[null] |
[1] Ju X T, Kou C L, Christie P, et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain[J]. Environmental Pollution, 2007, 145(2): 497-506. [2] 黄绍文, 王玉军, 金继运, 等. 我国主要菜区土壤盐分,酸碱性和肥力状况[J]. 植物营养与肥料学报, 2011, 17(4): 906-918. Huang S W, Wang Y J, Jin J Y, et al., Status of salinity, pH and nutrients in soils in main vegetable production regions in China[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 906-918. [3] 郝小雨, 高伟, 王玉军, 等. 有机无机肥料配合施用对设施菜田土壤 N2O 排放的影响[J]. 植物营养与肥料学报, 2012, 18(5): 1075-1088. Hao X Y, Gao W, Wang Y J, et al. Effects of combined application of organic manure and chemical fertilizers on N2O emission from greenhouse vegetable soil[J]. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1075-1088. [4] Eivazi F, Bayan M R, Schmidt K. Select soil enzyme activities in the historic Sanborn Field as affected by long-term cropping systems[J]. Communications in Soil Science and Plant Analysis, 2003, 34(15-16): 2259-2275. [5] Gong W, Yan X, Wang J, et al. Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China[J]. Geoderma, 2009, 149(3): 318-324. [6] Liu E, Yan C, Mei X, et al. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China[J]. Geoderma, 2010, 158(3): 173-180. [7] DeForest J L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA[J]. Soil Biology and Biochemistry, 2009, 41(6): 1180-1186. [8] Tejada M, Gonzalez J L, García-Martínez A M, et al. Effects of different green manures on soil biological properties and maize yield[J]. Bioresource Technology, 2008, 99(6): 1758-1767. [9] Tian L, Dell E, Shi W. Chemical composition of dissolved organic matter in agroecosystems: correlations with soil enzyme activity and carbon and nitrogen mineralization[J]. Applied Soil Ecology, 2010, 46(3): 426-435. [10] Roldán A, Salinas-García J R, Alguacil M M, et al. Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions[J]. Geoderma, 2005, 129(3): 178-185. [11] Lagomarsino A, Moscatelli M C, Di Tizio A, et al. Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment[J]. Ecological Indicators, 2009, 9(3): 518-527. [12] 孙彩菊, 程智慧, 孟焕文, 等. 大棚番茄连续定位套蒜第3年度土壤微生物数量和酶活性的变化[J]. 西北农林科技大学学报 (自然科学版), 2012, 40(12): 97-105. Sun C J, Cheng Z H, Meng H W, et al. Variation of soil microorganism quantities and enzyme activities at the third year cultivation of continuous positional intercropping of tomato with garlic under plastic tunnel[J]. Journal of Northwest A & F University (Natural Science Edition), 2012, 40(12): 97-105. [13] 李敏, 吴凤芝. 不同填闲模式对黄瓜根际土壤酶活性及细菌群落的影响[J]. 应用生态学报, 2014, 25(12): 3556-3562. Li M, Wu F Z. Effects of different catch modes on soil enzyme activities and bacterial community in the rhizosphere of cucumber[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3556-3562. [14] 贺丽娜, 梁银丽, 高静, 等. 连作对设施黄瓜产量和品质及土壤酶活性的影响[J]. 西北农林科技大学学报 (自然科学版), 2008, 36(5): 155-159. He L N, Liang Y L, Gao J, et al. The effect of continuous cropping on yield, quality of cucumber and soil enzymes activities in solar greenhouse[J]. Journal of Northwest A & F University (Natural Science Edition), 2008, 36(5): 155-159. [15] 贺丽娜, 梁银丽, 熊亚梅, 等. 不同前茬对设施黄瓜产量和品质及土壤酶活性的影响[J]. 中国生态农业学报, 2009, 17(1): 24-28. He L N, Liang Y L, Xiong Y M, et al. Effect of different proceeding crops on yield, quality of cucumber and soil enzyme activity in solar greenhouse[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 24-28 [16] 马彦霞, 郁继华, 张晶, 等. 设施蔬菜栽培茬口对生态型无土栽培基质性状变化的影响[J]. 生态学报, 2014, 34(14): 4071-4079. Ma Y X, Yu J H, Zhang J, et al. Effect of different rotation systems on the characteristic change of ecotype soilless culture media for vegetables in greenhouse environments[J]. Acta Ecologica Sinica, 2014, 34(14): 4071-4079. [17] 吴忠红, 杜新民, 张永清, 等. 晋南日光温室土壤微生物及土壤酶活性变化规律研究[J]. 