• ISSN 1008-505X
  • CN 11-3996/S

不同施肥模式对设施秋冬茬芹菜生育期间土壤酶活性的影响

王文锋, 李春花, 黄绍文, 高伟, 唐继伟

王文锋, 李春花, 黄绍文, 高伟, 唐继伟. 不同施肥模式对设施秋冬茬芹菜生育期间土壤酶活性的影响[J]. 植物营养与肥料学报, 2016, 22(3): 676-686. DOI: 10.11674/zwyf.15223
引用本文: 王文锋, 李春花, 黄绍文, 高伟, 唐继伟. 不同施肥模式对设施秋冬茬芹菜生育期间土壤酶活性的影响[J]. 植物营养与肥料学报, 2016, 22(3): 676-686. DOI: 10.11674/zwyf.15223
WANG Wen-feng, LI Chun-hua, HUANG Shao-wen, GAO Wei, TANG Ji-wei. Effects of different fertilization patterns on soil enzyme activities during growing period of autumn-winter season celery in greenhouse[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(3): 676-686. DOI: 10.11674/zwyf.15223
Citation: WANG Wen-feng, LI Chun-hua, HUANG Shao-wen, GAO Wei, TANG Ji-wei. Effects of different fertilization patterns on soil enzyme activities during growing period of autumn-winter season celery in greenhouse[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(3): 676-686. DOI: 10.11674/zwyf.15223

不同施肥模式对设施秋冬茬芹菜生育期间土壤酶活性的影响

基金项目: 

现代农业产业技术体系建设专项(CARS-25-C-11); 公益性行业(农业)科研专项(201203095)资助。

详细信息
    作者简介:

    王文锋(1988—), 男, 山东日照人, 硕士研究生, 主要从事肥料资源利用研究。

  • 中图分类号: S636.3;S606+.2

Effects of different fertilization patterns on soil enzyme activities during growing period of autumn-winter season celery in greenhouse

