• ISSN 1008-505X
  • CN 11-3996/S
HAO Hai-bo, XU Wen-xia, HOU Zhen-an. Effects of coupled water and nitrogen on soil organic carbon fractions and enzymes in a drip-irrigated cotton field[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 860-875. DOI: 10.11674/zwyf.2022440
Citation: HAO Hai-bo, XU Wen-xia, HOU Zhen-an. Effects of coupled water and nitrogen on soil organic carbon fractions and enzymes in a drip-irrigated cotton field[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 860-875. DOI: 10.11674/zwyf.2022440

Effects of coupled water and nitrogen on soil organic carbon fractions and enzymes in a drip-irrigated cotton field

More Information
  • Received Date: August 17, 2022
  • Accepted Date: October 30, 2022
  • Available Online: May 09, 2023
  • Objective 

    The effects of irrigation and nitrogen application on soil organic carbon, nitrogen content, and organic carbon pool stability in drip-irrigated cotton fields were studied to provide a theoretical basis for achieving efficient cotton production and sustainable development in Xinjiang.

    Methods 

    A two-factor three-level complete random field experiment was conducted using cotton as the test material. The three irrigation volumes (W) were low (360 mm), medium (480 mm), and high (600 mm), and the three nitrogen rates (N) were low (0 kg/hm2), medium (300 kg/hm2), and high (450 kg/hm2), giving a total of 9 treatment combinations. After harvesting the cotton, we collected 0– 20 cm soil samples to measure soil organic carbon (SOC), water soluble organic carbon (WSOC), microbial biomass carbon (MBC), easily oxidized organic carbon (EOC), stable organic carbon (NOC), soil urease (URE), β- Glucosidase (BG), and N-acetyl-β-D-glucosidase (NAG) activity. The soil organic matter decomposition rate and soil carbon pool management index (CPMI) were measured using the net nylon bag method at the in-situ landfill on the field.

    Results 

    SCompared with W600N450, W480N300 increased soil organic carbon by 8.9% and 10.9%, C/N by 16.2% and 16.3%, EOC and NOC by 11.8%–15.4% and 14.3%–20.8%, while WSOC decreased by 35.5% and 21.8% in 2015 and 2016, respectively. It was shown that reasonable water and nitrogen management was beneficial to increasing soil organic carbon and stable organic carbon content, reducing water-soluble organic carbon, and improving soil carbon pool stability. Compared with W480, W360 (P<0.05) reduced MBC, while W600 reduced WSOC and NOC. The EOC content in W360 (P<0.05) decreased by 2.1% and 5.3% in two years, while that in W600 decreased by 4.1% and 7.6%, respectively. Compared with N300, the N0 treatment reduced MBC by 41.8%, while N450 reduced NOC. The EOC in the N0 treatment decreased by 20.2% and 16.7% in two years, while that in N450 decreased by 3.8% and 2.4%, respectively. The results showed that the effect of nitrogen application rate on soil organic carbon was greater than the irrigation level. Simultaneously, excessive irrigation and nitrogen application reduced stable organic carbon and increased microbial biomass carbon, which was not conducive to soil organic carbon accumulation. High irrigation (600 mm) and nitrogen (450 kg/hm2) (P<0.05) increased soil enzyme activity and decreased soil carbon management index. The activities of urease, β-glucosidase, and N-acetyl-β-D-glucosidase in W480N300 were 1.0%, 22.4%, and 32.6% higher than in W360N0. The correlation analysis showed that CPMI was positively correlate with active organic carbon (MBC, EOC) in different degrees and negatively correlate with NOC.

    Conclusion 

    Under drip irrigation conditions in Xinjiang, excessive irrigation and nitrogen application rates reduce soil organic carbon, stable organic carbon, soil carbon pool activity, and carbon pool management index. In contrast, they increase microbial biomass carbon and enzyme activity, which is not conducive to maintaining soil organic carbon stability. In this study, 480 mm irrigation combined with 300 kg/hm2 nitrogen application rate is conducive to promoting soil organic carbon accumulation and improving soil organic carbon activity in drip-irrigated cotton fields.

  • [1]
    何伟, 王会, 韩飞, 等. 长期施用有机肥显著提升潮土有机碳组分[J]. 土壤学报, 2020, 57(2): 425–434. He W, Wang H, Han F, et al. Effect of long-term application of organic manure expanding organic carbon fractions in fluvo-aquic soil[J]. Acta Pedologica Sinica, 2020, 57(2): 425–434.

    He W, Wang H, Han F, et al. Effect of long-term application of organic manure expanding organic carbon fractions in Fluvo-aquic soil[J]. Acta Pedologica Sinica, 2020, 57(2): 425-434.
    [2]
    胡坤, 张红雪, 郭力铭, 等. 烟秆炭基肥对薏苡土壤有机碳组分及微生物群落结构和丰度的影响[J]. 中国生态农业学报(中英文), 2021, 29(9): 1592–1603. Hu K, Zhang H X, Guo L M, et al. Effects of tobacco stalk biochar-based fertilizer on the organic carbon fractions and microbial community structure of adlay soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1592–1603.

