Citation: | PAN Zhan-dong, CAI Xue-mei, CAI Li-qun, DONG Bo, WU Jun, ZHANG Ren-zhi. Effects of field-aged biochar on soil organic nitrogen fractions in dry farmland of Loess Plateau[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(12): 2219-2231. DOI: 10.11674/zwyf.2023195 |
The effects of field-aged biochar on soil organic nitrogen components and microbial biomass carbon and nitrogen were studied to provide scientific basis for improving soil fertility and nitrogen use efficiency in the Loess Plateau of central Gansu.
The biochar experiment was carried out in Dry Farming Comprehensive Experimental Station of Gansu Agricultural University in 2015, six levels of corn straw biochar addition treatments were setup, as: 0 t/hm2, 10 t/hm2, 20 t/hm2, 30 t/hm2, 40 t/hm2, 50 t/hm2, and denoted as CK, BC1, BC2, BC3, BC4, and BC5, respectively. After 5 years of continuous planting of wheat harvest in 2020, soil samples were collected in 0–5 cm, 5–10 cm and 10–30 cm soil layers for the determination of the contents of organic nitrogen components, microbial biomass carbon (MBC) and nitrogen (MBN) by Bremner method. The variation in soil organic nitrogen components, and MBC and MBN contents caused by biochar treatment were discussed.
All the biochar treatments significantly increased the yields of spring wheat, BC3 was recorded the highest yield which was 24.76% higher than that of CK. Compared with CK, biochar treatments significantly increased soil total N and MBC by 6.55%−10.94% and 68.63%−139.7%, enhanced the MBC to MBN ratio by 10.60%−202.44% consequently. The organic nitrogen was divided ino five components: ammonia acid nitrogen (AAN), non-acidolysable nitrogen (AIN), acidolysable ammonia nitrogen (AMN), unknown-acidolyzable nitrogen (UAN), and amino sugar nitrogen (ASN), accounting for 27.46%−45.13%, 15.47%−31.14%, 19.00%−28.66%, 1.59%−18.54%, and 2.76%−8.86% of soil total nitrogen, respectively. The contents of the three acid hydrolysis nitrogen components in all the biochar treatments were in order of AAN>AMN>ASN. Compared with CK, the AAN and ASN contents in BC2, BC3, BC4 and BC5 treatments were significantly increased by 17.58%−81.51% and 43.60%−107.55%, AMN content in BC2 and BC3 treatments was significantly increased by 15.46%−28.95%. Among the treatments, The highest total acid-hydrolyzed N, AMN and ASN, and the least AIN was obtained in BC3 treatment.
Soil total nitrogen and microbial biomass carbon are the main factors affecting organic nitrogen components. Application of 10–50 t/hm2 of biochar could significantly increase soil total N and microbiomass carbon. Application of biochar 30 t/hm2 is the most effective in increasing soil total acidolyzable nitrogen, amino sugar nitrogen, and ammonium nitrogen, thus the spring yield is the highest as result of the highest soil nitrogen supply capacity. Therefore, suitable biochar application rate could increase the soil nitrogen supply capacity in the long-run in Loess Plateau.
[1] |
王瑞, 武威, 刘涛, 孙成明. 耕地土壤容重作用及其调控途径研究进展[J]. 北方园艺, 2020, (4): 135−141.
Wang R, Wu W, Liu T, Sun C M. Research progress on soil bulk density function and its regulation methods in cultivated land[J]. Northern Horticulture, 2020, (4): 135−141.
