• ISSN 1008-505X
  • CN 11-3996/S

干旱胁迫下硅对番茄叶片光合荧光特性的影响

曹逼力, 李炜蔷, 徐坤

曹逼力, 李炜蔷, 徐坤. 干旱胁迫下硅对番茄叶片光合荧光特性的影响[J]. 植物营养与肥料学报, 2016, 22(2): 495-501. DOI: 10.11674/zwyf.14501
引用本文: 曹逼力, 李炜蔷, 徐坤. 干旱胁迫下硅对番茄叶片光合荧光特性的影响[J]. 植物营养与肥料学报, 2016, 22(2): 495-501. DOI: 10.11674/zwyf.14501
CAO Bi-li, LI Wei-qiang, XU Kun. Effects of silicon on photosynthetic and fluorescence characteristics oftomato leaves under drought stress[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 495-501. DOI: 10.11674/zwyf.14501
Citation: CAO Bi-li, LI Wei-qiang, XU Kun. Effects of silicon on photosynthetic and fluorescence characteristics oftomato leaves under drought stress[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 495-501. DOI: 10.11674/zwyf.14501

干旱胁迫下硅对番茄叶片光合荧光特性的影响

基金项目: 

山东省现代农业产业技术体系专项资金(SDAIT-02-022-05)资助。

详细信息
    作者简介:

    曹逼力(1985—),女,山东临沂人,博士研究生,主要从事蔬菜栽培生理方面的研究。E-mail:superus@sdau.edu.cn

  • 中图分类号: S641.2;S606+.2

Effects of silicon on photosynthetic and fluorescence characteristics oftomato leaves under drought stress