    Hu K, Zhang H X, Guo L M, et al. Effects of tobacco stalk biochar-based fertilizer on the organic carbon fractions and microbial community structure of Adlay soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1592-1603.
    [3]
    王朔林. 长期施肥对粟褐土有机碳组分及周转的影响[D]. 湖南长沙: 湖南农业大学硕士学位论文, 2015.

    Wang S L. Effect of long-term fertilization on organic carbon fractions and turnovers of cinnamon soil[D]. Changsha, Hunan: MS Thesis of Hunan Agricultural University, 2015.
    [4]
    李奇超, 李新举. 不同利用方式下复垦土壤的有机碳组分空间分布特征[J]. 水土保持学报, 2018, 32(2): 204–209. Li Q C, Li X J. The spatial distribution of organic carbon components in reclaimed soil under different utilization modes[J]. Journal of Soil and Water Conservation, 2018, 32(2): 204–209.

    Li Q C, Li X J. The spatial distribution of organic carbon components in reclaimed soil under different utilization modes[J]. Journal of Soil and Water Conservation, 2018, 32(2): 204-209.
    [5]
    Yan H M, Cao M K, Liu J Y, et al. Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China[J]. Agriculture, Ecosystems and Environment, 2007, 121(4): 325–335. DOI: 10.1016/j.agee.2006.11.008
    [6]
    陈小花, 陈宗铸, 雷金睿, 等. 清澜港红树林湿地典型群落类型沉积物活性有机碳组分分布特征[J]. 生态学报, 2022, 42(11): 4572–4581. Chen X H, Chen Z Z, Lei J R, et al. Distribution characteristics of active organic carbon components in sediments of typical community types of mangrove wetland in Qinglan Port[J]. Acta Ecologica Sinica, 2022, 42(11): 4572–4581.

    Chen X H, Chen Z Z, Lei J R, et al. Distribution characteristics of active organic carbon components in sediments of typical community types of mangrove wetland in Qinglan Port[J]. Acta Ecologica Sinica, 2022, 42(11): 4572-4581.
    [7]
    陈思静, 杜爱林, 李伏生. 不同滴灌施肥处理对种植马铃薯土壤有机碳组分和酶活性的影响[J]. 华南农业大学学报, 2022, 43(3): 34–41. Chen S J, Du A L, Li F S. Effects of different fertigation treatments on organic carbon fraction and enzyme activity in potato-planting soil[J]. Journal of South China Agricultural University, 2022, 43(3): 34–41.

    Chen S J, Du A L, Li F S. Effects of different fertigation treatments on organic carbon fraction and enzyme activity in potato-planting soil[J]. Journal of South China Agricultural University, 2022, 43(3): 34-41.
    [8]
    徐文静, 张宇亭, 魏勇, 等. 长期施肥对稻麦轮作紫色土有机碳组分及酶活性的影响[J]. 水土保持学报, 2022, 36(2): 292–299. Xu W J, Zhang Y T, Wei Y, et al. Effects of long-term fertilization on organic carbon fractions and enzyme activities in purple soil under rice wheat rotation[J]. Journal of Soil and Water Conservation, 2022, 36(2): 292–299.

    Xu W J, Zhang Y T, Wei Y, et al. Effects of long-term fertilization on organic carbon fractions and enzyme activities in Purple soil under rice wheat rotation[J]. Journal of Soil and Water Conservation, 2022, 36(2): 292-299.
    [9]
    王娇, 张玉龙, 张玉玲, 等. 不同灌溉方式对有机肥碳矿化及土壤活性有机质含量影响[J]. 沈阳农业大学学报, 2010, 41(1): 37–41. Wang J, Zhang Y L, Zhang Y L, et al. Effects of different irrigation patterns on mineralization of organic manure carbon and contents of soil labile organic matter[J]. Journal of Shenyang Agricultural University, 2010, 41(1): 37–41.

    Wang J, Zhang Y L, Zhang Y L, et al. Effects of different irrigation patterns on mineralization of organic manure carbon and contents of soil labile organic matter[J]. Journal of Shenyang Agricultural University, 2010, 41(1): 37-41.
    [10]
    张丽敏, 徐明岗, 娄翼来, 等. 长期施肥下黄壤性水稻土有机碳组分变化特征[J]. 中国农业科学, 2014, 47(19): 3817–3825. Zhang L M, Xu M G, Lou Y L, et al. Changes in yellow paddy soil organic carbon fractions under long-term fertilization[J]. Scientia Agricultura Sinica, 2014, 47(19): 3817–3825.

    Zhang L M, Xu M G, Lou Y L, et al. Changes in yellow paddy soil organic carbon fractions under long-term fertilization[J]. Scientia Agricultura Sinica, 2014, 47(19): 3817-3825.
    [11]
    周萌, 肖扬, 刘晓冰. 土壤活性有机质组分的分类方法及其研究进展[J]. 土壤与作物, 2019, 8(4): 349–360. Zhou M, Xiao Y, Liu X B. Soil labile organic carbon components and research progress[J]. Soil and Crops, 2019, 8(4): 349–360.

