Maize yield responses to potassium fertilizer and regional differences in Jilin Province
-
摘要:目的
本研究利用测土配方施肥项目田间试验的大样本数据,分析吉林省玉米施钾增产效应在生态区及县域尺度上的差异,为促进玉米高产稳产和钾肥资源高效利用提供参考。
方法基于2005—2013年吉林省玉米“3414”田间试验中推荐施钾 (N2P2K2) 和不施钾 (N2P2K0) 处理,分析生态区及县域尺度上玉米施钾的产量反应、农学利用率和肥料贡献率,建立玉米施钾产量、钾肥贡献率与基础产量之间的关系,从而评估吉林省玉米施钾的增产效应及区域差异。
结果不施钾条件下,吉林东部湿润山区、中部半湿润平原区和西部半干旱平原区玉米的基础产量平均分别为8.44 t/hm2 (3.29~14.5 t/hm2)、9.45 t/hm2 (3.77~15.3 t/hm2) 和8.11 t/hm2 (3.89~12.84 t/hm2)。施用钾肥显著提高三大区域玉米产量,东、中、西部平均分别增产1.31 t/hm2 (18.1%)、1.06 t/hm2 (12.2%) 和1.30 t/hm2 (17.4%)。推荐施钾条件下,东、中、西部玉米施钾的平均农学利用率分别为19.7、14.6和20.2 kg/kg,平均肥料贡献率分别为13.9%、10.2%和13.6%。统计分析显示,三大区域之间玉米施钾的增产量无显著差异,东部增幅显著高于中部,农学利用率和肥料贡献率东部也显著高于中、西部。回归分析发现,各区域玉米的施钾产量均与基础产量呈极显著正相关关系,符合线性模型,东部为y = 0.769 x + 3261 (R2 = 0.616**),中部为y = 0.883 x + 2158 (R2 = 0.757**),西部为y = 0.873 x + 2328 (R2 = 0.637**);而钾肥贡献率均与基础产量呈极显著负相关关系,符合对数模型,东部为y = –28.4 ln(x) + 270.1 (R2 = 0.348**),中部为y = –15.9 ln(x) + 156.1 (R2 = 0.172**),西部为y = –16.3 ln(x) + 160.6 (R2 = 0.123**)。随土壤基础供钾能力的提高,东部玉米施钾产量的增幅和钾肥贡献率的降幅明显高于中、西部。
结论吉林省玉米的钾肥管理应根据区域土壤钾素状况、自然气候条件和钾肥效应进行合理配置,现阶段应适当增加东部湿润山区玉米生产的钾肥资源配置,提高土壤供钾能力,促进玉米高产稳产。
Abstract:ObjectivesIn this study, maize yield responses to potassium (K) fertilizer in Jilin Province and the regional difference at the scale of ecological zones and counties were estimated, based on the big data of field experiments in Soil Testing and Formula Fertilization Project, aiming efficiently to provide references for high and stable yields and high use efficiency of K fertilizer in local maize production.
MethodsThe data were collected from the treatments N2P2K2 (+K) and N2P2K0 (–K) in maize “3414” field experiments carried out in Jilin Province during 2005–2013. The yield response, agronomic efficiency (AE) and fertilizer contribution rate (FCR) of K fertilizer and their regional differences were estimated at ecological zones and county levels. The relationships between maize yield brought by K application, FCRs and the basic yields were established to determine the effects of K fertilizer on maize yield and the regional difference.