  • 摘要: 【目的】利用在天津的日光温室蔬菜不同施肥模式定位试验,研究了不同施肥模式对设施菜田土壤酶活性的影响,为设施蔬菜高效施肥和菜田土壤可持续利用提供依据。【方法】取样调查在第9茬蔬菜(秋冬茬芹菜)进行。定位试验设6个处理,在等氮磷钾条件下,分别为1)全部施用化肥氮(4/4CN),2)3/4化肥氮+1/4猪粪氮(3/4CN+1/4PN),3)2/4化肥氮+2/4猪粪氮(2/4CN+2/4PN),4)1/4化肥氮+3/4猪粪氮(1/4CN+3/4PN),5)2/4化肥氮+1/4猪粪氮+1/4秸秆氮(2/4CN+1/4PN+1/4SN),6)2/4化肥氮+2/4秸秆氮(2/4CN+2/4SN)。在芹菜基肥施用前和定植后30、60、90、110天,采取0—20 cm土壤样品,测定土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纤维二糖苷酶、几丁质酶、磷酸酶和脲酶的活性,分析其与土壤微生物量碳氮及土壤可溶性有机碳氮含量之间的关系。【结果】芹菜生育期间不同施肥模式土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纤维二糖苷酶、几丁质酶和磷酸酶的活性总体上先增后降,较高土壤酶活性均出现在芹菜定植后60~90 d; 土壤脲酶活性总体上呈逐渐升高的趋势。芹菜季有机无机肥料配施模式土壤α-葡萄苷酶、β-木糖苷酶、β-葡萄苷酶、β-纤维二糖苷酶、几丁质酶、磷酸酶和脲酶的活性较4/4CN模式平均分别增加22.9%~92.0%、20.1%~152.4%、23.1%~145.1%、28.7%~273.8%、9.2%~207.8%、13.7%~86.8%和6.5%~56.5%,其中以配施秸秆模式土壤酶活性相对较高,较4/4CN模式平均分别增加59.9%~92.0%、98.9%~152.4%、90.3%~145.1%、171.6%~273.8%、106.4%~207.8%、68.8%~86.8%和30.7%~56.5%。土壤酶活性与土壤微生物量碳氮、可溶性有机碳氮含量及芹菜产量之间总体上呈显著或极显著正相关关系。【结论】同等养分投入量下,设施菜田土壤酶活性表现为有机无机肥料配合显著高于单施化肥,又以配施秸秆效果更佳; 土壤酶活性与土壤微生物量碳氮、可溶性有机碳氮含量和蔬菜产量之间密切相关。说明有机无机肥配施,特别是配施一定的秸秆可有效提高土壤酶活性,维持较高的菜田土壤肥力,有利于设施蔬菜的可持续和高效生产。
    Abstract: 【Objectives】 The fixed-site greenhouse vegetable fertilization experiment is in Tianjin, where the rotation of tomato in spring season and celery in autumn-winter season has been set up. The effect of different fertilization patterns on soil enzymes activities was investigated to provide a scientific fertilization basis for sustainable and high-efficient vegetable production in greenhouse. 【Methods】 The experiment was carried out on celery in autumn-winter season, including 6 treatments depending on the proportion of nitrogen from different types of fertilizers: 1) Complete chemical nitrogen fertilizer (4/4CN); 2) 3/4 N from chemical fertilizer, 1/4 from pig manure (3/4CN+1/4PN); 3) 2/4 N from chemical fertilizer, 2/4 from pig manure (2/4CN+2/4PN); 4) 1/4 N from chemical fertilizer, 3/4 from pig manure (1/4CN+3/4PN); 5) 2/4 N from chemical fertilizer, 1/4 from pig manure and 1/4 from straw (2/4CN+1/4PN+1/4SN); 6) 2/4 N from chemical fertilizer, 2/4 from straw (2/4CN+2/4SN). This investigation was conducted in the ninth harvest of celery. All the treatments were applied with the same amounts of N, P2O5 and K2O nutrients. 0-20 cm surface soil samples were collected. Soil enzyme activities, includiung soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase, phosphatase and urease were measured at different growing stages of celery, and their correlations with contents of MBC, MBN, DOC and DON were calculated.【Results】 Activities of soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase and phosphatase in different treatments all increased initially and then decreased, with relatively higher activity at 60-90 days after transplanting of celery. Soil urease activities increased gradually during the celery growing season. Compared with the 4/4CN treatment, activities of soil α-glucosidase, β-xylosidase, β-glucosidase, β-cellobiosidase, chitinase, phosphatase and urease were increased by 22.9%-92.0%, 20.1%-152.4%, 23.1%-145.1%, 28.7%-273.8%, 9.2%-207.8%, 13.7%-86.8% and 6.5%-56.5%, respectively in treatments with combined application of manure and straw with chemical fertilizers, and by 59.9%-92.0%, 98.9%-152.4%, 90.3%-145.1%, 171.6%-273.8%, 106.4%-207.8%, 68.8%-86.8% and 30.7%-56.5%, respectively in straw-amended treatments. Significant positive correlation relationships were found between enzymes activities and contents of MBC, MBN, DOC and DON and celery yield. 【Conclusions】 Compared with the 4/4CN, combined application of chemical fertilizers with organic materials, especially corn straw, can greatly enhance soil enzymes activities in greenhouse vegetable field. Soil enzymes activities are significantly correlated with MBC, MBN, DOC and DON contents and vegetable yield. Therefore, the combined utilization of organic and inorganic fertilizers can significantly increase soil enzymes activities, and maintain soil fertility in greenhouse vegetable production.