    Zhou M, Xiao Y, Liu X B. Soil labile organic carbon components and research progress[J]. Soil and Crops, 2019, 8(4): 349-360.
    [12]
    丁洁, 杨士红, 金元林, 等. 秸秆还田对节水灌溉稻田土壤有机碳及其组分的影响[J]. 节水灌溉, 2019, (9): 14–18. Ding J, Yang S H, Jin Y L, et al. Effects of straw return on soil organic carbon and its components of paddy field under water-saving irrigation[J]. Water Saving Irrigation, 2019, (9): 14–18.

    Ding J, Yang S H, Jin Y L, et al. Effects of straw return on soil organic carbon and its components of paddy field under water-saving irrigation[J]. Water Saving Irrigation, 2019, (9): 14-18.
    [13]
    郭亮亮. 麦季免耕及不同播前灌溉量对夏玉米碳水利用效率的影响[D]. 山东泰安: 山东农业大学硕士学位论文, 2020.

    Guo L L. Effects of no tillage and pre-sowing irrigation on carbon emission and water use efficiency of summer maize field[D]. Tai’an, Shandong: MS Thesis of Shandong Agricultural University, 2020.
    [14]
    Luo Y, Sherry R, Zhou X, et al. Terrestrial carbon-cycle feedback to climate warming: Experimental evidence on plant regulation and impacts of biofuel feedstock harvest[J]. Global Change Bioenergy, 2009, 1(1): 62–74. DOI: 10.1111/j.1757-1707.2008.01005.x
    [15]
    郭万里. 碳氮添加对陇中黄土高原旱作农田土壤有机碳库稳定性的影响[D]. 甘肃兰州: 甘肃农业大学硕士学位论文, 2020.

    Guo W L. Effect of carbon and nitrogen addition on the stability of soil organic carbon pool of dry farmland in Longzhong Loess Plateau[D]. Lanzhou, Gansu: MS Thesis of Gansu Agricultural University, 2020.
    [16]
    廖李容. 氮添加对白羊草土壤有机碳组分及根系分泌物的影响[D]. 北京: 中国科学院大学硕士学位论文, 2021.

    Liao L R. Effects of nitrogen addition on soil organic carbon components and root exudates of Bothriochloa ischaemum [D]. Beijing: MS Thesis of Chinese Academy of Sciences University, 2021.
    [17]
    张亚杰, 钱慧慧, 刘坤平, 等. 施肥对玉米/大豆套作土壤活性有机碳组分及碳库管理指数的影响[J]. 华南农业大学学报, 2016, 37(3): 29–36. Zhang Y J, Qian H H, Liu K P, et al. Effect of fertilization on soil active organic carbon and carbon pool management index under maize/soybean intercropping condition[J]. Journal of South China Agricultural University, 2016, 37(3): 29–36.

    Zhang Y J, Qian H H, Liu K P, et al. Effect of fertilization on soil active organic carbon and carbon pool management index under maize/soybean intercropping condition[J]. Journal of South China Agricultural University, 2016, 37(3): 29-36.
    [18]
    李亚杰, 徐文修, 苏丽丽, 等. 水氮管理对麦后复播大豆土壤固碳效应和产量的影响[J]. 农业环境科学学报, 2016, 35(3): 524–531. Li Y J, Xu W X, Su L L, et al. Effects of water and nitrogen management on soil carbon sequestration and soybean yields in wheat-soybean cropping fields[J]. Journal of Agro-Environment Science, 2016, 35(3): 524–531.

    Li Y J, Xu W X, Su L L, et al. Effects of water and nitrogen management on soil carbon sequestration and soybean yields in wheat-soybean cropping fields[J]. Journal of Agro-Environment Science, 2016, 35(3): 524-531.
    [19]
    岳会锦, 陶瑞, 褚贵新. 滴灌棉田有机碳组分对不同比率有机无机肥配施的响应[J]. 新疆农业科学, 2014, 51(9): 1630–1637. Yue H J, Tao R, Chu G X. Response of soil organic carbon fraction to different ratios of organic/inorganic fertilizer application in cotton field[J]. Xinjiang Agricultural Sciences, 2014, 51(9): 1630–1637.

    Yue H J, Tao R, Chu G X. Response of soil organic carbon fraction to different ratios of organic/inorganic fertilizer application in cotton field[J]. Xinjiang Agricultural Sciences, 2014, 51(9): 1630-1637.
    [20]
    吴金水. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社, 2006.

    Wu J S. Determination method of soil microbial biomass and its application[M]. Beijing: Meteorological Publishing House, 2006.
    [21]
    赵丽娟. 长期不同施肥方式对黑土有机碳、氮的影响[D]. 黑龙江哈尔滨: 东北农业大学硕士学位论文, 2005.

    Zhao L J. Effect of long-term fertilization on organic carbon and nitrogen in black soil[D]. Harbin, Heilongjiang: MS Thesis of Northeast Agricultural University, 2005.
    [22]
    鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005.

    Bao S D. Soil and agrochemical analysis[M]. Beijing: China Agricultural Press, 2005.
    [23]
    关松荫, 张德生, 张志明. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.

