• ISSN 1008-505X
  • CN 11-3996/S

新疆‘叶尔羌’扁桃果实不同生育期叶片氮磷钾光谱特性研究

庄红梅, 卢春生, 龚鹏, 徐叶挺, 谢辉, 樊丁宇

庄红梅, 卢春生, 龚鹏, 徐叶挺, 谢辉, 樊丁宇. 新疆‘叶尔羌’扁桃果实不同生育期叶片氮磷钾光谱特性研究[J]. 植物营养与肥料学报, 2016, 22(4): 1079-1090. DOI: 10.11674/zwyf.15113
引用本文: 庄红梅, 卢春生, 龚鹏, 徐叶挺, 谢辉, 樊丁宇. 新疆‘叶尔羌’扁桃果实不同生育期叶片氮磷钾光谱特性研究[J]. 植物营养与肥料学报, 2016, 22(4): 1079-1090. DOI: 10.11674/zwyf.15113
ZHUANG Hong-mei, LU Chun-sheng, GONG Peng, XU Ye-ting, XIE Hui, FAN Ding-yu. Leaf spectral characteristics of ‘Yarkent’ almond and its sensitivity to N, P, K at different growth periods in Xinjiang[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 1079-1090. DOI: 10.11674/zwyf.15113
Citation: ZHUANG Hong-mei, LU Chun-sheng, GONG Peng, XU Ye-ting, XIE Hui, FAN Ding-yu. Leaf spectral characteristics of ‘Yarkent’ almond and its sensitivity to N, P, K at different growth periods in Xinjiang[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 1079-1090. DOI: 10.11674/zwyf.15113

新疆‘叶尔羌’扁桃果实不同生育期叶片氮磷钾光谱特性研究

基金项目: 

自治区科技重大专项(201130102-2); 新疆维吾尔自治区科技计划(201111121); 公益性行业(农业)科研专项(201003043)资助。

详细信息
    作者简介:

    庄红梅(1987—), 女,江苏连云港人, 硕士, 助理研究员, 主要从事植物生理研究。 E-mail:zhuanghongmei86@163.com

  • 中图分类号: S664.9

Leaf spectral characteristics of ‘Yarkent’ almond and its sensitivity to N, P, K at different growth periods in Xinjiang