  • [null] [1] Ju X T, Kou C L, Christie P, et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain[J]. Environmental Pollution, 2007, 145(2): 497-506.
    [2] 黄绍文, 王玉军, 金继运, 等. 我国主要菜区土壤盐分,酸碱性和肥力状况[J]. 植物营养与肥料学报, 2011, 17(4): 906-918.
    Huang S W, Wang Y J, Jin J Y, et al., Status of salinity, pH and nutrients in soils in main vegetable production regions in China[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 906-918.
    [3] 郝小雨, 高伟, 王玉军, 等. 有机无机肥料配合施用对设施菜田土壤 N2O 排放的影响[J]. 植物营养与肥料学报, 2012, 18(5): 1075-1088.
    Hao X Y, Gao W, Wang Y J, et al. Effects of combined application of organic manure and chemical fertilizers on N2O emission from greenhouse vegetable soil[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1075-1088.
    [4] Eivazi F, Bayan M R, Schmidt K. Select soil enzyme activities in the historic Sanborn Field as affected by long-term cropping systems[J]. Communications in Soil Science and Plant Analysis, 2003, 34(15-16): 2259-2275.
    [5] Gong W, Yan X, Wang J, et al. Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China[J]. Geoderma, 2009, 149(3): 318-324.
    [6] Liu E, Yan C, Mei X, et al. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China[J]. Geoderma, 2010, 158(3): 173-180.
    [7] DeForest J L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA[J]. Soil Biology and Biochemistry, 2009, 41(6): 1180-1186.
    [8] Tejada M, Gonzalez J L, García-Martínez A M, et al. Effects of different green manures on soil biological properties and maize yield[J]. Bioresource Technology, 2008, 99(6): 1758-1767.
    [9] Tian L, Dell E, Shi W. Chemical composition of dissolved organic matter in agroecosystems: correlations with soil enzyme activity and carbon and nitrogen mineralization[J]. Applied Soil Ecology, 2010, 46(3): 426-435.
    [10] Roldán A, Salinas-García J R, Alguacil M M, et al. Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions[J]. Geoderma, 2005, 129(3): 178-185.
    [11] Lagomarsino A, Moscatelli M C, Di Tizio A, et al. Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment[J]. Ecological Indicators, 2009, 9(3): 518-527.
    [12] 孙彩菊, 程智慧, 孟焕文, 等. 大棚番茄连续定位套蒜第3年度土壤微生物数量和酶活性的变化[J]. 西北农林科技大学学报 (自然科学版), 2012, 40(12): 97-105.
    Sun C J, Cheng Z H, Meng H W, et al. Variation of soil microorganism quantities and enzyme activities at the third year cultivation of continuous positional intercropping of tomato with garlic under plastic tunnel[J]. Journal of Northwest A & F University (Natural Science Edition), 2012, 40(12): 97-105.
    [13] 李敏, 吴凤芝. 不同填闲模式对黄瓜根际土壤酶活性及细菌群落的影响[J]. 应用生态学报, 2014, 25(12): 3556-3562.
    Li M, Wu F Z. Effects of different catch modes on soil enzyme activities and bacterial community in the rhizosphere of cucumber[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3556-3562.
    [14] 贺丽娜, 梁银丽, 高静, 等. 连作对设施黄瓜产量和品质及土壤酶活性的影响[J]. 西北农林科技大学学报 (自然科学版), 2008, 36(5): 155-159.
    He L N, Liang Y L, Gao J, et al. The effect of continuous cropping on yield, quality of cucumber and soil enzymes activities in solar greenhouse[J]. Journal of Northwest A & F University (Natural Science Edition), 2008, 36(5): 155-159.
    [15] 贺丽娜, 梁银丽, 熊亚梅, 等. 不同前茬对设施黄瓜产量和品质及土壤酶活性的影响[J]. 中国生态农业学报, 2009, 17(1): 24-28.
    He L N, Liang Y L, Xiong Y M, et al. Effect of different proceeding crops on yield, quality of cucumber and soil enzyme activity in solar greenhouse[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 24-28
    [16] 马彦霞, 郁继华, 张晶, 等. 设施蔬菜栽培茬口对生态型无土栽培基质性状变化的影响[J]. 生态学报, 2014, 34(14): 4071-4079.
    Ma Y X, Yu J H, Zhang J, et al. Effect of different rotation systems on the characteristic change of ecotype soilless culture media for vegetables in greenhouse environments[J]. Acta Ecologica Sinica, 2014, 34(14): 4071-4079.
    [17] 吴忠红, 杜新民, 张永清, 等. 晋南日光温室土壤微生物及土壤酶活性变化规律研究[J]. 中国农学通报, 2007, 23(1): 296-298.