    Guan S Y, Zhang D S, Zhang Z M. Soil enzymes and their research methods[M]. Beijing: Agricultural Press, 1986.
    [24]
    Tabatabai M A. Soil enzymes [A]. Bigham J M. Methods of Soil Analysis [M]. Madison, Wisconsin, USA: Soil Science Society of America, 1994, 775−833.
    [25]
    Paustian K, Six J, Elliott E T, et al. Management options for reducing CO2 emissions from agricultural soils[J]. Biogeochemistry, 1999, 48(1): 147–163.
    [26]
    常洪艳, 王天野, 黄梓源, 等. 秸秆降解菌对秸秆降解率、土壤理化性质及酶活性的影响[J]. 华北农学报, 2019, 34(21): 161–167. Chang H Y, Wang T Y, Huang Z Y, et al. Effects of straw degrading bacteria on straw degradation rate, soil physicochemical properties and enzyme activity[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(21): 161–167.

    Chang H Y, Wang T Y, Huang Z Y, et al. Effects of straw degrading bacteria on straw degradation rate, soil physicochemical properties and enzyme activity[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(21): 161-167.
    [27]
    Blair G J, Lefory R D B, Lise L. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural system[J]. Australian Journal of Agricultural Research, 1995, 46: 1459–1466. DOI: 10.1071/AR9951459
    [28]
    俞华林, 张恩和, 王琦, 等. 灌溉和施氮对免耕留茬春小麦农田土壤有机碳、全氮和籽粒产量的影响[J]. 草业学报, 2013, 22(3): 227–233. Yu H L, Zhang E H, Wang Q, et al. Effects of irrigation and nitrogen application on soil organic carbon, total nitrogen and grain yield of no tillage stubble spring wheat farmland[J]. Acta Prataculturae Sinica, 2013, 22(3): 227–233.

    Yu H L, Zhang E H, Wang Q, et al. Effects of irrigation and nitrogen application on soil organic carbon, total nitrogen and grain yield of no tillage stubble spring wheat farmland[J]. Acta Prataculturae Sinica, 2013, 22(3): 227-233.
    [29]
    伍旖旎, 许依, 傅童成, 等. 施氮对贫瘠红壤定植芒草根际土有机碳矿化过程的影响[J]. 草地学报, 2022, 30(4): 801–809. Wu Y N, Xu Y, Fu T C, et al. Effects of nitrogen application on organic carbon mineralization in rhizosphere soil of Miscanthus spp. in the barren red soil[J]. Acta Agrestia Sinica, 2022, 30(4): 801–809.

    Wu Y N, Xu Y, Fu T C, et al. Effects of nitrogen application on organic carbon mineralization in rhizosphere soil of Miscanthus spp. in the barren red soil[J]. Acta Agrestia Sinica, 2022, 30(4): 801-809.
    [30]
    Karhu K, Mattila T, Bergstrom I, et al. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity: Results from a short-term pilot field study[J]. Agriculture, Ecosystems and Environment, 2011, 140: 309–313. DOI: 10.1016/j.agee.2010.12.005
    [31]
    张玉娇, 邱慧珍, 郭亚军, 等. 不同施氮量下玉米秸秆还田对土壤有机碳及其组分的影响[J]. 国土与自然资源研究, 2022, (2): 87–90. Zhang Y J, Qiu H Z, Guo Y J, et al. Effects of application of different nitrogen levels on the soil organic carbon composition of returning straw[J]. Territory & Natural Resources Study, 2022, (2): 87–90.

    Zhang Y J, Qiu H Z, Guo Y J, et al. Effects of application of different nitrogen levels on the soil organic carbon composition of returning straw[J]. Territory & Natural Resources Study, 2022, (2): 87-90.
    [32]
    孟繁昊. 生物炭配施氮肥对土壤理化性质及春玉米产量和氮效率的影响机制[D]. 内蒙古呼和浩特: 内蒙古农业大学博士学位论文, 2018.

    Meng F H. Influence mechanism of soil physicochemical property and yield and nitrogen efficiency of spring corn by combined application of biochar with nitrogen fertilizer[D]. Hohhot, Inner Mongolia: PhD Dissertation of Inner Mongolia Agricultural University, 2018.
    [33]
    林立梅. 施氮与植物互作对土壤有机质分解的影响[D]. 甘肃兰州: 兰州大学硕士学位论文, 2019.

    Lin L M. Effects of nitrogen application and plant interaction on the decomposition of soil organic matter[D]. Lanzhou, Gansu: MS Thesis of Lanzhou University, 2019.
    [34]
    李阳阳, 陈帅民, 范作伟, 等. 水稻秸秆降解复合菌系的筛选构建及其田间应用效果[J]. 植物营养与肥料学报, 2021, 27(12): 2083–2093. Li Y Y, Chen S M, Fan Z W, et al. Construction and screening of complex microbial system for efficient degradation of rice straw and their application effects under field condition[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2083–2093.

    Li Y Y, Chen S M, Fan Z W, et al. Construction and screening of complex microbial system for efficient degradation of rice straw and their application effects under field condition[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2083-2093.
    [35]
    张玉娇. 不同施氮量和有机肥添加量对还田玉米秸秆腐解特性及土壤腐殖质含量的影响[D]. 甘肃兰州: 甘肃农业大学硕士学位论文, 2021.