  • 摘要: 【目的】通过分析果实不同生育期叶片光谱反射率对N、 P、 K的响应,探寻采用叶片光谱指数诊断N、 P、 K敏感时期,为新疆莎车‘叶尔羌’扁桃简便快捷的非破坏性营养诊断提供最佳时间窗。【方法】采用“3414”肥料效应试验,利用Unispec-SC光谱仪测定莎车‘叶尔羌’扁桃在不同N、 P、 K施肥水平下果实座果期、 膨大期、 硬核期、 成熟期叶片的光谱反射率。【结果】‘叶尔羌’扁桃果实不同生育期叶片光谱反射率波动取决于波长,在可见光波段变异最小。光谱反射率总体上呈现硬核期>座果期>膨大期>成熟期。在不同N、 P、 K施肥水平下,‘叶尔羌’扁桃果实不同生育期光谱指数(ND705)之间均存在显著差异(P<0.05)或者极显著差异(P<0.01)。叶尔羌扁桃果实座果期、 膨大期、 硬核期、 成熟期叶片氮素的敏感波段分别为815~894 nm,375~398 nm,608~616 nm,429~437 nm; 磷素的敏感波段为766~802 nm,1023~1063 nm,708~713 nm,1130 nm; 座果期、 膨大期、 成熟期叶片钾素的敏感波段分别为815~894 nm,345~368 nm,475~491 nm。【结论】果实成熟期与硬核期是N、 P、 K叶片光谱营养诊断的敏感时期。叶尔羌扁桃果实座果期、 膨大期、 硬核期、 成熟期叶片N素的敏感波段分别为815~894 nm,375~398 nm,608~616 nm,429~437 nm; P素的敏感波段为766~802 nm,1023~1063 nm,708~713 nm,1130 nm; 座果期、 膨大期、 成熟期叶片钾素的敏感波段分别为815~894 nm,345~368 nm,475~491 nm。
    Abstract: 【Objectives】 The sensitive period of leaf spectral index was studied by analyzing the leaf spectral reflectance in the response to nitrogen (N),phosphorus (P) and potassium (K) fertilizer at different growing stages of ‘Yarkent’ almond in Shache of Xinjiang aiming to provide a non-invasive,simple and rapid nutrition diagnosis of N,P,K. 【Methods】 Using “3414” fertilizer experiment and ‘Yarkent’ almond as tested material,the leaf spectral reflectance was measured using Unispec-SC spectrometer at fruiting,expanding,stone hardening and maturing stages of almond tree under different N,P,K fertilizer levels. 【Results】 The fluctuation of leaf spectral reflectance of ‘Yarkent’ almond depended on the wavelengths at all the growing stages,and the least variation was in the range of visible wavelength. The leaf spectral reflectance was generally in the order of stone hardening stage fruiting stage expanding stage maturing stage. The leaf spectrum indexes (ND705) of ‘Yarkent’ almond was significantly (P0.05) and extremely significantly (P 0.01) different among different N,P,K fertilizer levels at all growing stages. The spectral sensitive band of foliar N concentration was 815-894 nm,375-398 nm,608-616 nm and 429-437 nm at fruiting stage,expanding stage,stone hardening stage and maturing stage,respectively. The spectral sensitive band of foliar P concentration was 766-802 nm,1023-1063 nm,708-713 nm and 1130 nm at above 4 stages. For foliar K concentration,the spectral sensitive band was 815-894 nm,345-368 nm and 475-491 nm at fruiting stage,expanding stage and maturing stage,respectively.【Conclusions】 The sensitive periods for leaf spectral nutrition diagnosis of N, P and K in ‘Yarkent’ almond are at mature stage and stone hardening stage. The spectral sensitive bands for N are 815-894 nm,375-398 nm,608-616 nm and 429-437 nm at fruiting stage, expanding stage, stone hardening stage and maturing stage, respectively; those for P are 766-802 nm, 1023-1063 nm, 708-713 nm and 1130 nm; and those for K are 815-894 nm,345-368 nm and 475-491 nm at fruiting stage,expanding stage and maturing stage,respectively.
  • [null] [1] 李民赞. 光谱分析技术及其应用[M]. 北京: 科学出版社, 2006: 176-180.
    Li M Z. Technique and application of spectral analysis[M]. Beijing: Science Press, 2006: 176-180.
