• ISSN 1008-505X
  • CN 11-3996/S

夏玉米农田N2O排放影响因素的模拟分析

王良, 徐旭, 叶桂香, 陈国庆

王良, 徐旭, 叶桂香, 陈国庆. 夏玉米农田N2O排放影响因素的模拟分析[J]. 植物营养与肥料学报, 2016, 22(2): 346-352. DOI: 10.11674/zwyf.14559
引用本文: 王良, 徐旭, 叶桂香, 陈国庆. 夏玉米农田N2O排放影响因素的模拟分析[J]. 植物营养与肥料学报, 2016, 22(2): 346-352. DOI: 10.11674/zwyf.14559
WANG Liang, XU Xu, YE Gui-xiang, CHEN Guo-qing. Simulation of the factors influencing N2O emission in summer corn farmland[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 346-352. DOI: 10.11674/zwyf.14559
Citation: WANG Liang, XU Xu, YE Gui-xiang, CHEN Guo-qing. Simulation of the factors influencing N2O emission in summer corn farmland[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 346-352. DOI: 10.11674/zwyf.14559

夏玉米农田N2O排放影响因素的模拟分析

基金项目: 

国家自然科学基金项目(31101083,31471414)资助。

详细信息
    作者简介:

    王良(1988—),男,山东枣庄人,硕士研究生,主要从事农业信息化研究。E-mail: wangliang11.04@163.com

  • 中图分类号: S147.2

Simulation of the factors influencing N2O emission in summer corn farmland

  • 摘要: 【目的】全球46%~52%的N2O来自农田土壤,农田土壤N2O排放的研究具有重要的环境和经济意义。量化各影响因素对夏玉米农田N2O排放的影响,可为合理减少施肥产生的N2O排放提供依据。【方法】于2012和2013年连续两年进行了夏玉米裂区田间试验。试验主区为作物处理,副区为氮肥处理(0、 150、 300、 450 kg/hm2)。采用暗箱静态法-气相色谱法测定了不同处理N2O的排放通量,比较了不同温度和降雨量条件下不同处理的N2O排放量,计算了气温、 降雨量、 氮肥管理和夏玉米吸收对夏玉米农田N2O排放的影响。【结果】温度及降雨量的变化明显影响N2O的排放。2012年和2013年气温和降雨量对夏玉米生长期间N2O总排放量的影响分别为-0.24和-0.07。随着施氮量的增加,施氮对N2O排放的影响率呈线性增加(R2 = 0.923),施氮量0、 150、 300和450 kg/hm2,对玉米田N2O排放的影响分别为0、 0.38、 1.63、 3.54。夏玉米生长吸收对N2O排放量的平均影响因子为-0.33,年际间差异不显著(P = 0.07)。在苗期、 穗期、 花粒期,夏玉米生长吸收的影响因子分别为-0.57、 -0.29和-0.13,不同生育期的影响因子差异显著(P = 0.0015)。不同施氮量下,气候条件对夏玉米农田N2O排放影响率差异不显著(P 0.05); 不同气温和降雨量,夏玉米生长吸收对N2O排放的影响在同一施氮量下差异不显著(P 0.05),且均随施氮量的增加而减小。【结论】通过量化分析,气候条件对N2O排放的影响与气温和降雨量密切相关,温度升高影响增大,反之则减小,降雨后排放显著增大。施氮对N2O排放的影响随施氮量增加线性增加。夏玉米生长吸收降低了N2O排放,且在不同生育时期的影响差异显著。综合各影响因子,低氮量条件下(≦150 kg/hm2),气候因素和玉米生长对N2O排放的影响较大,高氮量下(≧300 kg/hm2),氮肥的施用是影响N2O排放的主要因子。
    Abstract: 【Objectives】 Agricultural soils are considered as a major source of N2O emission contributing approximately 46%-52% of the global anthropogenic N2O flux. We analyzed the contribution of climate factors, nitrogen (N) fertilizer application rates and the absorption of summer corn on N2O emission from soil in summer corn field which had great importance to reduce N2O emissions produced by N fertilizer.【Methods】Split plot field experiments were conducted in summer corn in 2012 and 2013. The main factor was summer corn and fallow field, the deputy factor was nitrogen application rates (N 0, 150, 300, 450 kg/hm2). N2O emission rate was determined using static chamber technology combined with gas chromatography in different treatments. The contribution of temperature, precipitation, nitrogen managements and the absorption of summer corn on N2O emission was calculated.【Results】 The influence of meteorological conditions on the N2O emission was significant. The impact factors of temperature and precipitation on the N2O emission were -0.24 and -0.07 in 2012 and 2013, respectively. Nitrogen fertilization increased N2O emission which followed a linear relationship with the increase of N application rate (R2 = 0.923). The effect of nitrogen application on N2O emission was 0, 0.38, 1.63 and 3.54 when the N application rate was 0, 150, 300 and 450 kg/hm2, respectively. The average impact factor of summer corn growth on the N2O emission was -0.33, which did not differ between 2012 and 2013 (P = 0.07). At seedling stage, ear period and grain stage, the effect of summer corn growth on the N2O emission was -0.57, -0.29 and -0.13, respectively, and had significant difference between growing stages (P =0.0015). Climatic condition had no significant effect on N2O emission on summer corn field under different nitrogen application rates (P 0.05). With the different climates in years, there was no significant effect of summer corn growth on the N2O emission with different temperature and precipitation under the same nitrogen application rate (P 0.05).【Conclusions】 Higher temperature and precipitation greatly stimulate N2O. High nitrogen fertilization application leads to increased N2O emission. Summer corn growth has a negative impact on N2O emission, which varies significantly in different growing stages. Climate and crop absorption are the two main factors influencing N2O emission when the nitrogen application rate is less than 150 kg/hm2, and nitrogen application is the main factor when the nitrogen rate is higher than 300 kg/hm2.