  • 摘要: 【目的】研究干旱胁迫下不同硅水平对水培番茄(Lycopersicon esculentum)叶片气体交换参数和叶绿素荧光参数的影响,为番茄生产合理增施硅肥提供理论依据。【方法】以“金棚1号”番茄为试验材料,采用Hoagland营养液进行了水培试验。聚乙二醇(PEG-6000)模拟干旱条件进行预处理,筛选出适于本研究的PEG-6000干旱胁迫水平为1%; 之后以Na2SiO3·9H2O为硅源,以不添加PEG-6000和Na2SiO3·9H2O的Hoagland营养液为CK0,研究了1% PEG-6000模拟干旱胁迫条件下,Hoagland营养液中分别添加Na2SiO3·9H2O 0(CK)、 0.6(T1)、 1.2(T2)、 1.8(T3)mmol/L,对番茄幼苗叶片色素含量、 水分状况、 气体交换参数及叶绿素荧光参数的影响。【结果】随干旱胁迫时间延长,不同硅水平处理的番茄叶片相对含水量(RWC)、 光合色素含量、 净光合速率(Pn)、 气孔导度(Gs)、 最大光化学效率(Fv/Fm)、 实际光化学效率(ΦPSⅡ)、 光化学淬灭系数(qP)等均持续下降,非光化学淬灭系数(NPQ)逐渐上升,气孔限制值(Ls)先升高后降低,细胞间隙二氧化碳浓度(Ci)先降低后升高,但不同硅水平处理番茄叶片相关参数降低或升高的幅度存在显著差异。在处理第12 d时,0.6、 1.2 mmol/L硅水平处理的番茄叶片RWC较不施硅对照(CK)分别提高18.03%、 30.25%,叶绿素含量分别增加64.56%、 88.24%,Pn分别增加48.78%、 131.71%,ΦPSⅡ分别增加31.68%、 62.70%,qP分别增加18.92%、 40.54%,NPQ则分别降低9.54%、 13.35%。但1.8 mmol/L的硅水平处理12 d时相关参数除NPQ外,均较对照(CK)显著降低,如叶片RWC、 叶绿素含量、 Pn、 ΦPSⅡ和qP分别降低了17.53%、 21.79%、 21.95%、 10.16% 和5.41%。【结论】 1% PEG-6000模拟干旱胁迫条件下,Hoagland营养液添加1.2 mmol/L Na2SiO3·9H2O显著改善了番茄叶片的水分状况,降低了光合色素的降解,提高了叶片色素光化学效率,减轻了光抑制程度,有利于维持较高的光合速率。
    Abstract: 【Objectives】 The study of the effect of different silicon supplement levels on the physiological parameters and the growth of tomato(Lycopersicon esculentum)seedlings exposure to drought stress will provide a theoretical basis for understanding the mechanism of drought stress alleviation with Si.【Methods】Tomato(Lycopersicon esculentum) cultivar ‘jinpeng.1#’ was used as tested material, and a hydroponic culture based on Hoagland solution with different silicon levels was conducted. Drought stress was simulated by addition of 1% polyethylene glycol(PEG-6000)for this experiment. Na2SiO3·9H2O was used as the silicon source, 0(CK), 0.6(T1), 1.2(T2), 1.8(T3)mmol/L of Na2SiO3·9H2O were contained in the Hoagland solution plus 1% PEG-6000, and none of PEG and Na2SiO3·9H2O was CK0. The pigment content of tomato seedlings, water status, gas exchange parameters and chlorophyll fluorescence parameters were investigated. 【Results】Compared with CK0, the relative water content(RWC),the photosynthetic pigments, net photosynthetic rate(Pn), stomatal conductance(Gs), maximum photochemical efficiency(Fv/Fm), actual photochemical efficiency(ΦPSⅡ), and photochemical quenching(qP)of tomato seedlings treated with different silicon levels all showed steadily declining with extension of drought time, except non-photochemical quenching(NPQ). The stomatal limitation value(Ls)first increased and afterwards decreased. However, the intercellular carbon dioxide concentration(Ci)first decreased and afterwards increased. The differences in both the increasing amplitude and decline range of the above parameters were significant among the treatments exposured to different silicon concentrations. In contrast to tomato plant without silicon(CK), in treatments of Si 0.6 and 1.2 mmol/L on the day 12, the increments in RWC were 18.03% and 30.25%, in the chlorophyll content were 64.56%, 88.24%, in Pn were 48.78%, 131.71%, in ΦPS were 31.68%, 62.70%, in qP were 18.92%, 40.54%, and NPQ were decreased by 9.54%, 13.35%, respectively. While in treatment of Si 1.8 mmol/L, the corresponding parameters were significantly lower than CK, except NPQ. The decrements in RWC, chlorophyll content, Pn, ΦPSⅡ and qP were respectively 17.53%, 21.79%, 21.95%, 10.16% and 5.41%. 【Conclusions】 Under 1% of PEG-6000 drought stress, the addition of silicon 1.2 mmol/L in the Hoagland solution could significantly improve the water status of tomato leaves, reduce the degradation of photosynthetic pigment, improve photochemical efficiency in the leaves pigment, and reduce photoinhibition. Consequently, the tomato seedlings are able to maintain high photosynthetic rate and regular growth of ‘jinpeng 1#’ tomato.
  • [null] [1] Gong H, Chen K, Chen G, et al. Effects of silicon on growth of wheat under drought[J]. Journal of Plant Nutrition, 2003, 26(5): 1055-1063.
    [2] Liang Y. Effect of silicon on leaf ultrastructure, chlorophyll content
    and photosynthetic activity of barley under salt stress[J]. Pedosphere, 1997, 8(4): 289-296.
    [3] Zhu Z, Wei G, Li J, et al. Silicon alleviates salt stress and
    increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.)[J]. Plant Science, 2004, 167(3): 527-533.
    [4] Neumann D, Zur Nieden U. Silicon and heavy metal tolerance of higher plants[J]. Phytochemistry, 2001, 56(7): 685-692.
    [5] 宁东峰 梁永超. 硅调节植物抗病性的机理: 进展与展望[J]. 植物营养与肥料学报, 2014, 20(5): 1281-1288.
    Ning D F, Liang Y C, Silicon-mediated plant disease resistance:advance and perspectives[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1281-1288.
    [6] Kvedaras O L, Keeping M G. Silicon impedes stalk penetration by the borer Eldana saccharina in sugarcane[J]. Entomologia Experimentalis et Applicata, 2007, 125(1): 103-110.