|
[2] |
王媛, 周建斌, 杨学云. 长期不同培肥处理对土壤有机氮组分及氮素矿化特性的影响[J]. 中国农业科学, 2010, 43(6): 1173−1180. DOI: 10.3864/j.issn.0578-1752.2010.06.009
Wang Y, Zhou J B, Yang X Y. Effects of different long-term fertilization on the fractions of organic nitrogen and nitrogen mineralization in soils[J]. Scientia Agricultura Sinica, 2010, 43(6): 1173−1180. DOI: 10.3864/j.issn.0578-1752.2010.06.009
|
[3] |
郝小雨, 马星竹, 高中超, 等. 长期施肥下黑土活性氮和有机氮组分变化特征[J]. 中国农业科学, 2015, 48(23): 4707−4716. DOI: 10.3864/j.issn.0578-1752.2015.23.012
Hao X Y, Ma X Z, Gao Z C, et al. Variation characteristics of fractions of active nitrogen and organic nitrogen under different long-term fertilization practices in black soil[J]. Scientia Agricultura Sinica, 2015, 48(23): 4707−4716. DOI: 10.3864/j.issn.0578-1752.2015.23.012
|
[4] |
何红波, 张旭东. 同位素稀释分析在土壤氮素循环利用研究中的应用[J]. 土壤通报, 2006, 37(3): 576−581. DOI: 10.3321/j.issn:0564-3945.2006.03.039
He H B, Zhang X D. Application of isotope dilution analysis in N internal cycle and N utilization in soil-plant systems[J]. Chinese Journal of Soil Science, 2006, 37(3): 576−581. DOI: 10.3321/j.issn:0564-3945.2006.03.039
|
[5] |
Xu Y C, Shen Q R, Ran W. Content and distribution of forms of organic N in soil and particle size fractions after long-term fertilization[J]. Chemosphere, 2003, 50(6): 739−745. DOI: 10.1016/S0045-6535(02)00214-X
|
[6] |
李世清, 李生秀, 邵明安, 等. 半干旱农田生态系统长期施肥对土壤有机氮组分和微生物体氮的影响[J]. 中国农业科学, 2004, 37(6): 859−864. DOI: 10.3321/j.issn:0578-1752.2004.06.013
Li S Q, Li S X, Shao M A, et al. Effects of long-term application of fertilizers on soil organic nitrogen components and microbial biomass nitrogen in semiarid farmland ecological system[J]. Scientia Agricultura Sinica, 2004, 37(6): 859−864. DOI: 10.3321/j.issn:0578-1752.2004.06.013
|
[7] |
薛菁芳, 高艳梅, 汪景宽, 等. 土壤微生物生物量碳氮作为土壤肥力指标的探讨[J]. 土壤通报, 2007, 38(2): 247−250. DOI: 10.3321/j.issn:0564-3945.2007.02.009
Xue J F, Gao Y M, Wang J K, et al. Microbial biomass carbon and nitrogen as an indicator for evaluation of soil fertility[J]. Chinese Journal of Soil Science, 2007, 38(2): 247−250. DOI: 10.3321/j.issn:0564-3945.2007.02.009
|
[8] |
Rebecca R. Rethinking biochar[J]. Environmental Science& Technology, 2007, 41(17): 5932−5933.
|
[9] |
孙玲, 贾明云, 刘壮壮, 等. 不同热解温度和升温速率下杨树枝条生物质炭产率和理化性质分析[J]. 植物资源与环境学报, 2023, 32(3): 71−82,91.
Sun L, Jia M Y, Liu Z Z, et al. Analyses on yield and physicochemical properties of poplar branch biochars at different pyrolysis temperatures and heating rates[J]. Journal of Plant Resources and Environment, 2023, 32(3): 71−82,91.
|
[10] |
尚杰, 耿增超, 王月玲, 等. 施用生物炭对塿土微生物量碳、氮及酶活性的影响[J]. 中国农业科学, 2016, 49(6): 1142−1151. DOI: 10.3864/j.issn.0578-1752.2016.06.010
Shang J, Geng Z C, Wang Y L, et al. Effect of biochar amendment on soil microbial biomass carbon and nitrogen and enzyme activity in tier soils[J]. Scientia Agricultura Sinica, 2016, 49(6): 1142−1151. DOI: 10.3864/j.issn.0578-1752.2016.06.010
|
[11] |
Bremner J M. Organic forms of nitrogen[A]. Black C A. Methods of soil analysis[M]. Wisconsin, USA: American Society of Agronomy Incorporation, 1965: 1148-1178.