ResultsIn the –K treatment, maize yields ranged from 3.29–14.5 t/hm2 and averaged 8.44 t/hm2 in eastern humid mountainous area (EHMA), ranged from 3.77–15.3 t/hm2 and averaged 9.45 t/hm2 in central sub-humid plain area (CSPA), and ranged from 3.89–12.84 t/hm2 and averaged 8.11 t/hm2 in western semi-arid plain area (WSPA). The K fertilization significantly increased maize yield across the ecological zones, with averaged yield increases of 1.31 t/hm2 (18.1%) in EHMA, 1.06 t/hm2 (12.2%) in CSPA and 1.30 t/hm2 (17.4%) in WSPA, respectively. Under current optimal K fertilizer management practices, the averaged AE of K fertilizer was 19.7 kg/kg in EHMA, 14.6 kg/kg in CSPA, and 20.2 kg/kg in WSPA. The values for FCR of K fertilizer were 13.9%, 10.2% and 13.3% in the three ecological zones, respectively. Statistical analysis results indicated that maize yield response were equal among different ecological zones, but yield increase rate was significantly higher in EHMA than that in CSPA. Both the highest AE and FCR of K fertilizer were observed in EHMA. A significant positive and linear correlation was observed in maize yields between +K and –K treatments in each ecological zone, the model equation was y = 0.769 x + 3261 (R2 = 0.616**) for EHMA, y = 0.883 x + 2158(R2 = 0.757**) for CSPA and y = 0.873 x + 2328(R2 = 0.637**) for WSPA. Meanwhile, a significant negative and logarithmic correlation was observed between FCRs of K fertilizer and maize yields in –K treatment, these model equations were y = –28.4 ln(x) + 270.1(R2 = 0.348**), y = –15.9 ln(x) + 156.1(R2 = 0.172**) and y = –16.3 ln(x) + 160.6(R2 = 0.123**), respectively. Compared with the other ecological zones, with the increasing of soil K supply capacity, EHMA showed larger increase in maize yield in +K treatment and greater decrease in FCR of K fertilizer.
ConclusionsThe maize K fertilizer management in Jilin Province should be optimized based on regional soil K content, natural climatic conditions and crop responses to K fertilizer. At the present stage, more K fertilizer should be applied in EHMA to enhance soil K supply capacity and ensure high and stable grain yield.
-
Keywords:
- Jilin Province /
- soil potassium /
- regional difference /
- potash use efficiency /
- maize grain yield
-
-
图 2 吉林省不同区域玉米施钾的产量效应
[注(Note):箱子上方不同小写字母表示施钾处理间差异显著The different lowercase letters above boxes indicate significant differences between +K and –K treatments (P < 0.05). *—区域间差异显著Significant differences among regions at 0.05 level. 每个箱子上、下线段分别表示25%和75%分位值,箱子内部虚线和实线分别表示平均值和中值The upper and lower limits of each box represent 25% and 75% percentiles,the horizontal dashed and solid lines inside each box indicate mean and median values,respectively.]
Figure 2. Maize yield responses to K fertilizer in different regions of Jilin Province
表 1 吉林省不同区域玉米施钾的增产效果和钾肥利用率
Table 1 Maize yield increase and K fertilizer use efficiency in the different regions of Jilin Province
地区
Region样本数
Sample number项目
Item增产量
Yield increase
(t/hm2)增产率
Yield increase rate
(%)农学利用率 (kg/kg)
Agronomic efficiency肥料贡献率 (%)
Fertilizer contribution rate东部湿润山区
East humid mountain area266 平均值Mean 1.31 ± 1.15 18.1 ± 17.2 19.7 ± 15.0 13.9 ± 10.6 范围Range –1.25~5.57 0~129.7 0~74.2 0~56.5 中部半湿润平原区
Central sub-humid plain area567 平均值Mean 1.06 ± 0.86 12.2 ± 9.9 14.6 ± 11.2 10.2 ± 7.3 范围Range –1.19~4.62 0~65.4 0~67.9 0~39.6 西部半干旱平原区
West semi-arid plain area277 平均值Mean 1.30 ± 1.02 17.4 ± 16.0 20.2 ± 14.8 13.6 ± 9.3 范围Range –0.43~6.42 0~165.0 0~71.2 0~62.3 单因素方差分析 (P)
One-way ANOVA自变量
Independent variable< 0.001** < 0.001** < 0.001** < 0.001** 协方差分析 (P)
UNIANOVA自变量
Independent variable0.311 ns < 0.036* < 0.001** < 0.001** 协变量
Concomitant variable< 0.001** < 0.001** < 0.001** < 0.001** 多重比较 (P)
Multiple comparisonsEHMA vs CSPA 0.133 ns 0.012* < 0.001 ** < 0.001 ** EHMA vs WSPA 0.414 ns < 0.638 ns < 0.001 ** < 0.001 ** CSPA vs WSPA 0.547 ns < 0.068 ns 0.961 ns 0.959 ns 注(Note):协方差分析中,增产量、增产率、农学利用率和肥料贡献率的协变量分别为不施钾产量、不施钾产量、施钾量和施钾产量 In UNIANOVA, the concomitant variables were maize yield in –K treatment for yield increase, maize yield in –K treatment for yield increase rate, K fertilization rate for agronomic efficiency and maize yield in +K treatment for fertilizer contribution rate, respectively. *—P < 0.05;**—P < 0.01;ns—差异不显著No significant difference. -
[1] 谢建昌, 周健民. 我国土壤钾素研究和钾肥使用的进展[J]. 土壤, 1999, 31(5): 244-254. Xie J C, Zhou J M. Advance in soil potassium research and potassium fertilizer use in China[J]. Soil, 1999, 31(5): 244-254.
