• ISSN 1008-505X
  • CN 11-3996/S

密度、 氮肥对玉米杂交种节根数量的影响

程帅, 李鹏程, 刘志刚, 赵龙飞, 米国华, 袁力行, 陈范骏

程帅, 李鹏程, 刘志刚, 赵龙飞, 米国华, 袁力行, 陈范骏. 密度、 氮肥对玉米杂交种节根数量的影响[J]. 植物营养与肥料学报, 2016, 22(4): 1118-1125. DOI: 10.11674/zwyf.15055
引用本文: 程帅, 李鹏程, 刘志刚, 赵龙飞, 米国华, 袁力行, 陈范骏. 密度、 氮肥对玉米杂交种节根数量的影响[J]. 植物营养与肥料学报, 2016, 22(4): 1118-1125. DOI: 10.11674/zwyf.15055
CHENG Shuai, LI Peng-cheng, LIU Zhi-gang, ZHAO Long-fei, MI Guo-hua, YUAN Li-xing, CHEN Fan-jun. Effect of plant density and nitrogen supply on nodel root number of maize of different varieties[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 1118-1125. DOI: 10.11674/zwyf.15055
Citation: CHENG Shuai, LI Peng-cheng, LIU Zhi-gang, ZHAO Long-fei, MI Guo-hua, YUAN Li-xing, CHEN Fan-jun. Effect of plant density and nitrogen supply on nodel root number of maize of different varieties[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 1118-1125. DOI: 10.11674/zwyf.15055

密度、 氮肥对玉米杂交种节根数量的影响

基金项目: 

国家自然科学基金项目(31172015); 973项目(2015CB150402)资助。

详细信息
    作者简介:

    程帅(1989—), 女, 山东德州人, 硕士, 主要从事植物营养生理与遗传研究。 E-mail:chengshuaichsh@163.com

  • 中图分类号: S513.01; S513.062

Effect of plant density and nitrogen supply on nodel root number of maize of different varieties