|
[12] |
巨晓棠, 刘学军, 张福锁. 长期施肥对土壤有机氮组成的影响[J]. 中国农业科学, 2004, 37(1): 87−91. DOI: 10.3321/j.issn:0578-1752.2004.01.014
Ju X T, Li X J, Zhang F S. Effects of long-term fertilization on soil organic nitrogen fractions[J]. Scientia Agricultura Sinica, 2004, 37(1): 87−91. DOI: 10.3321/j.issn:0578-1752.2004.01.014
|
[13] |
吴汉卿, 杜世宇, 高娜, 等. 水氮调控对设施土壤有机氮组分、全氮和矿质氮的影响[J]. 水土保持学报, 2017, 31(6): 212−219. DOI: 10.13870/j.cnki.stbcxb.2017.06.034
Wu H Q, Du S Y, Gao N, et al. Effects of water and nitrogen regulation on soil organic nitrogen fractions, total nitrogen and mineral nitrogen in greenhouse soil[J]. Journal of Soil and Water Conservation, 2017, 31(6): 212−219. DOI: 10.13870/j.cnki.stbcxb.2017.06.034
|
[14] |
党亚爱, 王国栋, 李世清. 黄土高原典型土壤有机氮组分剖面分布的变化特征[J]. 中国农业科学, 2011, 44(24): 5021−5030. DOI: 10.3864/j.issn.0578-1752.2011.24.007
Dang Y A, Wang G D, Li S Q. The changing characteristics of profile distribution of soil organic nitrogen component of the typical soil types on the Loess Plateau[J]. Scientia Agricultura Sinica, 2011, 44(24): 5021−5030. DOI: 10.3864/j.issn.0578-1752.2011.24.007
|
[15] |
姬景红, 刘双全, 李玉影, 等. 黑龙江省不同类型旱田土壤有机氮组分含量及分布[J]. 黑龙江农业科学, 2020, (9): 38−41.
Ji J H, Liu S Q, Li Y Y, et al. Content and distribution of soil organic nitrogen in different types of farmland in Heilongjiang Province[J]. Heilongjiang Agricultural Sciences, 2020, (9): 38−41.
|
[16] |
沈其荣, 史瑞和. 不同土壤有机氮的化学组分及其有效性的研究[J]. 土壤通报, 1990, (2): 54−57.
Shen Q R, Shi R H. Study on chemical components and availability of organic nitrogen in different soils[J]. Chinese Journal of Soil Science, 1990, (2): 54−57.
|
[17] |
贾倩, 廖世鹏, 卜容燕, 等. 不同轮作模式下氮肥用量对土壤有机氮组分的影响[J]. 土壤学报, 2017, 54(6): 1547−1558.
Jia Q, Liao S P, Bu R Y, et al. Effects of nitrogen application rate on fractionation of soil organic nitrogen relative to crop rotation mode[J]. Acta Pedologica Sinica, 2017, 54(6): 1547−1558.
|
[18] |
徐阳春, 沈其荣, 茆泽圣. 长期施用有机肥对土壤及不同粒级中酸解有机氮含量与分配的影响[J]. 中国农业科学, 2002, 35(4): 403−409. DOI: 10.3321/j.issn:0578-1752.2002.04.011
Xu Y C, Shen Q R, Mao Z S. Contents and distribution of forms of organic N in soil and particle size fractions after long-term fertilization[J]. Scientia Agricultura Sinica, 2002, 35(4): 403−409. DOI: 10.3321/j.issn:0578-1752.2002.04.011
|
[19] |
李玥, 余亚琳, 张欣, 等. 连续施用炭基肥及生物炭对棕壤有机氮组分的影响[J]. 生态学杂志, 2017, 36(10): 2903−2909. DOI: 10.13292/j.1000-4890.201710.027
Li Y, Yu Y L, Zhang X, et al. Effects of continuous application of biochar-based fertilizer and biochar on organic nitrogen fractions in brown soil[J]. Chinese Journal of Ecology, 2017, 36(10): 2903−2909. DOI: 10.13292/j.1000-4890.201710.027
|
[20] |
龙泽华, 王晶, 侯振安. 秸秆炭化还田和施氮量对棉田土壤有机氮组分的影响[J]. 石河子大学学报(自然科学版), 2019, 37(2): 154−161.