[2] 王秀芳, 张宽, 王立春, 等. 科学管理与调控钾肥, 实现玉米高产稳产[J]. 玉米科学, 2004, 12(3): 92-95. DOI: 10.3969/j.issn.1005-0906.2004.03.032 Zhang X F, Zhang K, Wang L C, et al. Manage and control potash fertilizer scientifically and realize the high and stable yield for maize[J]. Journal of Maize Sciences, 2004, 12(3): 92-95. DOI: 10.3969/j.issn.1005-0906.2004.03.032
[3] 谭德水, 金继运, 黄绍文. 长期施钾对东北春玉米产量和土壤钾素状况的影响[J]. 中国农业科学, 2007, 40(10): 2234-2240. DOI: 10.3321/j.issn:0578-1752.2007.10.016 Tan D S, Jin J Y, Huang S W. Effect of long-term application of K fertilizer on spring maize yield and soil K in Northeast China[J]. Scientia Agricultura Sinica, 2007, 40(10): 2234-2240. DOI: 10.3321/j.issn:0578-1752.2007.10.016
[4] 高强, 冯国忠, 王志刚. 东北地区春玉米施肥现状调查[J]. 中国农学通报, 2010, 26(14): 229-231. Gao Q, Feng G Z, Wang Z G. Present situation of fertilizer application on spring maize in Northeast China[J]. Chinese Agricultural Science Bulletin, 2010, 26(14): 229-231.
[5] 焉莉, 王寅, 冯国忠, 等. 吉林省农田土壤肥力现状及变化特征[J]. 中国农业科学, 2015, 48(23): 4800-4810. DOI: 10.3864/j.issn.0578-1752.2015.23.021 Yan L, Wang Y, Feng G Z, et al. Status and change characteristics of farmland soil fertility in Jilin Province[J]. Scientia Agricultura Sinica, 2015, 48(23): 4800-4810. DOI: 10.3864/j.issn.0578-1752.2015.23.021
[6] 孙爱文, 张卫峰, 杜芬, 等. 中国钾资源及钾肥发展战略[J]. 现代化工, 2009, 29(9): 10-16. DOI: 10.3321/j.issn:0253-4320.2009.09.002 Sun A W, Zhang W F, Du F, et al. China's development strategy on potash resources and fertilizer[J]. Modern Chemical Industry, 2009, 29(9): 10-16. DOI: 10.3321/j.issn:0253-4320.2009.09.002
[7] 商照聪, 刘刚, 包剑. 我国钾资源开发技术进展与展望[J]. 化肥工业, 2012, 39(4): 5-8. DOI: 10.3969/j.issn.1006-7779.2012.04.003 Shang Z C, Liu G, Bao J. Progress and prospect of technology for development of potassium resources in China[J]. Chemical Fertilizer Industry, 2012, 39(4): 5-8. DOI: 10.3969/j.issn.1006-7779.2012.04.003
[8] Liu M Q, Yu Z R, Liu Y H, et al. Fertilizer requirements for wheat and maize in China: the QUEFTS approach[J]. Nutrient Cycling in Agroecosystems, 2006, 74(3): 245-258. DOI: 10.1007/s10705-006-9002-5
[9] Xu X P, He P, Pampolono M F, et al. Nutrient requirements for maize in China based on QUEFTS analysis[J]. Field Crops Research, 2013, 150(15): 115-125.