  • 摘要: 【目的】玉米地上和地下茎节生长的节根分别被定义为地上节根(气生根)和地下节根; 地上和地下节根在玉米生长全生育期的水分、 养分吸收以及抗倒伏方面起重要作用。密度和氮肥施用是作物生长和高产最为关键的两个农学影响因子,研究高产密植栽培中氮素如何影响玉米地上及地下节根数的变化,可为选择适宜的品种提供依据。【方法】以玉米自交系GEMS30、 Zheng653、 Mo17、 B73、 CIMBL153为母本,以武312(Wu312)及其近等基因系为父本组配的10对测交组合为试验材料,在2个密度水平(60000和80040 plant/hm2)和3个氮水平(0、 120和240 kg/hm2)下,通过田间挖根,然后按照玉米生长的轮次逐一割下节根并记录数量,同时利用NK-100型数显式弹簧拉力计测定地上第3节位的抗倒拉力。研究总节根数、 地上节根数(气生根)、 地下节根数、 茎秆抗倒拉力和产量的变化规律及其相互关系。【结果】本研究条件下,高密度显著降低产量; 供氮水平也显著影响产量,N 120 kg/hm2时产量高于N 0和240 kg/hm2。地上节根和地下节根数均受氮肥、 密度及氮肥密度互作的显著影响。高密种植平均使地上节根数减少3~6条,而地下节根数量不受影响; 抗倒拉力降低14%~29%,但是在N 240 kg/hm2条件下,高密度对地上和地下节根数的影响不显著。在N 120 kg/hm2供应条件下的地上和地下节根数、 抗倒拉力均高于不施氮,低密度下玉米地上节根数也高于N 240 kg/hm2。不同杂交种的地上节根对氮和密度的响应存在显著差异,其中以B73为母本的2个基因型最为敏感。相关分析表明,在N 0和N 120 kg/hm2条件下,无论密度高低,地下节根数与产量都呈显著正相关; 在低密度下N 0和N 120 kg /hm2条件下, 地下节根数与抗倒拉力呈显著正相关。但高密度在N0下,地上节根数与产量呈显著负相关。【结论】在适宜栽培条件下,地下和地上节根数量多,抗倒能力强,产量高,地下节根数对产量和抗倒伏的贡献相对更为重要。在胁迫条件下,过多的地上节根数可能对产量形成起负作用。因此,根据目标产量,在适宜栽培条件下,选择地下节根数多的品种可以提高产量和抗倒伏率。
    Abstract: 【Objectives】 Brace and crown roots play dominant role in supporting plants and water and nutrient uptake during the whole growth period of maize. Plant density and nitrogen (N) supply are two important factors on maize growth and yield production, study their effects on the growth of brace and crown roots will provide base for the choose of proper cultivars.【Methods】 In this study, 10 maize hybrids, crossed from female inbred lines GEMS30, Zheng653, Mo17, B73, CIMBL153 and male lines Wu312 and Wu312 derivative lines, were grown in filed under two plant densities (60000 and 80040 plants per hm2). Three N supply levels of 0, 120 and 240 kg/hm2 were designed for the two densities. The variation of the number of brace and crown roots was counted by hand after the whole roots were dug out. The pulling resistance of the stalk was measured at the same time.【Results】 The grain yields were lower in high plant density than in low density, and lower in N 0 or N 240 kg/hm2 than in N 120 kg/hm2. N application rate, plant density and their interaction significantly affected the number of brace and crown roots. At high plant density, the number of brace roots was decreased by 3-6, the pulling resistance was decreased by 14%-29%, while the number of the crown roots was not affected. The highest number of brace roots and crown roots, as well as the strongest stalk pulling resistance were obtained under N 120 kg/hm2. There was genotypic difference in the number of brace roots in response to N supply and plant density. Two hybrids crossed from B73 as the female parent were mostly sensitive to N supply. Under 0 and N 120 kg/hm2, the number of brace roots was positively correlated to grain yield regardless the plant density. Under high plant density without N supply, the number of brace roots was negatively correlated to grain yield. Under low plant density without N or with N 120 kg/hm2, the number of crown roots was positively correlated to stalk pulling resistance. The most satisfactory number of the brace and crown roots, the stalk pulling resistance and the grain yield were obtained under low planting density and N 120 kg/hm2 supply. 【Conclusions】 In suitable production condition, more brace roots are good for high pulling resistance and high yield, but under stress condition, excess brace roots would inhibit the formation of maize yield. So the response of brace root number to stress should be considered for the choose of hybrids to obtain target yield.
  • [null] [1] 罗洋, 岳玉兰, 郑金玉, 等. 玉米品种郑单958合理种植密度的研究[J].吉林农业科学, 2008, 33(6): 11-12.
    Luo Y, Yue Y L, Zheng J Y, et al. Studies on proper planting density of maize variety ‘Zhengdan 958’[J]. Journal of Jilin Agricultural Sciences, 2008, 33(6): 11-12.
    [2] Hochholdinger F, Tuberosa R. Genetic and genomic dissection of maize root development and architecture[J]. Current Opinion in Plant Biology, 2009, 12(2): 172-177.
    [3] 张永科, 王立祥, 杨金慧, 等. 中国玉米产量潜力增进技术研究进展[J]. 中国农学通报, 2007, 23(7): 267-269.
    Zhang Y K, Wang L X, Yang J H, et al. China maize potential yield developing technique advanced[J]. Chinese Agricultural Science Bulletin, 2007, 23(7): 267-269.
    [4] 李洪, 王斌, 李爱军, 等. 玉米株行距配置的密植增产效果研究[J]. 中国农学通报, 2011, 27(9): 309-313.
    Li H, Wang B, Li A J, et al. Effects of allocations of row-spacing on maize yield under different planting densities[J]. Chinese Agricultural Science Bulletin, 2011, 27(9): 309-313.
    [5] Cai H G, Chen F J, Mi G H, et al. Mapping QTLs for root system architecture of maize (Zea mays L.) in the field at different stages[J]. Theoretical and Applied Genetics, 2012, 125(6): 1313-1324.
    [6] Bayuelo-Jiménez J S, Gallardo-Valdéz M, Pérez-Decelis V A, et al. Genotypic variation for root traits of maize (Zea mays L.) from the Purhepecha Plateau under contrasting phosphorus availability[J]. Field Crops Research, 2011, 121(3): 350-362.
    [7] Saifu F, Schulte auf’m Erley G, Horst W J. Assessment of root morphological traits of 16 tropical and four temperate maize cultivars for nitrogen efficiency in short-term nutrient solution experiments with the cigar roll and growth pouch methods[M]. Vienna: International Atomic Energy Agency, 2013. 17-21.
    [8] 程富丽. 密度和钾肥对夏玉米抗倒伏能力影响的研究[D]. 保定: 河北农业大学硕士学位论文, 2010.
    Cheng F L. Effects of plant density, potash fertilizer on lodging resistance ability of summer maize [D]. Baoding: MS Thesis of Hebei Agricultural University, 2010
    [9] 李宁, 翟志席, 李建民, 等. 密度对不同株型的玉米农艺、 根系性状及产量的影响[J]. 玉米科学, 2008, 16(5): 98-102.
    Li N, Zhai Z X, Li J M, et al. Effects of planting density on agricultural characters, root system characters and yield of different maize plant types[J]. Journal of Maize Science, 2008, 16(5): 98-102.
    [10] 刘镜波, 王小林, 张岁岐, 等. 有机肥与种植密度对旱作玉米根系生长及功能的影响[J]. 水土保持学报, 2011, 31(6): 32-36.
    Liu J B, Wang X L, Zhang S Q, et al. Effect of organic fertilizer and planting density on root growth and function of maize in dry land[J]. Journal of Soil and Water Conservation, 2011, 31(6): 32-36.
    [11] Saengwilai P, Tian X L, Lynch J. Low crown root number enhances nitrogen acquisition from low nitrogen soils in maize (Zea mays L.)[J]. Plant Physiology, 2014, 16(2): 581-589.
    [12] 薛金涛, 张保明, 董志强, 等. 化学调控对玉米抗倒性及产量的影响[J]. 玉米科学, 2009, 17(2): 91-94.
    Xue J T, Zhang B M, Dong Z Q, et al. Effect of chemical regulation on lodging and yield of maize[J]. Journal of Maize Science, 2009, 17 (2): 91-94.
    [13] 李峰,赵东华,杨立全, 等. 玉米抗倒强度及其与植株性状相关性的初步研究[J]. 山东农业科学, 2013, 45(10): 24-28.
    Li F, Zhao D H, Yang L Q, et al. Preliminary study on maize lodging resistance intensity and its correlation with plant traits[J]. Shandong Agricultural Sciences, 2013, 45(10): 24-28.
    [14] Pellerin S, Mollier A, and Plenet D. Phosphorus deficiency affects the rate of emergence and number of maize adventitious nodal roots[J]. Agronomy Journal, 2000, 92(4): 690-697.
    [15] Mackay A D, Barber S A. Effect of nitrogen on root growth of two genotypes in the field[J]. Agronomy Journal, 1986, 78(4): 699-703.
    [16] 春亮, 陈范骏, 张福锁, 米国华. 不同氮效率玉米杂交种的根系生长、 氮素吸收与产量形成[J]. 植物营养与肥料学报, 2005, 11(5): 615-619.
    Chun L, Chen F J, Zhang F S, Mi G H. Root growth, nitrogen uptake and yield formation of hybrid maize with different N efficiency[J]. Plant Nutrition and Fertilizer Science, 2005, 11(5): 615-619.
    [17] Coque M, Gallais A. Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize[J]. Theoretical and Applied Genetics, 2006, 112(7): 1205-1220.
    [18] Wang Y, Mi G H, Chen F J, et al. Response of root morphology of nitrate supply and its contribution to nitrogen accumulation in maize[J]. Journal of Plant Nutrition, 2004, 27(12): 2189-2202.
    [19] Chun L, Mi G H, Li J S, et al, Genetic analysis of maize root characteristics in response to low nitrogen stress[J]. Plant and Soil, 2005, 276(1-2): 369-382.
    [20] Gaudin A C M, Mc Clymont S A, Holmes B M, et al. Novel temporal, fine-scale and growth variation phenotypes in root of adult-stage maize in response to low nitrogen stress[J]. Plant Cell & Environment, 2011, 34(12): 2122-2137.
    [21] Jiang W,Wang K J, Jiang G M, et al. Interplant root competition leads to an overcrowding effect in maize[J]. Canadian Journal of Plant Science, 2009, 89(6): 1041-1045.
    [22] Rossini M A, Maddonni G A, Otegui M E.Inter- plant competition for resources in maize crops grown under contrasting nitrogen supply and density: Variability in plant and ear growth[J]. Field Crops Research, 2011, 121(3): 373-380.
    [23] 戴俊英, 鄂玉江, 顾慰连. 玉米根系的生长规律及其与产量关系的研究.II玉米根系与叶的相互作用及其与产量的关系[J]. 作物学报, 1988, 14(4): 310-314.
    Dai J Y, E Y J, Gu W L. The studies on the relationship between root growth and yield. II. The interactions between maize root system and leaf of maize and its relationship with yield[J]. Acta Agronomica Sinica, 1988, 14(4): 310-314.
    [24] 丰光, 景希强, 李妍妍, 等. 玉米茎秆性状与倒伏性的相关和通径分析[J]. 华北农学报, 2010, 25(增刊): 72-74.
    Feng G, Jing X Q, Li Y Y, et al. Correlation and path analysis of lodging resistance with maize stem characters[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(Suppl.): 72-74.
  • 期刊类型引用(6)