    Wu Z H, Du X M, Zhang Y Q, et al. The microbe amount and enzymes activities of soil in greenhouse in Jinnan area[J]. Chinese Agricultural Science Bulletin, 2007, 23(1): 296 -298.
    [18] 赵秋, 高贤彪, 宁晓光, 等. 天津地区不同年限设施土壤 pH 及酶活性变化[J]. 华北农学报, 2012, 27(1): 215-217.
    Zhao Q, Gao X B, Ning X G, et al. Changes of pH and enzyme activities in greenhouse soils of different planting years in Tianjin[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(1): 215-217.
    [19] 孙艺文, 吴凤芝. 小麦, 燕麦残茬对连作黄瓜生长及土壤酶活性的影响[J]. 中国蔬菜, 2013, 4: 12.
    Sun Y W, Wu F Z. Effects of wheat and oat residues on growth of continuous cucumber cropping and soil enzymatic activity[J]. China Vegetables, 2013, 4: 12.
    [20] 张浩, 赵九洲, 张丽, 等. 不同大豆根茬比对连作番茄生长发育及根际土壤环境的影响[J]. 西北农业学报, 2014, 7: 025.
    Zhang H, Zhao J Z, Zhang L, et al. Effects of different proportion of soybean stubble and continuous cropping soil on tomato grow development and rhizosphere soil environment[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 7: 025.
    [21] Shen W, Lin X, Shi W, et al. Higher rates of nitrogen fertilization decrease soil enzyme activities, microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land[J]. Plant and Soil, 2010, 337(1-2): 137-150.
    [22] Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils[J]. Soil Biology and Biochemistry, 2001, 33(12): 1633-1640.
    [23] Stemmer M. Multiple-substrate enzyme assays: a useful approach for profiling enzyme activity in soils[J]. Soil Biology and Biochemistry, 2004, 36(3): 519-527.
    [24] 林先贵. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社, 2010.
    Lin X G. Principles and methods of soil microbiology research[M]. Beijing: Higher Education Press, 2010.
    [25] 吴金水, 林启美, 黄巧云, 肖和艾. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社, 2006.
    Wu J S, Lin Q M, Huang Q Y, Xiao H A. Soil microbial biomass determination methods and application[M]. Beijing: China Meteorological Press, 2006.
    [26] Zhong Z, Makeschin F. Soluble organic nitrogen in temperate forest soils[J]. Soil Biology and Biochemistry, 2003, 35(2): 333-338.
    [27] 袁娜娜. 室内环刀法测定土壤田间含水量[J]. 中国新技术新产品, 2014, (5): 184.
    Yuan N N. Indoor cutting-ring method to determine field capacity[J]. China New Technologies and Products, 2014, (5): 184.
    [28] 鲁如坤. 土壤农业化学分析法[M]. 北京: 中国农业科技出版社, 1999.
    Lu R K. Soil and agro-chemistry analysis[M]. Beijing: China Agricultural Science and Technology Press, 1999.
    [29] Sleutel S, De Neve S, Németh T, et al. Effect of manure and fertilizer application on the distribution of organic carbon in different soil fractions in long-term field experiments[J]. European Journal of Agronomy, 2006, 25(3): 280-288.
    [30] Rudrappa L, Purakayastha T J, Singh D, et al. Long-term manuring and fertilization effects on soil organic carbon pools in a Typic Haplustept of semi-arid sub-tropical India[J]. Soil and Tillage Research, 2006, 88(1): 180-192.
    [31] Purakayastha T J, Rudrappa L, Singh D, et al. Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize-wheat-cowpea cropping system[J]. Geoderma, 2008, 144(1): 370-378.
    [32] Banger K, Kukal S S, Toor G, et al. Impact of long-term additions of chemical fertilizers and farm yard manure on carbon and nitrogen sequestration under rice-cowpea cropping system in semi-arid tropics[J]. Plant and Soil, 2009, 318(1-2): 27-35.
    [33] Wallenius K, Rita H, Mikkonen A, et al. Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities[J]. Soil Biology and Biochemistry, 2011, 43(7): 1464-1473.
    [34] Aoyama M, Angers D A, N'Dayegamiye A. Particulate and mineral-associated organic matter in water-stable aggregates as affected by mineral fertilizer and manure applications[J]. Canadian Journal of Soil Science, 1999, 79(2): 295-302.
    [35] Liu Y, Dell E, Yao H, et al. Microbial and soil properties in bentgrass putting greens: Impacts of nitrogen fertilization rates[J]. Geoderma, 2011, 162(1): 215-221.