[10] Setiyono T D, Walters D T, Cassman K G, et al. Estimating maize nutrient uptake requirements[J]. Field Crops Research, 2010, 118(2): 158-168. DOI: 10.1016/j.fcr.2010.05.006
[11] Blender R R, Haegele J W, Ruffo M L, et al. Nutrient uptake, partitioning, and remobilization in modern, transgenic insect-protected maize hybrids[J]. Agronomy Journal, 2013, 105(1): 161-170. DOI: 10.2134/agronj2012.0352
[12] 吴良泉. 基于“大配方、小调整”的中国三大粮食作物区域配肥技术研究[D]. 北京: 中国农业大学博士学位论文, 2014. Wu L Q. Fertilizer recommendations for three major cereal crops based on regional fertilizer formula and site specific adjustment in China[D]. Beijing: PhD Dissertation of China Agricultural University, 2014.
[13] Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton[J]. Physiologia Plantarum, 2008, 133(4): 670-681. DOI: 10.1111/j.1399-3054.2008.01073.x
[14] 李文娟, 何萍, 金继运. 钾素对玉米茎髓和幼根超微结构的影响及其与茎腐病抗性的关系[J]. 中国农业科学, 2010, 43(4): 729-736. DOI: 10.3864/j.issn.0578-1752.2010.04.009 Li W J, He P, Jin J Y. Effect of potassium on ultrastructure of maize stalk pith and young root and their relation to resistance to stalk rot[J]. Scientia Agricultura Sinica, 2010, 43(4): 729-736. DOI: 10.3864/j.issn.0578-1752.2010.04.009
[15] Zhang H M, Yang X Y, He X H, et al. Effect of long-term potassium fertilization on crop yield and potassium efficiency and balance under wheat-maize rotation in China[J]. Pedosphere, 2011, 21(2): 154-163. DOI: 10.1016/S1002-0160(11)60113-6
[16] 李波, 张吉旺, 崔海岩, 等. 施钾量对高产夏玉米抗倒伏能力的影响[J]. 作物学报, 2012, 38(11): 2093-2099. Li B, Zhang J W, Cui H Y, et al. Effects of potassium application rate on stem lodging resistance of summer maize under high yield conditions[J]. Acta Agronomica Sinica, 2012, 38(11): 2093-2099.
[17] He C, Ouyang Z, Tian Z, et al. Yield and potassium balance in a wheat-maize cropping system of the North China Plain[J]. Agronomy Journal, 2012, 104(4): 1016-1022. DOI: 10.2134/agronj2011.0418
[18] Radulov I, Berbecea A, Crista F, et al. Mineral fertilization effect on soil potassium and corn quality and yield[J]. Research Journal of Agricultural Science, 2012, 44(3): 108-114.
[19] Amanullah, Iqbal A, Irfanullah, et al. Potassium management for improving growth and grain yield of maize (Zea mays L.) under moisture stress condition[J]. Scientific Reports, 2016, 6: 34627. DOI: 10.1038/srep34627
[20] 张玉芹, 杨恒山, 高聚林, 等. 施钾方式对春玉米根系特征的影响[J]. 玉米科学, 2015, 23(2): 130-136. Zhang Y Q, Yang H S, Gao J L, et al. Effects of potassium fertilization methods on root characteristics of spring maize[J]. Journal of Maize Sciences. Journal of Maize Sciences, 2015, 23(2): 130-136.
[21] 中国农业科学院土壤肥料研究所. 中国化肥区划[M]. 北京: 中国农业科技出版社, 1986. Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences. Chinese chemical fertilizer planning[M]. Beijing: China Agricultural Science and Technology Press, 1986.