  • [null] [1] IPCC, Working Group III. Greenhouse gas mitigation in agriculture
    [R]. Fourth Assessment Report, 2006.
    [2] IPCC. 2006 IPCC guidelines for national greenhouse gas inventories
    [M]. IPCC/IGES, Havana, Japan, 2006.
    [3] 蔡延江, 丁维新, 项 剑, 等. 农田土壤N2O和NO排放的影响因素及其作用机制[J]. 土壤, 2012, 44(6): 881-887.
    Cai Y J, Ding W X, Xing J, et al. Factors controlling N2O and NO emissions from agricultural soils and their influencing mechanisms: A review[J]. Soils, 2012, 44(6): 881-887.
    [4] Mosier A R, Halvorson A D, Reule C A, et al. Net global
    warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado[J]. Journal of Environmental Quality, 2006, 35(4): 1584-1598.
    [5] Halvorson A D, Grosso S J D, Reule C A. Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems[J]. Journal of Environmental Quality, 2008, 37(4): 1337-1344.
    [6] Mcswiney C P, Robertson G P. Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system[J]. Global Change Biology, 2005, 11(10): 1712-1719.
    [7] Grant R F, Pattey E, Goddard T W, et al. Modeling the effects of fertilizer application rate on nitrous oxide emissions[J]. Soil Science Society of America Journal, 2006, 70(1): 235-248.
    [8] 武其甫, 武雪萍, 李银坤.等. 保护地土壤N2O排放通量特征研究[J]. 植物营养与肥料学报, 2011, 17(4): 942-948.
    Wu Q F, Wu X P, Li Y K, et al. Studies on the fluxes of nitrous oxide from greenhouse vegetable soil[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 942-948.
    [9] 陈书涛, 黄耀, 郑循华, 等. 种植不同作物对农田N2O和CH4 排放的影响及其驱动因子[J]. 气候与环境研究, 2007, 12(2): 148-155.
    Chen S T, Huang Y, Zheng X H, et al. Nitrous oxide and methane emissions from croplands with different crops and driving factors[J]. Climatic and Environmental Research, 2007, 12(2): 148-155.
    [10] Scott S M and Tiedje M J. The effect of roots on soil denitrification
    [J]. Soil Science Society of America Journal, 1979, 43(5): 951-957.
    [11] Philippot L, Kuffner M, Cheneby D, et al. Genetic structure and activity of the nitrate-reducers community in the rhizosphere of different cultivars of maize[J]. Plant and Soil, 2006, 287(1/2): 177-186.
    [12] 黄国宏, 陈冠雄, 黄斌, 等. 玉米植株对大田温室气体N2O排放的影响[J]. 应用生态学报, 1998, 9(3): 261-264.
    Huang G H, Chen G X, Huang B, et al. Effect of maize plant on N2O emission from field[J]. Chinese Journal of Applied Ecology, 1998, 9(3): 261-264.
    [13] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2013.
    National Bureau of Statistics of the People’s Republic of China. China year book[M]. Beijing: China Statistical Publishing House, 2013.
    [14] Ravishankara A R, Daniel J S, Portmann R W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-134.
    [15] 万运帆, 李玉娥, 林而达, 等. 静态箱法测定旱地农田温室气体时密闭时间的研究[J]. 中国农业气象, 2005, 27(2): 122-124.
    Wan Y F, Li Y E, Lin E D, et al. Studies on closing time in measuring greenhouse gas emission from dry cropland by static chamber method[J]. Chinese Journal of AgroMeteorology, 2005, 27(2): 122-124.
    [16] 田慎重, 宁堂原, 迟淑筠,等. 不同耕作措施的温室气体排放日变化及最佳观测时间[J]. 生态学报,2012, 32(3): 879-888.
    Tian S Z, Ning T Y, Chi S J, et al. Diurnal variations of the greenhouse gases emission and their optimal observation duration under different tillage systems[J]. Acta Ecologica Sinica, 2012, 32(3): 879-888.
    [17] Parton W J, Mosier A R, Ojima D S, et al. Generalized model for N2 and N2O production from nitrification and denitrification[J]. Global Biogeochemical Cycles, 1996, 10(3): 401-412.
    [18] Conrad R, Seiler W, Bunse G. Factors influencing the loss of fertilizer nitrogen into the atmosphere as nitrous oxide[J]. Journal of Geophysical Research-Atmospheres, 1983, 88: 6709-6718.