    Zhang Y J. Effects of different nitrogen application rates and organic fertilizer addition on decomposition characteristics of returned corn stalk and humus content in soil[D]. Lanzhou, Gansu: MS Thesis of Gansu Agricultural University, 2021.
    [36]
    赵旭, 王文丽, 李娟. 玉米秸秆调节牛粪含水率对其腐熟进程及氨气释放量的影响[J]. 生态科学, 2020, 39(5): 179–186. Zhao X, Wang W L, Li J. Effect of corn stalk regulating moisture content on cow manure compost and ammonia release[J]. Ecological Science, 2020, 39(5): 179–186.

    Zhao X, Wang W L, Li J. Effect of corn stalk regulating moisture content on cow manure compost and ammonia release[J]. Ecological Science, 2020, 39(5): 179-186.
    [37]
    刘涌鑫, 毛祥敏, 周勋波. 水氮条件对南亚热带玉米产量及农田土壤有机碳氮组分的影响[J]. 东北农业科学, 2022, 47(1): 66–71. Liu Y X, Mao X M, Zhou X B. Effects of water and nitrogen conditions on subtropical maize yield and soil organic carbon and nitrogen components in sub-tropical soils[J]. Journal of Northeast Agricultural Sciences, 2022, 47(1): 66–71.

    Liu Y X, Mao X M, Zhou X B. Effects of water and nitrogen conditions on subtropical maize yield and soil organic carbon and nitrogen components in sub-tropical soils[J]. Journal of Northeast Agricultural Sciences, 2022, 47(1): 66-71.
    [38]
    Kuzyakov Y, Domanski G. Carbon input by plants into the soil. Review[J]. Journal of Plant Nutrition and Soil Science, 2000, 163(4): 421–431. DOI: 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R
    [39]
    刘红梅, 张海芳, 皇甫超河, 等. 长期氮添加对贝加尔针茅草原土壤微生物群落多样性的影响[J]. 农业环境科学学报, 2017, 36(4): 709–717. Liu H M, Zhang H F, Huangfu C H, et al. Effect of different long-term nitrogen addition on soil microbial diversity of Stipa baicalensis steppe in Inner Mongolia, China[J]. Journal of Agro-Environmental Science, 2017, 36(4): 709–717.

    Liu H M, Zhang H F, Huangfu C H, et al. Effect of different long-term nitrogen addition on soil microbial diversity of Stipa baicalensis steppe in Inner Mongolia, China[J]. Journal of Agro-Environmental Science, 2017, 36(4): 709-717.
    [40]
    肖胜生. 滨海沙地木麻黄人工林生态系统的土壤呼吸和碳平衡的研究[D]. 福建福州: 福建农林大学硕士学位论文, 2010.

    Xiao S S. Soil respiration and carbon balance study of Casuarina equisetifolia plantation ecosystem on coastal sand[D]. Fuzhou, Fujian: MS Thesis of Fujian Agriculture and Forestry University, 2010.
    [41]
    李敬王, 陈林, 马东豪, 等. 潮土长期不同施氮水平对秸秆降解及其细菌群落结构的影响[J]. 土壤学报, 2022, 59(5): 1359–1368. Li J W, Chen L, Ma D H, et al. Influences of long-term different N application rates on straw decomposition and bacterial community structure in a fluvo-aquic soil[J]. Acta Pedologica Sinica, 2022, 59(5): 1359–1368.

    Li J W, Chen L, Ma D H, et al. Influences of long-term different N application rates on straw decomposition and bacterial community structure in a fluvo-aquic soil[J]. Acta Pedologica Sinica, 2022, 59(5): 1359-1368.
    [42]
    Milner P, Ralevic V, Hopwood A M, et al. Ultrastructural local msation of substance P and choline acetyltransferase in endothelial cells of rat coronary artery and release of substance P and acetylcholine during hypoxia[J]. Experientia, 1989, 45(2): 121–125. DOI: 10.1007/BF01954843
    [43]
    Neff J C, Townsend A R, Gleixner G, et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon[J]. Nature, 2002, 419: 915–917. DOI: 10.1038/nature01136
    [44]
    王玲莉, 娄翼来, 石元亮, 等. 长期施肥对土壤活性有机碳指标的影响[J]. 土壤通报, 2008, 39(4): 752–755. Wang L L, Lou Y L, Shi Y L, et al. Effect of long-term fertilization on soil active organic carbon index[J]. Chinese Journal of Soil Science, 2008, 39(4): 752–755.

    Wang L L, Lou Y L, Shi Y L, et al. Effect of long-term fertilization on soil active organic carbon index[J]. Chinese Journal of Soil Science, 2008, 39(4): 752-755.
    [45]
    Ramirez K S, Craine J M, Fierer N. Consistent effects of nitrogen amendments on soil microbial communities and processes acrossbiomes[J]. Global Change Biology, 2012, 18(6): 1918–1927. DOI: 10.1111/j.1365-2486.2012.02639.x
    [46]
    王雨晴, 和江鹏, 乔赵崇, 等. 碳水耦合作用对土壤活性有机碳组分及碳库管理指数的影响[J]. 江苏农业科学, 2022, 50(5): 199–204. Wang Y Q, He J P, Qiao Z C, et al. Effects of carbon water coupling on soil active organic carbon components and carbon pool management index[J]. Jiangsu Agricultural Science, 2022, 50(5): 199–204.

