guo T, Liu W R, Fang Y C, et al. Effect of water and fertilizer supply on potato root layer soil nutrient and tuber yield[J]. Agricultural Research in the Arid Areas, 2020, 38(4): 143–151. DOI: 10.7606/j.issn.1000-7601.2020.04.18
|
[21] |
刘秋员, 周磊, 田晋钰, 等. 长江中下游地区常规中熟粳稻氮效率综合评价及高产氮高效品种筛选[J]. 中国农业科学, 2021, 54(7): 1397–1409. DOI: 10.3864/j.issn.0578-1752.2021.07.007
Liu Q Y, Zhou L, Tian J Y, et al. Comprehensive evaluation of nitrogen efficiency and screening of varieties with high grain yield and high nitrogen efficiency of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River[J]. Scientia Agricultura Sinica, 2021, 54(7): 1397–1409. DOI: 10.3864/j.issn.0578-1752.2021.07.007
|
[22] |
杜娅丹, 曹红霞, 柳美玉, 等. 基于层次分析法和熵权法的TOPSIS模型在番茄生长综合评价中的应用[J]. 西北农业学报, 2015, 24(6): 90–96. DOI: 10.7606/j.issn.1004-1389.2015.06.014
Du Y D, Cao H X, Liu M Y, et al. Comprehensive evaluation of tomato growing with application of TOPSIS model based on AHP and entropy method[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2015, 24(6): 90–96. DOI: 10.7606/j.issn.1004-1389.2015.06.014
|
[23] |
唐鑫华, 王堡槐, 马佳, 等. 不同遮光处理对马铃薯光合作用和产量的影响[J]. 中国农业大学学报, 2022, 27(2): 46–56. DOI: 10.11841/j.issn.1007-4333.2022.02.05
Tang X H, Wang B H, Ma J, et al. Effects of different shading treatments on photosynthesis and yield of potato[J]. Journal of China Agricultural University, 2022, 27(2): 46–56. DOI: 10.11841/j.issn.1007-4333.2022.02.05
|
[24] |
魏峭嵘, 曹敏建, 石瑛, 等. 氮素水平对马铃薯全生育期光合特性及产量的影响[J]. 基因组学与应用生物学, 2017, 36(1): 324–330. DOI: 10.13417/j.gab.036.000324
Wei Q R, Cao M J, Shi Y, et al. Effects of nitrogen application rate on photosynthetic characteristics and yield of potato in the whole growth period[J]. Genomics and Applied Biology, 2017, 36(1): 324–330. DOI: 10.13417/j.gab.036.000324
|
[25] |
禄兴丽, 段雅欣, 李闪闪, 等. 覆膜对半干旱地区马铃薯生长生理性状及作物产量的影响[J]. 植物生理学报, 2021, 57(7): 1582–1594. DOI: 10.13592/j.cnki.ppj.2020.0445
Lu X L, Duan Y X, Li S S, et al. Effect of film mulching on potato physiological characters and production in semi-arid area[J]. Plant Physiology Journal, 2021, 57(7): 1582–1594. DOI: 10.13592/j.cnki.ppj.2020.0445
|
[26] |
Wang H D, Wang X K, Bi L F, et al. Multi-objective optimization of water and fertilizer management for potato production in sandy areas of northern China based on TOPSIS[J]. Field Crops Research, 2019, 240: 55–68. DOI: 10.1016/j.fcr.2019.06.005
|
[27] |
Wang H D, Cheng M H, Zhang S H, et al. Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on analytic hierarchy process and fuzzy comprehensive evaluation methods[J]. Agricultural Water Management, 2021, 256: 107130. DOI: 10.1016/j.agwat.2021.107130
|
[28] |
裴沙沙, 黎耀军, 严海军, 等. 喷灌施氮对马铃薯氮素积累及土壤硝态氮影响[J]. 排灌机械工程学报, 2022, 40(7): 745–750.
Pei S S, Li Y J, Yan H J, et al. Effects of nitrogen treatments on potato nitrogen accumulation and soil nitrate-nitrogen distribution under sprinkler fertigation system[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(7): 745–750.
|
[29] |
Zhou Z J, Plauborg F, Liu F L, et al. Yield and crop growth of table potato affected by different split-N fertigation regimes in sandy soil[J]. European Journal of Agronomy, 2018, 92: 41–50. DOI: 10.1016/j.eja.2017.10.001
|
[30] |
焦婉如, 张富仓, 高月, 等. 滴灌施肥生育期比例分配对榆林市马铃薯生长和水分利用的影响[J]. 排灌机械工程学报, 2018, 36(3): 257–266.