    [19] 张小洪, 袁红梅, 蒋文举, 等. 油菜地CO2、 N2O排放及其影响因素[J]. 生态与农村环境学报, 2007, 23(3): 5-8.
    Zhang X H, Yuan H M, Jiang W J, et al. CO2 and N2O emission from the rape field and their controlling factors[J]. Journal of Ecology and Rural Environment, 2007, 23(3): 5-8.
    [20] Zheng X H, Huang Y, Wang Y S, et al. Effects of soil temperature
    on nitrous oxide emission from a typical Chinese rice-wheat rotation during the non-waterlogged period[J]. Global Change Biology, 2003, 9: 601-611.
    [21] 陈卫卫, 张友民, 王毅勇, 等. 三江平原稻田N2O通量特征[J]. 农业环境科学学报, 2007, 26(1): 364-368.
    Chen W W, Zhang Y M, Wang Y Y, et al. Characteristics of N2O fluxes in paddy fields of the Sanjiang Plain[J]. Journal of Agro-Environment Science, 2007, 26(1): 364-368.
    [22] Jiang C S, Wang Y, Zhang X H, et al. Methane and nitrous oxide emissions from three paddy rice based cultivation systems in southwest China[J]. Advances in Atmospheric Sciences, 2006, 23(3): 415-424
    [23] 李香兰, 徐华, 蔡祖聪, 等. 水分管理影响稻田氧化亚氮排放研究进展[J]. 土壤, 2009, 41 (1): 1-7.
    Li X L, Xu H, Cai Z C, et al. Effect of water management on nitrous oxide emission from rice paddy field: A review[J]. Soils, 2009, 41(1): 1-7.
    [24] Novoa R, Tejeda H R. Evaluation of the N2O emissions from N in plant residues as affected by environmental and management factors[J]. Nutrient Cycling in Agroecosystems, 2006, 75: 23-29.
    [25] Malhi S S, Mcgill W B. Nitrification in three Alberta soils: Effect of temperature, moisture and substrate concentration[J]. Soil Biology & Biochemistry, 1982, 14: 393-399.
    [26] Harada T, Kai H. Studies on the environmental conditions
    controlling nitrification in soils. I. Effects of ammonium and total salts in media on the rate of nitrification[J]. Soil Science and Plant Nutrition, 1968, 14: 20-26.
    [27] 王改玲, 陈德立, 李 勇, 等. 土壤温度、 水分和NH+4-N浓度对土壤硝化反应速度及N2O 排放的影响[J]. 中国生态农业学报, 2010, 18(1): 1-6.
    Wang G L, Chen D L, Li Y, et al. Effect of soil temperature, moisture and NH+4-N concentration on nitrification and nitrification-induced N2O emission[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1): 1-6.
    [28] 宋长春, 张丽华, 王毅勇, 赵志春. 淡水沼泽湿地CO2、 CH4和N2O排放通量年际变化及其对氮输入的响应[J]. 环境科学, 2006, 27(12): 2369-2375.
    Song C C, Zhang L H, Wang Y Y, Zhao Z C. Annual dynamics of CO2, CH4, N2O emissions from freshwater marshes and affected by nitrogen fertilization[J]. Environmental Science, 2006, 27(12): 2369-2375.
    [29] Skiba U, Wain wright M. Urea hydrolysis and transformations in coastal dune sands soil[J]. Plant and Soil, 1984, 82 (1): 117-123.
    [30] 杨思河, 陈冠雄, 林继惠, 等. 几种木本植物的N2O释放与某些生理活动的关系[J]. 应用生态学报 1995, 6(4): 337-340.
    Yang S H, Chen G X, Lin J H, et al. N2O emission from woody plants and its relation to their physiological activities[J]. Chinese Journal of Applied Ecology, 1995, 6(4): 337-340.
    [31] Du H X, W P T, Feng H, et al. Influence of nitrogen application
    on soil moisture-nitrogen dynamics and water-fertilizer use efficiency of Zea mays[J]. Science of Soil and Water Conservation, 2009, 7(4): 82-87.
    [32] Barnard R, Leadley P W, Hungate B A. Global change, nitrification,
    and de-nitrification: A review[M]. Global Biogeochemical Cycles, 2005, 19(1).
    [33] Dobbie K E, Smith K A. The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol[J]. European Journal of Soil Science, 2001, 52(4): 667-673.
    [34] Bergstrom L, Brink N. Effects of differentiated applications of
    fertilizer N leaching losses and distribution of inorganic N in soil[J]. Plant and Soil, 1986, 93(3): 333-345.
    [35] Liang B C, Mackenzie A F. Changes of soil nitrate-nitrogen and de-nitrification as affected by nitrogen fertilizer on two Quebec soil[J]. Journal of Environmental Quality, 1994, 23(3): 521-525.
    [36] 范丙全, 胡春芳, 平建立. 灌溉施肥对壤质潮土硝态氮淋溶的影响[J]. 植物营养与肥料学报, 1998, 4(1): 16-21.
    Fan B Q, Hu C F, Ping J L. Effect of irrigation and fertilization on nitrate leaching in loamy fluvo-aguic soil[J]. Plant Nutrition and Fertilizer Science, 1998, 4(1): 16-21.
  • 期刊类型引用(7)