    Wang Y Q, He J P, Qiao Z C, et al. Effects of carbon water coupling on soil active organic carbon components and carbon pool management index[J]. Jiangsu Agricultural Science, 2022, 50(5): 199-204.
    [47]
    Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440: 165–173. DOI: 10.1038/nature04514
    [48]
    杨馨逸. 施氮量对不同管理措施下土壤活性组分及其效应的研究[D]. 辽宁沈阳: 沈阳农业大学硕士学位论文, 2016.

    Yang X Y. Study of application nitrogen fertilizer rate on soil labile pools and their effects in different managements condition[D]. Shenyang, Liaoning: MS Thesis of Shenyang Agricultural University, 2016.
    [49]
    李林. 不同施氮水平对草甸黑土有机碳稳定性的影响[D]. 吉林长春: 吉林农业大学硕士学位论文, 2014.

    Li L. Effects of different N level on soil organic carbon stability in meadow chernozemic soil [D]. Changchun, Jilin: MS Thesis of Jilin Agricultural University, 2014.
    [50]
    刘士丹. 温度和水分对黑土有机碳矿化的互作效应研究[D]. 吉林长春: 吉林农业大学硕士学位论文, 2018.

    Liu S D. Interaction effects of temperature and moisture on organic carbon mineralization in black soil[D]. Changchun, Jilin: MS Thesis of Jilin Agricultural University, 2018.
    [51]
    韩琳, 张玉龙, 金烁, 等. 灌溉模式对保护地土壤可溶性有机碳与微生物量碳的影响[J]. 中国农业科学, 2010, 43(8): 1625–1633. Han L, Zhang Y L, Jin S, et al. Effect of different irrigation patterns on soil dissolved organic carbon and microbial biomass carbon in protected field[J]. Scientia Agricultura Sinica, 2010, 43(8): 1625–1633.

    Han L, Zhang Y L, Jin S, et al. Effect of different irrigation patterns on soil dissolved organic carbon and microbial biomass carbon in protected field[J]. Scientia Agricultura Sinica, 2010, 43(8): 1625-1633.
    [52]
    李玮, 乔玉强, 姜涛, 等. 施用化肥对砂姜黑土碳库管理指数的影响[J]. 生态环境学报, 2014, 23(1): 58–63. Li W, Qiao Y Q, Jiang T, et al. Study of the carbon management index in lime concretion black soil under conditions of N fertilizer application[J]. Ecology and Environmental Sciences, 2014, 23(1): 58–63.

    Li W, Qiao Y Q, Jiang T, et al. Study of the carbon management index in lime concretion black soil under conditions of N fertilizer application[J]. Ecology and Environmental Sciences, 2014, 23(1): 58-63.
    [53]
    习丹, 翁浩东, 胡亚林, 等. 林冠氮添加和林下植被去除对杉木林土壤有机碳组分的影响[J]. 生态学报, 2021, 41(21): 8525–8534. Xi D, Wong H D, Hu Y L, et al. Effects of canopy nitrogen addition and understory removal on soil organic carbon fractions in a Chinese fir plantation[J]. Acta Ecologica Sinica, 2021, 41(21): 8525–8534.

    Xi D, Wong H D, Hu Y L, et al. Effects of canopy nitrogen addition and understory removal on soil organic carbon fractions in a Chinese fir plantation[J]. Acta Ecologica Sinica, 2021, 41(21): 8525-8534.
    [54]
    马瑞萍, 戴相林, 刘国一. 施氮对西藏农田土壤有机碳及酶活性的影响[J]. 中国农学通报, 2018, 34(18): 126–131. Ma R P, Dai X L, Liu G Y. N application affects soil organic carbon and enzyme activities in Tibet farmland soil[J]. Chinese Agricultural Science Bulletin, 2018, 34(18): 126–131.

    Ma R P, Dai X L, Liu G Y. N application affects soil organic carbon and enzyme activities in Tibet farmland soil[J]. Chinese Agricultural Science Bulletin, 2018, 34(18): 126-131.
    [55]
    赵婧, 段磊磊, 王铭, 等. 水文管理措施对长白山区恢复泥炭地土壤酶活性的影响[J]. 生态学杂志, 2022, 41(5): 948–954. Zhao J, Duan L L, Wang M. et al. Effects of hydrological management measures on soil enzyme activities during peatland restoration in the Changbai Mountains[J]. Chinese Journal of Ecology, 2022, 41(5): 948–954.

    Zhao J, Duan L L, Wang M. et al. Effects of hydrological management measures on soil enzyme activities during peatland restoration in the Changbai Mountains[J]. Chinese Journal of Ecology, 2022, 41(5): 948-954.
    [56]
    马伟伟, 王丽霞, 李娜, 等. 不同水氮水平对川西亚高山林地土壤酶活性的影响[J]. 生态学报, 2019, 39(19): 7218–7228. Ma W W, Wang L X, Li N, et al. Dynamic effects of nitrogen deposition on soil enzyme activities in soils with different moisture content[J]. Acta Ecologica Sinica, 2019, 39(19): 7218–7228.