中国农学通报, 2007, 23(1): 296-298. Wu Z H, Du X M, Zhang Y Q, et al. The microbe amount and enzymes activities of soil in greenhouse in Jinnan area[J]. Chinese Agricultural Science Bulletin, 2007, 23(1): 296 -298. [18] 赵秋, 高贤彪, 宁晓光, 等. 天津地区不同年限设施土壤 pH 及酶活性变化[J]. 华北农学报, 2012, 27(1): 215-217. Zhao Q, Gao X B, Ning X G, et al. Changes of pH and enzyme activities in greenhouse soils of different planting years in Tianjin[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(1): 215-217. [19] 孙艺文, 吴凤芝. 小麦, 燕麦残茬对连作黄瓜生长及土壤酶活性的影响[J]. 中国蔬菜, 2013, 4: 12. Sun Y W, Wu F Z. Effects of wheat and oat residues on growth of continuous cucumber cropping and soil enzymatic activity[J]. China Vegetables, 2013, 4: 12. [20] 张浩, 赵九洲, 张丽, 等. 不同大豆根茬比对连作番茄生长发育及根际土壤环境的影响[J]. 西北农业学报, 2014, 7: 025. Zhang H, Zhao J Z, Zhang L, et al. Effects of different proportion of soybean stubble and continuous cropping soil on tomato grow development and rhizosphere soil environment[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 7: 025. [21] Shen W, Lin X, Shi W, et al. Higher rates of nitrogen fertilization decrease soil enzyme activities, microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land[J]. Plant and Soil, 2010, 337(1-2): 137-150. [22] Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils[J]. Soil Biology and Biochemistry, 2001, 33(12): 1633-1640. [23] Stemmer M. Multiple-substrate enzyme assays: a useful approach for profiling enzyme activity in soils[J]. Soil Biology and Biochemistry, 2004, 36(3): 519-527. [24] 林先贵. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社, 2010. Lin X G. Principles and methods of soil microbiology research[M]. Beijing: Higher Education Press, 2010. [25] 吴金水, 林启美, 黄巧云, 肖和艾. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社, 2006. Wu J S, Lin Q M, Huang Q Y, Xiao H A. Soil microbial biomass determination methods and application[M]. Beijing: China Meteorological Press, 2006. [26] Zhong Z, Makeschin F. Soluble organic nitrogen in temperate forest soils[J]. Soil Biology and Biochemistry, 2003, 35(2): 333-338. [27] 袁娜娜. 室内环刀法测定土壤田间含水量[J]. 中国新技术新产品, 2014, (5): 184. Yuan N N. Indoor cutting-ring method to determine field capacity[J]. China New Technologies and Products, 2014, (5): 184. [28] 鲁如坤. 土壤农业化学分析法[M]. 北京: 中国农业科技出版社, 1999. Lu R K. Soil and agro-chemistry analysis[M]. Beijing: China Agricultural Science and Technology Press, 1999. [29] Sleutel S, De Neve S, Németh T, et al. Effect of manure and fertilizer application on the distribution of organic carbon in different soil fractions in long-term field experiments[J]. European Journal of Agronomy, 2006, 25(3): 280-288. [30] Rudrappa L, Purakayastha T J, Singh D, et al. Long-term manuring and fertilization effects on soil organic carbon pools in a Typic Haplustept of semi-arid sub-tropical India[J]. Soil and Tillage Research, 2006, 88(1): 180-192. [31] Purakayastha T J, Rudrappa L, Singh D, et al. Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize-wheat-cowpea cropping system[J]. Geoderma, 2008, 144(1): 370-378. [32] Banger K, Kukal S S, Toor G, et al. Impact of long-term additions of chemical fertilizers and farm yard manure on carbon and nitrogen sequestration under rice-cowpea cropping system in semi-arid tropics[J]. Plant and Soil, 2009, 318(1-2): 27-35. [33] Wallenius K, Rita H, Mikkonen A, et al. Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities[J]. Soil Biology and Biochemistry, 2011, 43(7): 1464-1473. [34] Aoyama M, Angers D A, N'Dayegamiye A. Particulate and mineral-associated organic matter in water-stable aggregates as affected by mineral fertilizer and manure applications[J]. Canadian Journal of Soil Science, 1999, 79(2): 295-302. [35] Liu Y, Dell E, Yao H, et al. Microbial and soil properties in bentgrass putting greens: Impacts of nitrogen fertilization rates[J]. Geoderma, 2011, 162(1): 215-221. [36] Shen W, Lin X, Gao N, et al. Land use intensification affects soil microbial populations, functional diversity and related suppressiveness of cucumber Fusarium wilt in China’s Yangtze River Delta[J]. Plant and Soil, 2008, 306(1-2): 117-127. [37] 孙建, 刘苗, 李立军, 等. 