    1. 宋毅,张璐,韩天富,申哲,李继文,李冬初,孟红旗,Ntagisanimana Gilbert,张会民. 长期施肥下红壤玉米关键生育期氧化亚氮排放差异及其影响因素. 植物营养与肥料学报. 2023(10): 1794-1804 . 本站查看
    2. 李艳勤,刘刚,红梅,武岩,常菲. 优化施氮对河套灌区氧化亚氮排放和氨挥发的影响. 环境科学学报. 2019(02): 578-584 . 百度学术
    3. 朱龙飞,徐越,张志勇,于旭昊,马新明,闫广轩,孔玉华. 不同施氮措施对冬小麦农田土壤温室气体通量的影响. 生态环境学报. 2019(01): 143-151 . 百度学术
    4. 许本姝,门梦琪,武晓桐,姜欣,盛思远,韩悦,朱海峰,孟庆欣,邓利廷,许修宏. 牛粪堆肥过程中nosZ型反硝化细菌动态变化. 农业环境科学学报. 2019(09): 2210-2218 . 百度学术
    5. 马春萍,李斌,杨丽. 气候条件对玉米生长发育的影响. 吉林农业. 2018(19): 123 . 百度学术
    6. 万伟帆,李斐,红梅,常菲,高海燕. 氮肥用量和脲酶抑制剂对滴灌马铃薯田氧化亚氮排放和氨挥发的影响. 植物营养与肥料学报. 2018(03): 693-702 . 本站查看
    7. 王志国,刘培,邵宇婷,唐艺玲,管奥湄,王建武. 减量施氮与间作大豆对华南地区甜玉米农田氮平衡的影响. 中国生态农业学报. 2018(11): 1643-1652 . 百度学术

    其他类型引用(21)

计量
  • 文章访问数:  3087
  • HTML全文浏览量:  569
  • PDF下载量:  495
  • 被引次数: 28
出版历程
  • 收稿日期:  2014-12-10
  • 修回日期:  2016-04-14
  • 刊出日期:  2016-03-24

目录

    /

    返回文章
    返回