    [2] 薛利红, 曹卫星, 罗卫红, 等. 基于冠层反射光谱的水稻群体叶片氮素状况监测[J]. 中国农业科学, 2003, 36(7): 807-812.
    Xue L H, Cao W X, Luo W H, et al. Diagnosis of nitrogen status in rice leaves with the canopy spectral reflectance[J]. Scientia Agricultura Sinica, 2003, 36(7): 807-812.
    [3] Bronson K F, Chua T T, Booker J D. In-season nitrogen status in sensing irrigated cotton. Ⅱ. Leaf nitrogen and biomass[J]. Soil Science Society of American Journal, 2003, 67: 1439-1448.
    [4] Racy M B, James S S, Garye V. Nitrogen deficiency detection using reflected short-wave radiation from irrigated corn canopies[J]. Agronomy Journal, 1996, 88: 1-5.
    [5] 蒋焕煜, 彭永石, 谢丽娟, 等. 扫描次数对番茄叶漫反射光谱和模型精度的影响研究[J]. 光谱学与光谱分析, 2008, 28(8): 1763-1766.
    Jiang H Y, Peng Y S, Xie L J, et al. Studies on impact of scan times of tomato leaf diffuse reflection spectrum and model precision[J]. Spectroscopy and Spectral Analysis, 2008, 28(8): 1763-1766.
    [6] 李敏霞. 苹果叶片光谱反射率与叶绿素和全氮含量的相关研究[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2009. 1-40.
    Li M X. Correlation between apple leaf spectral reflectance and chlorophyll content and leaf total nitrogen [D]. Yanglin Shanxi: MS Thesis of Northwest Agriculture and Forestry Science and Technology University, 2009. 1-40.
    [7] 周丽丽, 冯汉宇, 阎忠敏, 等. 玉米叶片氮含量的高光谱估算及其品种差异[J]. 农业工程学报, 2010, 26(8): 195-199.
    Zhou L L, Feng H Y, Yan Z M, et al. High spectral estimation and difference among varieties of maize in leaf nitrogen content[J]. Transactions of the CSAE, 2010, 26(8): 195-199.
    [8] 孙红, 李民赞, 张彦娥, 等. 不同施氮水平下玉米冠层光谱反射特征分析[J]. 光谱学与光谱分析, 2010, 30(3): 715-719.
    Sun H, Li M Z, Zhang Y E, et al. Spectral characteristics of corn under different nitrogen treatments[J]. Spectroscopy and Spectral Analysis, 2010, 30(3): 715-719.
    [9] 梁惠平, 刘湘南. 玉米氮营养指数的高光谱计算模型[J]. 农业工程学报, 2010, 26(1): 250-255.
    Liang H P, Liu X N. Hyperspectral calculation model of corn nitrogen nutrition index[J]. Transactions of the CSAE, 2010, 26(1): 250-255.
    [10] 王磊, 白由路, 卢艳丽, 等. 基于光谱分析的玉米氮素营养诊断[J]. 植物营养与肥料学报, 2011, 17(2): 333-340.
    Wang L, Bai Y L, Lu Y L, et al. Nitrogen nutrition diagnosis for corn based on spectral analysis[J]. Plant Nutrition and Fertilizer Science, 2011, 17(2): 333-340.
    [11] 张俊华, 张佳宝. 冬小麦特征光谱对其全氮和硝态氮的响应[J]. 干旱地区农业研究, 2010, 28(1): 104-110.
    Zhang J H, Zhang J B. Response of the spectral reflectance to total N and NO3-N of winter wheat[J]. Agricultural Reserch in the Arid Areas, 2010, 28(1): 104-110.
    [12] 胡昊, 白由路, 杨俐苹, 等. 不同氮营养冬小麦冠层光谱红边特征分析[J]. 植物营养与肥料学报, 2009, 15(6): 1317-1323.
    Hu H, Bai Y L, Yang L P, et al. Red edge parameters of winter wheat canopy under different nitrogen levels[J]. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1317-1323.
    [13] 覃夏, 王绍华, 薛利红. 江西鹰潭地区早稻氮素营养光谱诊断模型的构建与应用[J]. 中国农业科学, 2011, 44(4): 691-698.
    Tan X, Wang S H, Xue L H. Nitrogen nutrition diagnosis of early rice with NDVI and its application for nitrogen topdressing recommendation at Yingtan, Jiangxi Province[J]. Scientia Agricultura Sinica, 2011, 44(4): 691-698.