Jiao W R, Zhang F C, Gao Y, et al. Effects of fertilizer application rate of drip irrigation fertilization in various growing stages on growth and water use efficiency of potato in Yulin City[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(3): 257–266.
|
[31] |
王秀康, 杜常亮, 邢金金, 等. 基于施肥量对马铃薯块茎品质影响的主成分分析[J]. 分子植物育种, 2017, 15(5): 2003–2008. DOI: 10.13271/j.mpb.015.002003
Wang X K, Du C L, Xing J J, et al. Based on potato tuber quality response to fertilizer rates: A principal component analysis[J]. Molecular Plant Breeding, 2017, 15(5): 2003–2008. DOI: 10.13271/j.mpb.015.002003
|
[32] |
胡朋成, 尹娟, 魏小东, 等. 不同水氮处理对马铃薯品质及土壤脲酶活性的影响[J]. 江苏农业科学, 2022, 50(6): 87–92.
Hu P C, Yin J, Wei X D, et al. Effects of different water and nitrogen treatments on potato quality and soil urease activity[J]. Jiangsu Agricultural Sciences, 2022, 50(6): 87–92.
|
[33] |
罗文彬, 李华伟, 许国春, 等. 冬作马铃薯后代品系营养品质评价[J]. 福建农业学报, 2021, 36(7): 742–749. DOI: 10.19303/j.issn.1008-0384.2021.07.002
Luo W B, Li H W, Xu G C, et al. Nutritional quality of winter-potato progenies[J]. Fujian Journal of Agricultural Sciences, 2021, 36(7): 742–749. DOI: 10.19303/j.issn.1008-0384.2021.07.002
|
[34] |
Wang H, Xiang Y Z, Zhang F C, et al. Responses of yield, quality and water-nitrogen use efficiency of greenhouse sweet pepper to different drip fertigation regimes in Northwest China[J]. Agricultural Water Management, 2022, 260: 107279. DOI: 10.1016/j.agwat.2021.107279
|
[35] |
严富来, 张富仓, 范兴科, 等. 基于评价模型的宁夏沙土春玉米最佳灌水施氮量研究[J]. 农业机械学报, 2020, 51(9): 258–265. DOI: 10.6041/j.issn.1000-1298.2020.09.029
Yan F L, Zhang F C, Fan X K, et al. Optimal irrigation and nitrogen application amounts for spring maize based on evaluation model in sandy soil area in Ningxia[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 258–265. DOI: 10.6041/j.issn.1000-1298.2020.09.029
|
[36] |
张舒涵, 张俊莲, 王文, 等. 氯化钾对干旱胁迫下马铃薯根系生理及形态的影响[J]. 中国土壤与肥料, 2018, (5): 77–84. DOI: 10.11838/sfsc.20180512
Zhang S H, Zhang J L, Wang W, et al. Influence of potassium chloride on the root physiology and morphology of potato under drought stress[J]. Soil and Fertilizer Sciences in China, 2018, (5): 77–84. DOI: 10.11838/sfsc.20180512
|
[37] |
陈雨晴, 席海洋, 李斌, 等. 改进TOPSIS法在甘肃省农村饮水安全评价中的应用[J]. 水资源与水工程学报, 2022, 33(2): 27–34. DOI: 10.11705/j.issn.1672-643X.2022.02.04
Chen Y Q, Xi H Y, Li B, et al. Application of improved TOPSIS method in rural drinking water safety evaluation in Gansu Province[J]. Journal of Water Resources and Water Engineering, 2022, 33(2): 27–34. DOI: 10.11705/j.issn.1672-643X.2022.02.04
|
[38] |
杨秀敏, 耿静, 徐游, 等. 基于TOPSIS模型的海南岛土地综合承载力时空变化及障碍度诊断[J]. 生态学报, 2022, 42(22): 1–11.
Yang X M, Geng J, Xu Y, et al. Spatial-temporal change and obstacle degree diagnosis of comprehensive land carrying capacity in Hainan Island based on TOPSIS model[J]. Acta Ecologica Sinica, 2022, 42(22): 1–11.
|
[39] |
韩晓, 王海波, 王孝娣, 等. 不同砧木对‘87-1’葡萄光合特性及荧光特性的影响[J]. 中国农业科学, 2018, 51(10): 1972–1981. DOI: 10.3864/j.issn.0578-1752.2018.10.016
Han X, Wang H B, Wang X D, et al. Effects of different rootstocks on ‘87-1’ grape photosynthetic and chlorophyll fluorescence characteristics[J]. Scientia Agricultura Sinica, 2018, 51(10): 1972–1981. DOI: 10.3864/j.issn.0578-1752.2018.10.016
|
[40] |
张智, 杨志, 黎景来, 等. 基于灰色关联与TOPSIS耦合模型的甜瓜水肥灌溉决策[J]. 农业机械学报, 2021, 52(9): 302–311, 330. DOI: 10.6041/j.issn.1000-1298.2021.09.034
Zhang Z, Yang Z, Li J L, et al. Water and fertilizer irrigation decision of melon based on grey relation analysis and TOPSIS coupling model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 302–311, 330. DOI: 10.6041/j.issn.1000-1298.2021.09.034
|