    [36] Shen W, Lin X, Gao N, et al. Land use intensification affects soil microbial populations, functional diversity and related suppressiveness of cucumber Fusarium wilt in China’s Yangtze River Delta[J]. Plant and Soil, 2008, 306(1-2): 117-127.
    [37] 孙建, 刘苗, 李立军, 等. 不同施肥处理对土壤理化性质的影响[J]. 华北农学报, 2010, 25(4): 221-225.
    Sun J, Liu M, Li L J, et al. The effect of different fertilization treatments on soil physical and chemical property[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(4): 221-225.
    [38] 张北赢, 陈天林, 王兵. 长期施用化肥对土壤质量的影响[J]. 中国农学通报, 2010, 26(11): 182-187.
    Zhang B Y, Chen T L, Wang B. Effects of long-term uses of chemical fertilizers on soil quality[J]. Chinese Agricultural Science Bulletin, 2010, 26(11): 182-187.
    [39] Marx M C, Kandeler E, Wood M, et al. Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions[J]. Soil Biology and Biochemistry, 2005, 37(1): 35-48.
    [40] Allison S D, Jastrow J D. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils[J]. Soil Biology and Biochemistry, 2006, 38(11): 3245-3256.
    [41] Saha S, Prakash V, Kundu S, et al. Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean-wheat system in NW Himalaya[J]. European Journal of Soil Biology, 2008, 44(3): 309-315.
    [42] Wichern F, Mayer J, Joergensen R G, et al. Release of C and N from roots of peas and oats and their availability to soil microorganisms[J]. Soil Biology and Biochemistry, 2007, 39(11): 2829-2839.
    [43] 张咏梅, 周国逸, 吴宁. 土壤酶学的研究进展[J]. 热带亚热带植物学报, 2004, 12(1): 83-90.
    Zhang Y M, Zhou G Y, Wu N. A review of studies on soil enzymology[J]. Journal of Tropical and Subtropical Botany, 2004, 12(1): 83-90.
    [44] 万忠梅, 吴景贵. 土壤酶活性影响因子研究进展[J]. 西北农林科技大学学报 (自然科学版), 2005, 33(6): 87-92.
    Wan Z M, Wu J G. Study progress on factors affecting soil enzyme activity[J]. Journal of Northwest A & F University (Natural Science Edition), 2005, 33(6): 87-92.
    [45] Garcia-Gil J C, Plaza C, Soler-Rovira P, et al. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass[J]. Soil Biology and Biochemistry, 2000, 32(13): 1907-1913.
    [46] Olander L P, Vitousek P M. Regulation of soil phosphatase and chitinase activity by N and P availability[J]. Biogeochemistry, 2000, 49(2): 175-191.
    [47] Aon M A, Colaneri A C. II. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil[J]. Applied Soil Ecology, 2001, 18(3): 255-270.
    [48] Aon M A, Sarena D E, Burgos J L, et al. Microbiological, chemical and physical properties of soils subjected to conventional or no-till management: an assessment of their quality status[J]. Soil and Tillage Research, 2001, 60(3): 173-186.
    [49] 曹慧, 孙辉, 杨浩, 等. 土壤酶活性及其对土壤质量的指示研究进展[J]. 应用与环境生物学报, 2003, 9(1): 105-109.
    Cao H, Sun H, Yang H, et al. A review: soil enzyme activity and its indication for soil quality[J]. Chinese Journal of Applied & Environmental Biology, 2003, 9(1): 105-109.
    [50] Ajwa H A, Dell C J, Rice C W. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization[J]. Soil Biology and Biochemistry, 1999, 31(5): 769-777.
    [51] Caldwell B A. Enzyme activities as a component of soil biodiversity: a review[J]. Pedobiologia, 2005, 49(6): 637-644.
    [52] 梁斌, 周建斌, 杨学云, 等. 栽培和施肥模式对黄土区旱地土壤微生物量及可溶性有机碳、 氮的影响[J]. 水土保持学报, 2009, 23(2): 132-137.
    Liang B, Zhou J B, Yang X Y, et al. Effects of different cultivation and fertilization models on soil microbial biomass and soluble organic carbon and nitrogen in dryland farming[J]. Journal of Soil and Water Conservation, 2009, 23(2): 132-137.
    [53] 韩琳, 张玉龙, 金烁, 等. 灌溉模式对保护地土壤可溶性有机碳与微生物量碳的影响[J]. 中国农业科学, 2010, 43(8): 1625-1633.
    Han L, Zhang Y L, Jin S, et al. Effect of different irrigation patterns on soil dissolved organic carbon and microbial biomass carbon in protected field[J]. Scientia Agricultura Sinica, 2010, 43(8): 1625-1633.
  • 期刊类型引用(10)