不同施肥处理对土壤理化性质的影响[J]. 华北农学报, 2010, 25(4): 221-225. Sun J, Liu M, Li L J, et al. The effect of different fertilization treatments on soil physical and chemical property[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(4): 221-225. [38] 张北赢, 陈天林, 王兵. 长期施用化肥对土壤质量的影响[J]. 中国农学通报, 2010, 26(11): 182-187. Zhang B Y, Chen T L, Wang B. Effects of long-term uses of chemical fertilizers on soil quality[J]. Chinese Agricultural Science Bulletin, 2010, 26(11): 182-187. [39] Marx M C, Kandeler E, Wood M, et al. Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particle-size fractions[J]. Soil Biology and Biochemistry, 2005, 37(1): 35-48. [40] Allison S D, Jastrow J D. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils[J]. Soil Biology and Biochemistry, 2006, 38(11): 3245-3256. [41] Saha S, Prakash V, Kundu S, et al. Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean-wheat system in NW Himalaya[J]. European Journal of Soil Biology, 2008, 44(3): 309-315. [42] Wichern F, Mayer J, Joergensen R G, et al. Release of C and N from roots of peas and oats and their availability to soil microorganisms[J]. Soil Biology and Biochemistry, 2007, 39(11): 2829-2839. [43] 张咏梅, 周国逸, 吴宁. 土壤酶学的研究进展[J]. 热带亚热带植物学报, 2004, 12(1): 83-90. Zhang Y M, Zhou G Y, Wu N. A review of studies on soil enzymology[J]. Journal of Tropical and Subtropical Botany, 2004, 12(1): 83-90. [44] 万忠梅, 吴景贵. 土壤酶活性影响因子研究进展[J]. 西北农林科技大学学报 (自然科学版), 2005, 33(6): 87-92. Wan Z M, Wu J G. Study progress on factors affecting soil enzyme activity[J]. Journal of Northwest A & F University (Natural Science Edition), 2005, 33(6): 87-92. [45] Garcia-Gil J C, Plaza C, Soler-Rovira P, et al. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass[J]. Soil Biology and Biochemistry, 2000, 32(13): 1907-1913. [46] Olander L P, Vitousek P M. Regulation of soil phosphatase and chitinase activity by N and P availability[J]. Biogeochemistry, 2000, 49(2): 175-191. [47] Aon M A, Colaneri A C. II. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil[J]. Applied Soil Ecology, 2001, 18(3): 255-270. [48] Aon M A, Sarena D E, Burgos J L, et al. Microbiological, chemical and physical properties of soils subjected to conventional or no-till management: an assessment of their quality status[J]. Soil and Tillage Research, 2001, 60(3): 173-186. [49] 曹慧, 孙辉, 杨浩, 等. 土壤酶活性及其对土壤质量的指示研究进展[J]. 应用与环境生物学报, 2003, 9(1): 105-109. Cao H, Sun H, Yang H, et al. A review: soil enzyme activity and its indication for soil quality[J]. Chinese Journal of Applied & Environmental Biology, 2003, 9(1): 105-109. [50] Ajwa H A, Dell C J, Rice C W. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization[J]. Soil Biology and Biochemistry, 1999, 31(5): 769-777. [51] Caldwell B A. Enzyme activities as a component of soil biodiversity: a review[J]. Pedobiologia, 2005, 49(6): 637-644. [52] 梁斌, 周建斌, 杨学云, 等. 栽培和施肥模式对黄土区旱地土壤微生物量及可溶性有机碳、 氮的影响[J]. 水土保持学报, 2009, 23(2): 132-137. Liang B, Zhou J B, Yang X Y, et al. Effects of different cultivation and fertilization models on soil microbial biomass and soluble organic carbon and nitrogen in dryland farming[J]. Journal of Soil and Water Conservation, 2009, 23(2): 132-137. [53] 韩琳, 张玉龙, 金烁, 等. 灌溉模式对保护地土壤可溶性有机碳与微生物量碳的影响[J]. 中国农业科学, 2010, 43(8): 1625-1633. Han L, Zhang Y L, Jin S, et al. Effect of different irrigation patterns on soil dissolved organic carbon and microbial biomass carbon in protected field[J]. Scientia Agricultura Sinica, 2010, 43(8): 1625-1633.
|