Long Z H, Wang J, Hou Z A. Effects of cotton straw biochar returning and N application rate on soil organic nitrogen fractions in cotton field[J]. Journal of Shihezi University (Natural Science), 2019, 37(2): 154−161.
|
[21] |
Oladele S, Adeyemo A, Adegaiye A, et al. Effects of biochar amendment and nitrogen fertilization on soil microbial biomass pools in an Alfisol under rain-fed rice cultivation[J]. Biochar, 2019, 1(2): 163−176. DOI: 10.1007/s42773-019-00017-2
|
[22] |
陶朋闯, 陈效民, 靳泽文, 等. 生物质炭与氮肥配施对旱地红壤微生物量碳、氮和碳氮比的影响[J]. 水土保持学报, 2016, 30(1): 231−235. DOI: 10.13870/j.cnki.stbcxb.2016.01.042
Tao P C, Chen X M, Jin Z W, et al. Effects of biochar combined with nitrogen fertilizers on microbial biomass C, N and carbon-to-nitrogen ratio of upland red soil[J]. Journal of Soil and Water Conservation, 2016, 30(1): 231−235. DOI: 10.13870/j.cnki.stbcxb.2016.01.042
|
[23] |
陶朋闯, 陈效民, 靳泽文, 等. 生物质炭长期施用对旱地红壤微生物特性及理化性质的影响[J]. 土壤通报, 2017, 48(6): 1423−1428.
Tao P C, Chen X M, Jin Z W, et al. Long-term effects of biochar application on microbial properties and physicochemical properties in upland red soil, China[J]. Chinese Journal of Soil Science, 2017, 48(6): 1423−1428.
|
[24] |
Joseph U E, Toluwase A O, Kehinde E O, et al. Effect of biochar on soil structure and storage of soil organic carbon and nitrogen in the aggregate fractions of an Albic soil[J]. Archives of Agronomy and Soil Science, 2020, 66(1): 1−12. DOI: 10.1080/03650340.2019.1587412
|
[25] |
鲍士旦. 土壤农业化学分析(第3版)[M]. 北京: 中国农业出版社, 2000.
Bao S D. Soil and agricultural chemistry analysis (3rd edition)[M]. Beijing: China Agriculture Press, 2000.
|
[26] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
Lu R K. Soil and agrochemical analysis method[M]. Beijing: China Agricultural Science and Technology Press, 2000.
|
[27] |
尚杰, 耿增超, 陈心想, 等. 施用生物炭对旱作农田土壤有机碳、氮及其组分的影响[J]. 农业环境科学学报, 2015, 34(3): 509−517. DOI: 10.11654/jaes.2015.03.013
Shang J, Geng Z C, Chen X X, et al. Effects of biochar on soil organic carbon and nitrogen and their fractions in a rainfed farmland[J]. Journal of Agro-Environment Science, 2015, 34(3): 509−517. DOI: 10.11654/jaes.2015.03.013
|
[28] |
Pokharel P, Ma Z L, Chang S X. Biochar increases soil microbial biomass with changes in extra-and intracellular enzyme activities: A global meta-analysis[J]. Biochar, 2020, (2): 65−79.
|
[29] |
Amonette J E, Joseph S. Biochar for environmental management: Science and technology[M]. London, UK: Earthscan, 2009.
|
[30] |
李秋霞, 陈效民, 靳泽文, 等. 生物质炭对旱地红壤理化性状和作物产量的持续效应[J]. 水土保持学报, 2015, 29(3): 208−213, 261.