[22] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915-924. DOI: 10.3321/j.issn:0564-3929.2008.05.018 Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915-924. DOI: 10.3321/j.issn:0564-3929.2008.05.018
[23] 何萍, 徐新朋, 仇少君, 等. 我国北方玉米施肥产量效应和经济效益分析[J]. 植物营养与肥料学报, 2014, 20(6): 1387-1394. DOI: 10.11674/zwyf.2014.0608 He P, Xu X P, Qiu S J, et al. Yield response and economic analysis of fertilizer application in maize grown in North China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1387-1394. DOI: 10.11674/zwyf.2014.0608
[24] 单燕, 李水利, 李茹, 等. 陕西省玉米土壤肥力与施肥效应评估[J]. 土壤学报, 2015, 52(6): 1430-1437. Shan Y, Li S L, Li R, et al. Analysis of soil fertility and fertilizer efficiency of maize field in Shaanxi[J]. Acta Pedologica Sinica, 2015, 52(6): 1430-1437.
[25] 刘芬, 同延安, 王小英, 等. 渭北旱塬春玉米施肥效果及肥料利用效率研究[J]. 植物营养与肥料学报, 2014, 20(1): 48-55. DOI: 10.11674/zwyf.2014.0106 Liu F, Tong Y A, Wang X Y, et al. Effects of N, P and K fertilization on spring maize yield and fertilizer use efficiency in Weibei rainfed highland[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 48-55. DOI: 10.11674/zwyf.2014.0106
[26] 王寅, 郭聃, 高强, 等. 吉林省不同生态区玉米施氮效果与氮肥利用效率差异[J]. 土壤学报, 2016, 53(6): 1464-1475. Wang Y, Guo D, Gao Q, et al. Differences in yield response and N use efficiency of maize crops in different ecological zones of Jilin province[J]. Acta Pedologica Sinica, 2016, 53(6): 1464-1475.
[27] 王寅, 郭聃, 高强, 等. 吉林省不同生态区玉米施磷的增产效应差异[J]. 中国农业科学, 2017, 50(9): 1635-1645. DOI: 10.3864/j.issn.0578-1752.2017.09.009 Wang Y, Guo D, Gao Q, et al. Differences in maize yield responses to phosphorous fertilizer in different ecological zones of Jilin province[J]. Scientia Agricultura Sinica, 2017, 50(9): 1635-1645. DOI: 10.3864/j.issn.0578-1752.2017.09.009
[28] 黄绍文, 金继运. 土壤钾形态及其植物有效性研究进展[J]. 土壤肥料, 1995, (5): 23-29. Huang S W, Jin J Y. Research advance in soil potassium form and its plant availability[J]. Soil and Fertilizer, 1995, (5): 23-29.
[29] 侯云鹏, 张磊, 孔丽丽, 等. 施钾对不同肥力土壤玉米钾素吸收、分配及产量的影响[J]. 中国生态农业学报, 2013, 21(11): 1333-1339. Hou Y P, Zhang L, Kong L L, et al. Effect of potassium application rate on potassium absorption, distribution and yield of spring maize under different soil fertilities[J]. Chinese Journal of Eco-Agriculture, 2013, 21(11): 1333-1339.
[30] 谢佳贵, 侯云鹏, 尹彩侠, 等. 施钾和秸秆还田对春玉米产量、养分吸收及土壤钾素平衡的影响[J]. 植物营养与肥料学报, 2014, 20(5): 1110-1118. DOI: 10.11674/zwyf.2014.0507 Xie J G, Hou Y P, Yin C X, et al. Effect of potassium application and straw returning on spring maize yield, nutrient absorption and soil potassium balance[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1110-1118. DOI: 10.11674/zwyf.2014.0507
[31] 张卫建. 对我国玉米绿色增产增效栽培技术的探讨: 增密减氮[J]. 作物杂志, 2015, (4): 1-4. Zhang W J. On the cultivation approach to green improvement of maize yield and N use efficiency in China: dense planting with less N fertilizer[J]. Crops, 2015, (4): 1-4.