    1. 隋世江,牛世伟,王娜. 辽北地区玉米田适宜耕作模式研究. 福建农业学报. 2023(10): 1242-1248 . 百度学术
    2. 冯斗,宁瑜,邓英毅,禤维言. 减施氮磷钾肥对香蕉生长及其养分代谢特性的影响. 农业研究与应用. 2020(04): 7-14 . 百度学术
    3. 张小琼,郭剑,代书桃,任元,李凤艳,刘京宝,李永祥,张登峰,石云素,宋燕春,黎裕,王天宇,邹华文,李春辉. 玉米花期根系结构的表型变异与全基因组关联分析. 中国农业科学. 2019(14): 2391-2405 . 百度学术
    4. 樊海潮,顾万荣,尉菊萍,王悦力,孟瑶,张立国,李晶,魏湜. 植物生长调节剂增强玉米抗倒伏能力的机制. 江苏农业学报. 2017(02): 253-262 . 百度学术
    5. 高逖,李春喜,周宝元,徐光武,马玮,赵明. 种植密度和施氮量耦合对夏玉米干物质积累及氮肥利用率的影响. 玉米科学. 2017(05): 105-111 . 百度学术
    6. 徐宗贵,孙磊,王浩,王淑兰,王小利,李军. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学. 2017(13): 2463-2475 . 百度学术

    其他类型引用(17)

计量
  • 文章访问数:  2206
  • HTML全文浏览量:  461
  • PDF下载量:  559
  • 被引次数: 23
出版历程
  • 收稿日期:  2016-08-03
  • 修回日期:  2016-08-03
  • 刊出日期:  2016-07-24

目录

    /

    返回文章
    返回