Li Q X, Chen X M, Jin Z W, et al. Persistent effects of biochar on soil physicochemical properties and crop yields in upland red soil[J]. Journal of Soil and Water Conservation, 2015, 29(3): 208−213,261.
|
[31] |
Gul S M, Whalen J K, Thomas B W, et al. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions[J]. Agriculture, Ecosystems and Environment, 2015, 206: 46−59. DOI: 10.1016/j.agee.2015.03.015
|
[32] |
Chan K Y, Xu Z. Biochar: Nutrient properties and their enhancement[A]. Amonette J E, Joseph S. Biochar for environmental management science and technology[M]. London, UK: Earthscan, 2009: 67−84.
|
[33] |
Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota: A review[J]. Soil Biology and Biochemistry, 2011, 43(9): 1812−1836. DOI: 10.1016/j.soilbio.2011.04.022
|
[34] |
张志龙, 陈效民, 曲成闯, 等. 生物质炭对黄瓜连作土壤中微生物生物量碳氮及酶活性的影响[J]. 生态学杂志, 2019, 38(5): 1384−1391.
Zhang Z L, Chen X M, Qu C C, et al. Effects of biochar addition on soil microbial biomass C, N and enzyme activities in cucumber continuous cropping[J]. Chinese Journal of Ecology, 2019, 38(5): 1384−1391.
|
[35] |
Xu N, Tan G C, Wang H Y, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016, 74: 1−8.
|
[36] |
Zhang Y J, Lin F, Wang X F, et al. Annual accounting of net greenhouse gas balance response to biochar addition in a coastal saline bioenergy cropping system in China[J]. Soil & Tillage Research, 2016, 158: 36−48.
|
[37] |
焦亚鹏, 齐鹏, 王晓娇, 等. 施氮量对农田土壤有机氮组分及酶活性的影响[J]. 中国农业科学, 2020, 53(12): 2423−2434.
Jiao Y P, Qi P, Wang X J, et al. Effects of different nitrogen application rates on soil organic nitrogen components and enzyme activities in farmland[J]. Scientia Agricultura Sinica, 2020, 53(12): 2423−2434.
|
[38] |
张名豪, 卢吉文, 赵秀兰. 有机物料对两种紫色土氮素矿化的影响[J]. 环境科学, 2016, 37(6): 2291−2297.
Zhang M H, Lu J W, Zhao X L. Effect of different organic materials on nitrogen mineralization in two purple soils[J]. Environmental Science, 2016, 37(6): 2291−2297.
|
[39] |
李树山, 杨俊诚, 姜慧敏, 等. 有机无机肥氮素对冬小麦季潮土氮库的影响及残留形态分布[J]. 农业环境科学学报, 2013, 32(6): 1185−1193.
Li S S, Yang J C, Jiang H M, et al. Effects of organic and inorganic fertilizer on nitrogen pool and distribution of residual N fractions in fluvo-aquic soil under the winter wheat system[J]. Journal of Agro-Environment Science, 2013, 32(6): 1185−1193.
|
[40] |
李菊梅, 李生秀. 可矿化氮与各有机氮组分的关系[J]. 植物营养与肥料学报, 2003, 9(2): 158−164.
Li J M, Li S X. Relation of mineralizable N to organic N components[J]. Journal of Plant Nutrition and Fertilizers, 2003, 9(2): 158−164.
|
[41] |
梁国庆, 林葆, 林继雄, 荣向农. 长期施肥对石灰性潮土氮素形态的影响[J]. 植物营养与肥料学报, 2000, 6(1): 3−10. DOI: 10.3321/j.issn:1008-505X.2000.01.001
Liang G Q, Lin B, Lin J X, Rong X N. Effect of long-term fertilization on the forms of nitrogen in calcareous fluvo-aquic soil[J]. Journal of Plant Nutrition and Fertilizers, 2000, 6(1): 3−10. DOI: 10.3321/j.issn:1008-505X.2000.01.001
|
[42] |
吴汉卿, 杜世宇, 王丹阳, 等. 设施土壤有机氮组分及番茄产量对水氮调控的响应[J]. 植物营养与肥料学报, 2019, 25(5): 805−813. DOI: 10.11674/zwyf.18219
Wu H Q, Du S Y, Wang D Y, et al. Response of soil organic nitrogen fractions and tomato yield to irrigation and nitrogen fertilization in greenhouse[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 805−813. DOI: 10.11674/zwyf.18219
|
[43] |
Lu H L, Li S Q, Jin F H, et al. Contributions of organic nitrogen forms to mineralized nitrogen during incubation experiments of the soils on the Loess Plateau[J]. Communications in Soil Science & Plant Analysis, 2009 40 (21−22): 3399−3419.