[32] 闫孝贡, 刘剑钊, 张洪喜, 等. 吉林省春玉米大面积增产与资源增效限制因素评估[J]. 吉林农业科学, 2012, 37(6): 9-11. Yan X G, Liu J Z, Zhang H X, et al. Assessment of limiting factors on high yield of large-scale spring maize production and high efficiency of resource in Jilin province[J]. Journal of Jilin Agricultural Sciences, 2012, 37(6): 9-11.
[33] 冯国忠, 张强, 顾明, 等. 吉林玉米带春玉米专用肥配方的确定[J]. 中国农学通报, 2010, 26(13): 225-229. Feng G Z, Zhang Q, Gu M, et al. Determination of the formulation of special fertilizer for spring maize in corn belt of Jilin[J]. Chinese Agricultural Science Bulletin, 2010, 26(13): 225-229.
[34] Simpson R J, Oberson A, Culvenor R A, et al. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems[J]. Plant and Soil, 2011, 349(1-2): 89-120. DOI: 10.1007/s11104-011-0880-1
[35] Jordan-meille L, Rubak G H, Ehlert P A I, et al. An overview of fertilizer-P recommendations in Europe: soil testing, calibration and fertilizer recommendations[J]. Soil Use and Management, 2012, 28(4): 419-435. DOI: 10.1111/j.1475-2743.2012.00453.x
-
期刊类型引用(12)
1. 张正珍,慕瑞瑞,王佳,徐灿,陈永伟,张战胜,吴宏亮,康建宏. 施钾量对玉米钾素吸收、转运及产量的影响. 中国农学通报. 2024(08): 47-56 . 百度学术
2. 宋杰,王少祥,李亮,黄金苓,赵斌,张吉旺,任佰朝,刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响. 作物学报. 2023(02): 539-551 . 百度学术
3. 王怡,刘守渠,郭峰,任小燕. 山西省不同生态区玉米品种主要农艺性状遗传分析及大斑病抗性评价. 江苏农业科学. 2023(14): 76-83 . 百度学术
4. 郭松,周子军,何明江,陈琨,彭全强,黄耀蓉,钱建民,秦鱼生. 耕地坡度对川中丘区玉米产量及氮肥利用率的影响. 中国土壤与肥料. 2023(08): 177-183 . 百度学术
5. 李前,秦裕波,孙博,王蒙,孔丽丽,尹彩侠,徐晨,刘志全. 东北半干旱区滴灌玉米对不同磷钾肥施用方法的响应. 华北农学报. 2023(06): 127-133 . 百度学术
6. 宋杰,任昊,赵斌,张吉旺,任佰朝,李亮,王少祥,黄金苓,刘鹏. 施钾量对夏玉米维管组织结构与物质运输性能的影响. 作物学报. 2022(11): 2908-2919 . 百度学术
7. 高强,李晓宇,冯国忠,王寅,王少杰,焉莉,李翠兰. 黑土地保护下春玉米养分管理技术研究进展. 吉林农业大学学报. 2022(06): 631-638 . 百度学术
8. 王媛媛,王继岩,焉莉,韦大明,高强. 吉林省玉米种植区土壤真菌群落多样性特征研究. 中国土壤与肥料. 2021(01): 34-43 . 百度学术
9. 包耀贤. 乌兰布和绿洲区土壤钾素形态特征及其综合评价. 安徽农业科学. 2021(17): 140-143+147 . 百度学术
10. 王清和. 一次施钾对夏玉米产量·钾素积累及钾肥利用率的影响. 安徽农业科学. 2020(12): 149-151 . 百度学术
11. 童长春,刘晓静,蔺芳,于铁峰. 基于平衡施肥的紫花苜蓿光合特性及光合因子的产量效应研究. 草业学报. 2020(08): 70-80 . 百度学术
12. 王媛媛,王继岩,焉莉,高强. 吉林省典型生态区玉米种植土壤细菌多样性研究. 生态与农村环境学报. 2020(10): 1318-1324 . 百度学术
其他类型引用(8)