    Ma W W, Wang L X, Li N, et al. Dynamic effects of nitrogen deposition on soil enzyme activities in soils with different moisture content[J]. Acta Ecologica Sinica, 2019, 39(19): 7218-7228.
    [57]
    张磊, 贾淑娴, 李啸灵, 等. 凋落物和根系输入对亚热带米槠天然林土壤有机碳组分的影响[J]. 水土保持学报, 2021, 35(3): 244–251. Zhang L, Jia S X, Li X L, et al. Effects of litter and root inputs on soil organic carbon fractions in a subtropical natural forest of Castanopsis carlesii[J]. Journal of Soil and Water Conservation, 2021, 35(3): 244–251.

    Zhang L, Jia S X, Li X L, et al. Effects of litter and root inputs on soil organic carbon fractions in a subtropical natural forest of Castanopsis carlesii[J]. Journal of Soil and Water Conservation, 2021, 35(3): 244-251.
    [58]
    李艳鹏, 贺同鑫, 王清奎. 施肥对杉木林土壤酶和活性有机碳的影响[J]. 生态学杂志, 2016, 35(10): 2722–2731. Li Y P, He T X, Wang Q K. Impact of fertilization on soil organic carbon and enzyme activities in a Cunninghamia lanceolata plantation[J]. Chinese Journal of Ecology, 2016, 35(10): 2722–2731.

    Li Y P, He T X, Wang Q K. Impact of fertilization on soil organic carbon and enzyme activities in a Cunninghamia lanceolata plantation[J]. Chinese Journal of Ecology, 2016, 35(10): 2722-2731.
    [59]
    钱虹宇, 周宏鑫, 罗原骏, 等. 土壤活性有机碳及碳库管理指数对高寒湿地退化的响应[J]. 生态学杂志, 2020, 39(7): 2273–2282. Qian H Y, Zhou H X, Luo Y J, et al. Responses of soil labile organic carbon and carbon pool management index to alpine wetland degradation[J]. Chinese Journal of Ecology, 2020, 39(7): 2273–2282.

    Qian H Y, Zhou H X, Luo Y J, et al. Responses of soil labile organic carbon and carbon pool management index to alpine wetland degradation[J]. Chinese Journal of Ecology, 2020, 39(7): 2273-2282.
    [60]
    刘红梅, 张海芳, 赵建宁, 等. 氮添加对贝加尔针茅草原土壤活性有机碳和碳库管理指数的影响[J]. 草业学报, 2020, 29(8): 18–26. Liu H M, Zhang H F, Zhao J N, et al. Effects of nitrogen addition on labile soil active organic carbon and carbon pool management index of Stipa baicalensis steppe in lnner Mongolia, China[J]. Acta Prataculturae Sinica, 2020, 29(8): 18–26.

    Liu H M, Zhang H F, Zhao J N, et al. Effects of nitrogen addition on labile soil active organic carbon and carbon pool management index of Stipa baicalensis steppe in lnner Mongolia, China[J]. Acta Prataculturae Sinica, 2020, 29(8): 18-26.
    [61]
    廖林仙, 郭航, 黄俊, 等. 养殖废水灌溉对土壤易氧化碳与碳库管理指数的影响[J]. 中国农村水利水电, 2021, (11): 123–127,135. Liao L X, Guo H, Huang J, et al. The effects of livestock-farm wastewater irrigation on soil labile organic carbon and carbon management index[J]. China Rural Water Conservancy and Hydropower, 2021, (11): 123–127,135.

    Liao L X, Guo H, Huang J, et al. The effects of livestock-farm wastewater irrigation on soil labile organic carbon and carbon management index[J]. China Rural Water Conservancy and Hydropower, 2021, (11): 123-127, 135.
    [62]
    陆刚, 黄海霞, 周晓雷, 等. 迭部林区云冷杉林火烧迹地土壤有机碳及酶活性变化特征[J]. 草地学报, 2022, 30(4): 943–949. Lu G, Huang H X, Zhou X L, et al. Characteristics of soil organic carbon and changes of enzyme activity in burned area of spruce-fir forests in Diebu forest region[J]. Acta Agrestia Sinica, 2022, 30(4): 943–949.

    Lu G, Huang H X, Zhou X L, et al. Characteristics of soil organic carbon and changes of enzyme activity in burned area of spruce-fir forests in Diebu forest region[J]. Acta Agrestia Sinica, 2022, 30(4): 943-949.
    [63]
    吴传敬, 郭剑芬, 许恩兰, 等. 采伐残余物不同处理方式对杉木幼林土壤有机碳组分和相关酶活性的影响[J]. 土壤学报, 2019, 56(6): 1504–1513. Wu C J, Guo J F, Xu E L, et al. Effects of different treatment methods of cutting residues on soil organic carbon components and related enzyme activities of young Chinese fir forests[J]. Acta Pedologica Sinica, 2019, 56(6): 1504–1513.

    Wu C J, Guo J F, Xu E L, et al. Effects of different treatment methods of cutting residues on soil organic carbon components and related enzyme activities of young Chinese fir forests[J]. Acta Pedologica Sinica, 2019, 56(6): 1504-1513.
    [64]
    包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报, 2020, 57(3): 721–729. Bao J P, Yuan G S, Dong F Y, et al. Effects of biochar application and straw returning on organic carbon fractionations and microbial activities in red soil[J]. Acta Pedologica Sinica, 2020, 57(3): 721–729.