|
[44] |
李强, 王晋, 庄舜尧. 我国南方不同地带性水稻土有机氮组分变化[J]. 土壤, 2015, 47(5): 940−946.
Li Q, Wang J, Zhuang S Y. Soil organic nitrogen composition in paddy fields varied with latitude in southern China[J]. Soils, 2015, 47(5): 940−946.
|
[45] |
Schulten H R, Schnitzer M. The chemistry of soil organic nitrogen: A review[J]. Biology and Fertility of Soils, 1998, 26(1): 1−15.
|
[46] |
Lü H J, He H B, Zhao J S, et al. Dynamics of fertilizer-derived organic nitrogen fractions in an arable soil during a growing season[J]. Plant & Soil, 2013, 373(1−2): 595−607.
|
[47] |
杜晓玉, 徐爱国, 冀宏杰, 等. 华北地区施用有机肥对土壤氮组分及农田氮流失的影响[J]. 中国土壤与肥料, 2011, (6): 13−19. DOI: 10.3969/j.issn.1673-6257.2011.06.002
Du X Y, Xu A G, Ji H J, et al. Effects of manure on soil nitrogen components and nitrogen loss from farmland in North China[J]. Soil and Fertilizer Sciences in China, 2011, (6): 13−19. DOI: 10.3969/j.issn.1673-6257.2011.06.002
|
[48] |
卓苏能, 文启孝. 土壤未知态氮[J]. 土壤学进展, 1992, (2): 11−19.
Zhuo S N, Wen Q X. Unknown nitrogen in soil[J]. Progress in Soil Science, 1992, (2): 11−19.
|
[49] |
Nieder R, Scherer B H W. Fixation and defixation of ammonium in soils: A review[J]. Biology and Fertility of Soils, 2011, (1): 1−14.
|
[50] |
王瑞军, 李世清, 张兴昌, 等. 西北地区不同生态系统几种土壤有机氮组分和微生物体氮的差异[J]. 干旱地区农业研究, 2004, 22(4): 21−27. DOI: 10.3321/j.issn:1000-7601.2004.04.003
Wang R J, Li S Q, Zhang X C, et al. Differnce of soil organic notrogen components and microbial biomass nitrogen under different eco-system in northwestern China[J]. Agricultural Research in the Arid Areas, 2004, 22(4): 21−27. DOI: 10.3321/j.issn:1000-7601.2004.04.003
|
[51] |
Zhang X D, Amelung W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils[J]. Soil Biology and Biochemistry, 1996, 28(9): 1201−1206. DOI: 10.1016/0038-0717(96)00117-4
|
[52] |
马欣, 谢泽宇, 罗珠珠, 等. 陇中地区多年种植苜蓿后不同后茬作物的土壤有机氮特征[J]. 中国土壤与肥料, 2020, (2): 17−23. DOI: 10.11838/sfsc.1673-6257.19154
Ma X, Xie Z Y, Luo Z Z, et al. Characterization of soil organic nitrogen component in different succeeding crops of Lucerne on the Loess Plateau of central Gansu[J]. Soil and Fertilizer Sciences in China, 2020, (2): 17−23. DOI: 10.11838/sfsc.1673-6257.19154
|
[53] |
张世汉, 武均, 张仁陟, 等. 不同氮水平下秸秆、生物质炭添加对旱作农田土壤酸解有机氮组分的影响[J]. 干旱地区农业研究, 2020, 38(1): 92−100. DOI: 10.7606/j.issn.1000-7601.2020.01.13
Zhang S H, Wu J, Zhang R Z, et al. Effects of nitrogen fertilizer combined with straw and biochar on soil organic nitrogen components in dryland farmland[J]. Agricultural Research in the Arid Areas, 2020, 38(1): 92−100. DOI: 10.7606/j.issn.1000-7601.2020.01.13
|
[54] |
陈坤. 生物炭等有机物料定位施用对土壤微生物群落和有机氮的影响[D]. 辽宁沈阳: 沈阳农业大学硕士学位论文, 2017.