    [14] 唐延林. 水稻高光谱特征及其生物理化参数模拟与估测模型研究[D]. 杭州: 浙江大学博士学位论文, 2004: 1-64.
    Tang Y L. Study on the hyperspectral characteristics and simulating and estimating models about biophysical and biochemical parameters of rice [D]. Hangzhou: PhD Thesis of Zhejiang University, 2004. 1-64.
    [15] 韩小平, 左月明, 李灵芝. 水培番茄施氮量近红外光谱预测模型的研究[J]. 光谱学与光谱分析, 2010, 30(9): 2479-2483.
    Han X P, Zuo Y M, Li L Z. Study on the near infrared spectral prediction model of hydroponic tomatoes[J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2479-2483.
    [16] 李灵芝, 郭荣, 李海平, 等. 不同氮浓度对温室番茄生长发育和叶片光谱特性的影响[J]. 植物营养与肥料学报, 2010, 16(4): 965-969.
    Li L Z, Guo R, Li H P, et al. Effects of nitrogen concentration in hydroponics on growth and development of tomato and spectral characteristics of leaf in greenhouse[J]. Plant Nutrition and Fertilizer Science, 2010, 16(4): 965-969.
    [17] 王克如, 潘文超, 李少昆, 等. 不同施氮量棉花冠层高光谱特征研究[J]. 光谱学与光谱分析, 2011, 31(7): 1868-1872.
    Wang K R, Pan W C, Li S K, et al. Monitoring models of the plant nitrogen content based on cotton canopy hyperspectral reflectance[J]. Spectroscopy and Spectral Analysis, 2011, 31(7): 1868-1872.
    [18] 杨红丽, 陈功, 吴建付. 施氮水平对多花黑麦草植株氮含量及反射光谱特征的影响[J]. 草业学报, 2011, 20(3): 239-244.
    Yang H L, Chen G, Wu J F. Plant nitrogen content of annual ryegrass and spectral reflectance response to nitrogen application level[J]. Acta Prataculturae Sinica, 2011, 20(3): 239-244.
    [19] 李雪飞, 韩甜甜, 董彦, 等. 紫叶稠李叶片色素及氮含量与其光谱反射特性的相关性[J]. 林业科学, 2011, 47(8): 75-81.
    Li X F, Han T T, Dong Y, et al. Relationships between spectral reflectance and pigment or nitrogen concentrations in leaves of Padus Virginiana‘Schubert’[J]. Scientia Silvae Sinicae, 2011, 47(8): 75-81.
    [20] 田永超, 杨杰, 姚霞, 等. 利用叶片高光谱指数预测水稻群体叶层全氮含量[J]. 作物学报, 2010, 36(9): 1529-1537.
    Tian Y C, Yang J, Yao X, et al. Monitoring canopy leaf nitrogen concentration based on leaf hyperspectral indices in rice[J]. Acta Agronomica Sinica, 2010, 36(9): 1529-1537.
    [21] 贺冬仙, 胡娟秀. 基于叶片光谱透过特性的植物氮素测定[J]. 农业工程学报, 2011, 27(4): 214-218.
    He D X, Hu J X. Plant nitrogen detection based on leaf spectral transmittance[J]. Transactions of the CSAE, 2011, 27(4): 214-218.
    [22] Thomas J R, Oerther G F. Estimating nitrogen content of sweet pepper leaves by reflectancrnal measurements[J]. Agrononmy Journal, 1972, 64: 11-13.
    [23] 胡珍珠, 潘存德, 王世伟, 等. 轮台白杏叶片氮磷钾含量光谱估算模型[J]. 新疆农业科学, 2013, 50(2): 238-248.
    Hu Z Z, Pan C D, Wang S W, et al. Models for estimating foliar NPK content of armeniaca vulgaris‘luntaibaixing’using spectral reflectance[J]. Xinjiang Agricultural Sciences, 2013, 50(2): 238-248.
    [24] Osbome S L. Schepers J S, Schlemmer M R, et al. Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements[J]. Agronomy Journal, 2002, 94: 1215-1221.
    [25] AI-Abbas A H, Barr R, Hall J D, et al. Spectra of normal and nutrient deficient maize leaves[J]. Agronomy Journal, 1974, 66: 16-20.
    [26] Daughtry C S T, Walthall C L, Kim M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment, 2000, 74: 229-239.