    Bao J P, Yuan G S, Dong F Y, et al. Effects of biochar application and straw returning on organic carbon fractionations and microbial activities in red soil[J]. Acta Pedologica Sinica, 2020, 57(3): 721-729.
  • Related Articles

    [1]LI Zhong-ting, HU Jie, CHEN Yu-qin, PENG Yi, FENG Gu, SHENG Jian-dong. Agronomic threshold of soil available phosphorus and the appropriate rate of phosphate fertilizer for drip-irrigated cotton fields in Xinjiang based on a 5-year field experiment[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(11): 2063-2071. DOI: 10.11674/zwyf.2024229
    [2]LUO Xue-mei, CHEN Ming-yuan, WANG Ning-ning, GUO Rui, LIU Jian-guo. Effects of nitrogen reduction and organic substitution on soil nitrogen availability and utilization efficiency in Xinjiang cotton field[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(2): 289-306. DOI: 10.11674/zwyf.2023295
    [3]LI Wen-jun, HUANG Qing-hai, LI Da-ming, LIU Kai-lou, YE Hui-cai, XIAO Guo-bin, ZHANG Wen-ju, XU Ming-gang. Differences in organic carbon accumulation between reddish paddy and upland soils under long-term fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 544-552. DOI: 10.11674/zwyf.20313
    [4]WU Han-qing, DU Shi-yu, WANG Dan-yang, XUE Fei, ZHANG Yu-ling, ZOU Hong-tao, ZHANG Yu-long, YU Na. Response of soil organic nitrogen fractions and tomato yield to irrigation and nitrogen fertilization in greenhouse[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 805-813. DOI: 10.11674/zwyf.18219
    [5]ZHOU Guang-wei, ZHANG Wen, MIN Wei, MA Li-juan, HOU Zhen-an. Effects of the salinity of irrigation water on soil ammonia volatilization in drip-irrigated cotton fields[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(2): 413-420. DOI: 10.11674/zwyf.2015.0216
    [6]CUI Wen-wen, SONG Quan-hao, GAO Xiao-li, JIA Zhi-kuan. Influence of different cropping patterns on soil enzyme activities and yield of broomcorn millet[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 234-240. DOI: 10.11674/zwyf.2015.0126
    [7]YAN Zhi-lei, FANG Yu, CHEN Ji-chen, WANG Fei, HE Chun-mei, LIN Xin-jian. Effect of turning over Chinese milk vetch (Astragalus sinicus L.) on soil nutrients and microbial properties in paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1151-1160. DOI: 10.11674/zwyf.2014.0511
    [8]CHEN Zhen-hua, SUN Cai-xia, HAO Jian-jun, CHEN Li-jun, *, WU Zhi-jie. Responses of soil enzymes to one-year planting transgenic Bt and Bt+CpTI cottons under field condition[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(5): 1226-1230. DOI: 10.11674/zwyf.2009.0534
    [9]LI Juan, ZHAO Bing-qiang, *, LI Xiu-ying, So HWAT Bing. Seasonal variation of soil microbial biomass and soil enzyme activities in different long-term fertilizer regimes[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(5): 1093-1099. DOI: 10.11674/zwyf.2009.0516
    [10]LIU Xin-yong, TIAN Chang-yan. Coupling effect of water and nitrogen of cotton under plastic mulching by drip irrigation[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(2): 286-291. DOI: 10.11674/zwyf.2007.0217
  • Cited by

    Periodical cited type(7)

    1. 刘志远,周晨莉,李福强,张恒嘉. 茄果类蔬菜作物水肥一体化研究进展综述. 水利规划与设计. 2025(03): 114-118 .
    2. 何玉,周晨莉,张恒嘉. 水氮互作对土壤有机碳、微生物及酶活性的影响研究述评. 水利规划与设计. 2025(03): 97-100+106 .
    3. 王子健,王鹤鹏,王江丽,徐红军,刘硕,姚晓梅. 水氮互作对焉耆盆地滴灌春小麦根系形态及土壤酶活性的影响. 干旱地区农业研究. 2025(02): 116-127 .
    4. 杨才艳,杨航,宋建超,陈彦珠,鱼小军. 人工草地建植对三江源区土壤有机碳组分及酶活性的影响. 草地学报. 2024(05): 1359-1369 .
    5. 王颜玉,王文定,郑梦瑶,欧行奇,郑会芳. 施氮和灌溉处理对麦田土壤有机碳组分及酶活性的影响. 环境工程技术学报. 2024(05): 1419-1426 .
    6. 李娜,信会男,赖宁,李永福,吕彩霞,耿庆龙,段婧婧,陈署晃. 不同土地利用方式对农田土壤有机碳组分及土壤微生物量碳的影响. 干旱区研究. 2024(10): 1789-1796 .
    7. 吴姗薇,吴金芝,赵凯男,张军,李爽,黄明,李友军. 灌溉、耕作和施氮对旱地农田土壤生态化学计量特征的影响. 生态学报. 2024(22): 10377-10390 .

    Other cited types(3)

Catalog

    Article views (865) PDF downloads (70) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return