Chen K. Influences of soil microbial community and organic nitrogen under the long-term application of biochar and three organic resources[D]. Shenyang, Liaoning: MS Thesis of Shenyang Agricultural University, 2017.
|
1. |
Jaya TIWARI,AL RAMANATHAN,Kuldeep BAUDDH,John KORSTAD. Humic substances: Structure, function and benefits for agroecosystems—a review. Pedosphere. 2023(02): 237-249 .
![]() |
|
2. |
王琪,朱莹雪,许连周,陈柏杨,马献发,元野,高珊,焦玉生,胡继军. 施用生物质炭对黑土腐殖质组成及水稳性团聚体分布的影响. 土壤. 2023(03): 605-611 .
![]() | |
3. |
周喜新,刘婵,李海平,范江,张锦韬,陈闺,张毅. 添加不同秸秆对酸性水稻土pH值及有机碳组分的影响. 江苏农业科学. 2023(15): 225-230 .
![]() | |
4. |
黄兆琴,吉栋梁,庞燕华,胡林潮. 热处理修复对土壤胡敏酸含量及光谱特征的影响. 有色金属(冶炼部分). 2023(12): 104-114 .
![]() | |
5. |
吴嘉煜,米楠. 重金属对植物抗氧化酶影响研究进展. 浙江农业科学. 2022(06): 1177-1181+1304 .
![]() | |
6. |
张伟彬. 有机肥和化肥配施对小麦甘薯轮作土壤腐殖质结合形态及微生物群落结构的影响. 江苏农业科学. 2022(17): 247-252 .
![]() | |
7. |
温烜琳,马宜林,马君红,王艳芳,赵世民,申洪涛,李友军,刘领. 羊粪在豫西旱地烟田的矿化特征研究. 土壤. 2022(05): 993-999 .
![]() | |
8. |
唐鹏飞,韩兵兵,王佳敏,罗艳琴,张凤华. 棉秆还田不同年限对土壤有机碳及其矿化特征的影响. 干旱区资源与环境. 2021(12): 127-133 .
![]() | |
9. |
李春阳,王海江. 不同种类有机物料培肥土壤的效果分析及评价指标. 农业与技术. 2020(11): 36-37+103 .
![]() | |
10. |
陈晓东,吴景贵,李建明,范围,李晓航,朱文悦. 有机物料施用下原生盐碱土胡敏酸结构特征. 土壤学报. 2020(03): 702-709 .
![]() | |
11. |
王丹青,王一明,李军营,马二登. 不同耕作制度及施肥处理下植烟土壤及其胡敏酸的红外光谱特征. 江苏农业科学. 2020(22): 275-282 .
![]() | |
12. |
李娜,盛明,尤孟阳,韩晓增. 应用~(13)C核磁共振技术研究土壤有机质化学结构进展. 土壤学报. 2019(04): 796-812 .
![]() | |
13. |
陈宇,凌爱芬,李少鹏,李方新,岳东林,卢剑,叶协锋,武云杰,范文思,于建军. 基于四川凉山烟区大田试验的腐熟农家肥矿化规律分析. 烟草科技. 2019(08): 16-23 .
![]() | |
14. |
周红,何欢,秋新选,肖蒙,何忠俊. 云南省森林土壤腐殖质组成及特性研究. 林业调查规划. 2019(05): 117-124 .