    [27] Milton N M, Ager C M, Eiswerth B A, et al. Arsenic and selenium induced changes in spectral reflectance and morphology of soybean plants[J]. Remote Sensing of Environment, 1989, 30(3): 263-269.
    [28] Milton N M, Eiswerth B A, Ager C M. Effect of phosphorus deficiency on spectral reflectance and morphology of soybean plants[J]. Remote Sensing of Environment, 1991, 36: 121-127.
    [29] 杨波, 车玉红, 崔艳丽, 等. 扁桃叶片矿质元素质量分数的年周期变化[J]. 西北农业学报, 2013, 22(4): 114-119.
    Yang B, Che Y H, Cui Y L, et al. Annual periodical variation for mineral element mass fraction of Almond leaves[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(4): 114-119..
    [30] 高淑然, 潘存德, 王振锡, 等. 轮台白杏叶片光谱特征及对施肥的响应[J]. 新疆农业科学, 2011, 48(11): 1961-1966.
    Gao S R, Pan C D, Wang Z X, et al. The leaf spectral characteristics of Armenica Vulgaris‘Luntaibaixing’and its response to the fertilizer[J]. Xinjiang Agricultural Sciences, 2011, 48(11): 1961-1966.
    [31] David W, Natalie T B, Matthew H T, et al. Photosynthesis and reflectance indices for rainforest species in ecosystems undergoing progression and retrogression along a soil fertility chronosequence in New Zealand[J]. Oecologia, 2005, 144(2): 233-244.
    [32] 程一松, 胡春胜, 郝二波, 等. 氮素胁迫下的冬小麦高光谱特征提取与分析[J]. 资源科学, 2003, 25(1): 86-93.
    Cheng Y S, Hu C S, Hao E B, et al. Analysis and extraction of hyperspectral information feature of winter wheat under nitrogen stress condition[J]. Resources Science, 2003, 25(1): 86-93.
    [33] 王珂, 沈掌泉, 王人潮. 不同钾营养水平的水稻冠层和叶片光谱特征研究初报[J]. 科技通报, 1997, 13(4): 211-214.
    Wang K, Shen Z Q, Wang R C. Study on rice canopy and leaf spectral characteristics under different levels of potassium nutrition[J]. Bulletin of Science and Technology, 1997, 13(4): 211-214.
    [34] 王磊, 白由路, 杨俐苹. 春玉米磷素营养的光谱响应及诊断[J]. 植物营养与肥料学报, 2007, 13(5): 802-808.
    Wang L, Bai Y L, Yang L P. Spectral response and diagnosis of phosphorus nutrition in corn[J]. Plant Nutrition and Fertilizer Science, 2007, 13(5): 802-808.
    [35] 张俊华, 张佳宝, 钦绳武. 不同施肥长期定位试验地夏玉米冠层光谱特征研究[J]. 植物营养与肥料学报, 2010, 16(4): 874-879.
    Zhang J H, Zhang J B, Qin S W. Spectral reflectance characteristics of summer maize under long-term fertilization[J]. Plant Nutrition and Fertilizer Science, 2010, 16(4): 874-879.
    [36] 王磊, 白由路. 不同钾素处理春玉米叶片营养元素含量变化及其光谱响应[J]. 遥感学报, 2007, 11(5): 641-647.
    Wang L, Bai Y L. Nutrients change and spectral response of spring corn leaf for varying amounts of potassium fertilization[J]. Journal of Remote Sensing, 2007, 11(5): 641-647.
  • 期刊类型引用(4)

    1. 王栋,周媛媛,郭路航,张苗,吉庆凯,韩彦茹,孙志梅,马文奇. 冀中地区桃树优质高产的叶片氮磷钾临界值范围及化肥投入量. 植物营养与肥料学报. 2022(02): 269-278 . 本站查看
    2. 庄红梅,李磐,刘会芳,陆鹏飞,冯广平,韩宏伟,王强,王浩. 化肥减施对设施陇椒叶片光谱特性的影响. 分子植物育种. 2022(09): 3076-3090 . 百度学术
    3. 栗方亮,孔庆波,张青. 利用多种回归模型对比估算琯溪蜜柚叶片钾素含量. 热带作物学报. 2022(06): 1191-1199 . 百度学术
    4. 庄红梅,王强,韩宏,刘会芳,王浩. 芜菁营养生长期叶片光谱特性及对氮的敏感性. 新疆农业科学. 2018(03): 477-489 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  2399
  • HTML全文浏览量:  571
  • PDF下载量:  384
  • 被引次数: 10
出版历程
  • 收稿日期:  2016-08-03
  • 修回日期:  2016-08-03
  • 刊出日期:  2016-07-24

目录

    /

    返回文章
    返回