    [7] Gao D, Chen J N, Cai K Z, Luo S M. Distribution and absorption of silicon in plant and its role in plant disease resistance under environmental stress[J]. Acta Ecologica Sinica, 2010, 30(10): 2745-2753.
    [8] Pilon-Smits E A H, Quinn C F, Tapken W, et al. Physiological functions of beneficial elements[J]. Current Opinion in Plant Biology, 2009, 12(3): 267-274.
    [9] 陈伟, 蔡昆争, 陈基宁. 硅和干旱胁迫对水稻叶片光合特性和矿质养分吸收的影响[J]. 生态学报, 2012, 32(8): 2620-2628.
    Chen W, Cai K Z, Chen J N. Effects of silicon application and drought stess on photosythetic traits and mineral nutreint absorption of rice leaves[J]. Acta Ecologica Sinica, 2012, 32(8): 2620-2628.
    [10] 李清芳, 马成仓, 尚启亮. 干旱胁迫下硅对玉米光合作用和保护酶的影响[J]. 应用生态学报, 2007, 18(3): 531-536.
    Li Q F, Ma C C, Shang Q L. Effects of silicon on photosynthesis and antioxidative enzymes of maize under drought stress[J]. Chinese Journal of Applied Ecology, 2007, 18(3): 531-536.
    [11] Gong H, Chen K. The regulatory role of silicon on water relations,
    photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions[J]. Acta Physiologiae Plantarum, 2012, 34(4): 1589-1594.
    [12] Ma C C, Li Q F, Gao Y B, Xin T R. Effects of silicon application
    on drought resistance of cucumber plants[J]. Soil Science and Plant Nutrition, 2004, 50(5): 623-632.
    [13] 王耀晶, 马聪, 张薇, 刘鸣达. 干旱胁迫下硅对草莓生长及生理特性的影响[J]. 核农学报, 2013, 27(5): 703-707.
    Wang Y J, Ma C, Zhang W, Liu M D. Effects of silicon on strawberry growth and physiological characteristics under drought stress[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(5): 703-707.
    [14] Habibi G, Hajiboland R. Alleviation of drought stress by silicon supplementation in pistachio (Pistacia vera L.) plants[J]. Folia Horticulturae, 2013, 25(1): 21-29.
    [15] Takahashi E, Ma J F, Miyake Y. The possibility of silicon as an essential element for higher plants[J]. Comments on Agricultural and Food Chemistry, 1990, 2(2), 99-122.
    [16] 梁永超, 陈兴华, 马同生, 等. 硅对番茄生长, 产量与品质的影响[J]. 江苏农业科学, 1993, (4): 48-50.
    Liang Y C, Chen X H, Ma T S, et al. Effect of silicon on growth,yield and quality of tomato[J]. Jiangsu Agricultural Sciences, 1993, (4): 48-50.
    [17] Nikolic M, Nikolic N, Liang Y, et al. Germanium-68 as an adequate tracer for silicon transport in plants characterization of silicon uptake in different crop species[J]. Plant Physiology, 2007, 143(1):495-503.
    [18] 曹逼力, 徐坤, 石健, 等. 硅对番茄生长及光合作用与蒸腾作用的影响[J]. 植物营养与肥料学报, 2013, 19(2): 354-360.
    Cao B L, Xu K, Shi J, et al. Effects of silicon on growth, photosynthesis and transpiration of tomato[J]. Plant Nutrition and Fertilizer Science, 2013, 19(2):354-360.
    [19] 赵秀明, 王飞, 韩明玉, 等. 新引进苹果矮化中间砧木的抗旱性评价[J]. 干旱地区农业研究, 2012, 30(4): 105-112.
    Zhao X M, Wang F, Han M Y, et al. Evaluation on drought resistance of introduced cultivars of apple dwarf rootstocks[J]. Agricultural Research in the Arid Areas , 2012, 30(4): 105-112.
    [20] 梁芳, 郑成淑, 孙宪芝, 王文莉. 低温弱光胁迫及恢复对切花菊光合作用和叶绿素荧光参数的影响[J]. 应用生态学报, 2010, 21(1): 29-35.
    Liang F, Zheng C S, Sun X Z, Wang W L. Effects of low temperature and weak light stress and its reccovery on the photosynthesis and chlorophyll flurescene parements of cut flower chrysanthemum[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 29-35.
    [21] 赵世杰, 史国安, 董新纯.植物生理学实验指导[M]. 中国农业科学技术出版社, 2002.
    Zhao S J, Shi G A, Dong X C.Techniques of plant physiological experiment[J]. Beijing: Chinese Agricultural Science and Technology Press, 2002.
    [22] 梁永超, 张永春, 马同生. 植物的硅素营养[J]. 土壤学进展, 1993, 21(3): 7-14.
    Liang Y C, Zhang Y C, Ma T S. Silicon nutrition of plant[J]. Progress of Soil Science, 1993, 21(3): 7-14.
    [23] Zhao P, Gu W, Wu S, et al. Silicon enhances the growth of Phaeodactylum tricornutum Bohlin under green light and low temperature[J]. Scientific Reports, 2014, 4: 1-10
    [24] 丁燕芳, 梁永超, 朱佳, 李兆君. 硅对干旱胁迫下小麦幼苗生长及光合参数的影响[J]. 植物营养与肥料学报, 2007, 13(3): 471-478.
    Ding Y F, Liang Y C, Zhu J, Li Z J. Effects of silicon on plant growth, photosynthetic paramenters and soluble sugar content in leaves of wheat under drought stress[J]. Plant Nutrition and Fertilizer Science, 2007, 13(3): 471-478.
    [25] 孙小玲, 许岳飞, 马鲁沂, 周禾. 植株叶片的光合色素构成对遮阴的响应[J]. 植物生态学报, 2010, 34(8): 989-999.
    Sun X L, Xu Y F, Ma L Y, Zhou H. A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 989-999.
    [26] 陶俊, 张上隆, 安新民, 赵智中. 光照对柑橘果皮类胡萝卜素和色泽形成的影响[J]. 应用生态学报, 2003, 14(11): 1833-1836.
    Tao J, Zhang S L, An X M, Zhao Z Z. Effects of light on carotenoid biosynthesis and color formation of citrus fruit peel[J]. Chinese Journal of Applied Ecology, 2003, 14(11): 1833-1836.
    [27] Chen W, Yao X, Cai K, Chen J N. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption[J]. Biological Trace Element Research, 2011, 142(1): 67-76.
  • 期刊类型引用(16)