    1. 郭润泽,杨扬,付鑫,李凤荣,门明新,彭正萍. 不同秸秆对黄瓜、土壤性状及酶活性的影响. 北方园艺. 2022(17): 79-85 . 百度学术
    2. 魏晗梅,郑粉莉,赵苗苗,王婧,焦健宇,王雪松. CO_2浓度升高、增温和冬小麦种植对土壤酶活性的影响. 应用生态学报. 2022(11): 2971-2978 . 百度学术
    3. 吴羽晨,蔺芳,张家洋,张路路. 3种药用植物单/混播对沙化土壤碳、氮质量分数及酶活性的影响. 浙江农林大学学报. 2021(02): 329-335 . 百度学术
    4. 李欣,陈小华,顾海蓉,钱晓雍,沈根祥,赵庆节,白玉杰. 典型农田土壤酶活性分布特征及影响因素分析. 生态环境学报. 2021(08): 1634-1641 . 百度学术
    5. 赵春建,李玉正,关佳晶,苏伟然,田瑶,王婷婷,李申,李春英. 东北红豆杉—无花果复合种植对两种植物生长和土壤酶活性影响. 植物研究. 2020(05): 679-685 . 百度学术
    6. 赵海霞,裴红宾,张永清,高振峰,栾换换,周进财. 不同氮、腐殖酸肥施用量下芽孢杆菌ZJM-P5对红小豆幼苗根际土壤酶活性的影响. 江苏农业科学. 2019(06): 109-113 . 百度学术
    7. 符菁,赵远,赵利华,张玉虎,荆玉琳,胡茜,张艺,张晟,卫国华,申荣艳,朱雅红. 基于光合菌剂的复合微生物菌肥对水稻产量及土壤酶活性的影响. 西南农业学报. 2019(10): 2330-2336 . 百度学术
    8. 陈昱,张福建,范淑英,王丰,王强,吴才君. 秸秆腐解物对豇豆连作土壤性质及幼苗生理指标的影响. 核农学报. 2019(07): 1472-1479 . 百度学术
    9. 汤桂容,周旋,田昌,彭辉辉,张玉平,荣湘民,刘强. 有机无机氮肥配施对典型菜地土壤微生物和酶活性的影响. 华北农学报. 2017(04): 129-136 . 百度学术
    10. 徐宪斌. 蚯蚓粪配施化肥对玉米根际土壤生物学特征的影响. 水土保持通报. 2017(01): 78-82 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  3214
  • HTML全文浏览量:  573
  • PDF下载量:  815
  • 被引次数: 23
出版历程
  • 收稿日期:  2015-05-04
  • 修回日期:  2016-06-01
  • 刊出日期:  2016-05-24

目录

    /

    返回文章
    返回