![]() | |
15. |
宋修超,郭德杰,马艳,罗佳,王光飞,刘新红. 腐熟堆肥回流对中药渣好氧堆肥进程及堆肥品质的影响. 农业环境科学学报. 2019(12): 2844-2851 .
![]() | |
16. |
俄胜哲,时小娟,车宗贤,海龙,马倩倩,袁金华,姚佳璇. 有机物料对灌漠土结合态腐殖质及其组分的影响. 土壤学报. 2019(06): 1436-1448 .
![]() | |
17. |
张玉军,董士刚,刘世亮,姜桂英,张弘,李影,郭斗斗,黄绍敏,申凤敏. 有机物替代部分化肥对土壤活性有机质及碳库管理指数的影响. 河南农业科学. 2018(01): 43-47 .
![]() | |
18. |
曹莉,王艮梅,续卫利,普慧梅,杨园. 镉污染土壤中添加外源有机物料对杨树苗期生长的影响. 南京林业大学学报(自然科学版). 2018(04): 68-74 .
![]() | |
19. |
薛斌,黄丽,鲁剑巍,李小坤,殷志遥,刘智杰,陈涛. 连续秸秆还田和免耕对土壤团聚体及有机碳的影响. 水土保持学报. 2018(01): 182-189 .
![]() | |
20. |
邵满娇,窦森,谢祖彬. 等碳量玉米秸秆及其腐解、炭化材料还田对黑土腐殖质的影响. 农业环境科学学报. 2018(10): 2202-2209 .
![]() | |
21. |
盖艳双,窦森. 不同CO_2浓度长期培养玉米秸秆对土壤腐殖质组成和胡敏酸结构特征的影响. 吉林农业大学学报. 2018(06): 716-721 .
![]() | |
22. |
李自刚,岳晓禹,李长滨,张春辉,魏庆葆,刘世亮. 基于变量选择的堆肥胡敏酸含量近红外光谱分析. 农业机械学报. 2017(02): 300-304 .
![]() | |
23. |
徐宪斌. 蚯蚓粪配施化肥对玉米根际土壤生物学特征的影响. 水土保持通报. 2017(01): 78-82 .
![]() | |
24. |
王维,吴景贵,李蕴慧,李建明,赵欣宇,曲晓晶,胡娟. 有机物料对不同作物根系土壤腐殖质组成和结构的影响. 水土保持学报. 2017(02): 215-220 .
![]() | |
25. |
徐基胜,赵炳梓,张佳宝. 长期施有机肥和化肥对潮土胡敏酸结构特征的影响. 土壤学报. 2017(03): 647-656 .
![]() | |
26. |
张玉军,董士刚,刘世亮,张弘,李影,郭斗斗,黄绍敏,申凤敏,姜桂英. 不同有机物料对土壤基本化学性质及可溶性有机碳氮的影响. 中国农学通报. 2017(29): 116-123 .
![]() | |
27. |
李恕艳,李吉进,张邦喜,李国学,李扬阳,李丹阳. 菌剂对鸡粪堆肥腐殖质含量品质的影响. 农业工程学报. 2016(S2): 268-274 .
![]() | |
28. |
赵欣宇,吴景贵,刘文利,曲晓晶. 农业有机废弃物对黑土腐殖质元素组成的影响. 水土保持学报. 2016(02): 301-306 .
![]() | |
29. |
张艳鸿,窦森,董珊珊,谭岑,李立波,林琛茗. 秸秆深还及配施化肥对土壤腐殖质组成和胡敏酸结构的影响. 土壤学报. 2016(03): 694-702 .
![]() | |
30. |
李录久,吴萍萍,耿言安,姚文麒,王家嘉. 秸秆还田结合氮肥运筹管理对白土稻田土壤理化性状的影响. 植物营养与肥料学报. 2016(05): 1259-1266 .
![]() | |
31. |
朱姝,窦森,陈丽珍. 秸秆深还对土壤团聚体中胡敏酸结构特征的影响. 土壤学报. 2015(04): 747-758 .
![]() |