    1. 金红燕,许红连,杨雄伟,程小毛,黄晓霞. 外源硅调控滇润楠幼苗对干旱胁迫的生理响应. 西北农业学报. 2024(11): 2124-2133 . 百度学术
    2. 范胜男,季延海,刘明池,李伟,梁浩,武占会,王丽萍. 番茄叶片对不同灌溉量的生理响应. 节水灌溉. 2023(01): 19-25 . 百度学术
    3. 白菁华,贾晓梅,吴艳清,王悦坤,宋伟扬,刘伊诺. DSE抵抗非生物胁迫及增强马铃薯抗旱效应. 作物杂志. 2023(06): 150-159 . 百度学术
    4. 王莉莉,殷丛培,李峰,杨志敏,刘芳明,林柏松,刘晓静,刘海军,孙靖,单东东,崔江慧,张振清. 马铃薯根际土壤细菌群落结构及其对干旱胁迫的响应. 中国农业科技导报. 2022(06): 58-69 . 百度学术
    5. 郄亚微. 硅对干旱胁迫下生菜幼苗生长及光合特性的影响. 北方园艺. 2021(06): 8-14 . 百度学术
    6. 黄文莉,马杰,江敏,陈春艳,马维,马俊,杨佼,孙勃. 干旱胁迫对马铃薯抗旱生理影响及相关基因的表达. 分子植物育种. 2021(21): 7213-7221 . 百度学术
    7. 陈斌,胡云丽,詹平华,孟倩,李思亮,倪吾钟. 纳米SiO_2对草莓光合特性及果实品质的影响. 北方园艺. 2020(04): 35-42 . 百度学术
    8. 李爽. 外源硅对干旱胁迫下大叶女贞光合作用及叶绿素荧光特性的影响. 江苏农业科学. 2019(22): 174-178 . 百度学术
    9. 罗红艳,费裕翀,曹光球,陈潇潇,刘丽,叶义全. 低磷和铝胁迫对杉木光合及叶绿素荧光特性的影响. 亚热带农业研究. 2018(04): 229-235 . 百度学术
    10. 曾瑞儿,王鑫悦,侯雪蓥,蔚婧,侯晓蕾,陈婷婷,张雷. 硅对干旱胁迫下花生幼苗生长和生理特性的影响. 花生学报. 2018(04): 13-18 . 百度学术
    11. 苗锦山. 硅对设施厚皮甜瓜弱光胁迫的调控效果. 北方园艺. 2017(06): 52-55 . 百度学术
    12. 曹逼力,张志焕,徐坤. 施硅提高干湿交替条件下番茄节水性及产量和品质. 农业工程学报. 2017(22): 127-134 . 百度学术
    13. 王宏信,剧春晖,李向林,陈博,冷凝. 外源5-氨基乙酰丙酸对干旱胁迫下降香黄檀幼苗生长、根系生理特性的影响. 热带作物学报. 2017(10): 1823-1829 . 百度学术
    14. 朱从桦,张鸿,袁继超,张嘉莉,蒋艺,王兴龙,孔凡磊. 低磷胁迫下加硅对玉米苗期硅、磷营养及叶绿素荧光参数的影响. 水土保持学报. 2017(01): 303-309 . 百度学术
    15. 杨小龙,须晖,李天来,王蕊. 外源褪黑素对干旱胁迫下番茄叶片光合作用的影响. 中国农业科学. 2017(16): 3186-3195 . 百度学术
    16. 肖列,刘国彬,李鹏,薛萐. 白羊草光合特性及非结构性碳水化合物含量对CO_2浓度倍增和干旱胁迫的响应. 植物营养与肥料学报. 2017(02): 389-397 . 本站查看

    其他类型引用(22)

计量
  • 文章访问数:  2392
  • HTML全文浏览量:  506
  • PDF下载量:  563
  • 被引次数: 38
出版历程
  • 收稿日期:  2014-11-05
  • 修回日期:  2016-04-14
  • 刊出日期:  2016-03-24

目录

    /

    返回文章
    返回