• ISSN 1008-505X
  • CN 11-3996/S

不同轮作模式下基于机插粳稻稳产和氮肥高效的氮肥运筹方式

龙瑞平, 张朝钟, 戈芹英, 李贵勇, 夏琼梅, 朱海平, 马淑琴, 万卫东, 王勤, 杨从党

龙瑞平, 张朝钟, 戈芹英, 李贵勇, 夏琼梅, 朱海平, 马淑琴, 万卫东, 王勤, 杨从党. 不同轮作模式下基于机插粳稻稳产和氮肥高效的氮肥运筹方式[J]. 植物营养与肥料学报, 2020, 26(4): 646-656. DOI: 10.11674/zwyf.19183
引用本文: 龙瑞平, 张朝钟, 戈芹英, 李贵勇, 夏琼梅, 朱海平, 马淑琴, 万卫东, 王勤, 杨从党. 不同轮作模式下基于机插粳稻稳产和氮肥高效的氮肥运筹方式[J]. 植物营养与肥料学报, 2020, 26(4): 646-656. DOI: 10.11674/zwyf.19183
LONG Rui-ping, ZHANG Chao-zhong, GE Qin-ying, LI Gui-yong, XIA Qiong-mei, ZHU Hai-ping, MA Shu-qin, WAN Wei-dong, WANG Qin, YANG Cong-dang. Nitrogen management in machinery transplanted japonica rice under different rotation systems for stable grain yield and higher nitrogen use efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 646-656. DOI: 10.11674/zwyf.19183
Citation: LONG Rui-ping, ZHANG Chao-zhong, GE Qin-ying, LI Gui-yong, XIA Qiong-mei, ZHU Hai-ping, MA Shu-qin, WAN Wei-dong, WANG Qin, YANG Cong-dang. Nitrogen management in machinery transplanted japonica rice under different rotation systems for stable grain yield and higher nitrogen use efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 646-656. DOI: 10.11674/zwyf.19183

不同轮作模式下基于机插粳稻稳产和氮肥高效的氮肥运筹方式

基金项目: 国家重点研发计划(2017YFD0300102);农业部公益行业(农业)科研专项(201303102,201303129);云南省科技惠民专项(2016RA001);云南省创新团队培养计划(2017HC022)。
详细信息
    作者简介:

    龙瑞平E-mail:lrp725@126.com

    通讯作者:

    杨从党E-mail:yangcd2005@163.com

Nitrogen management in machinery transplanted japonica rice under different rotation systems for stable grain yield and higher nitrogen use efficiency

  • 摘要:
    目的 

    研究不同旱作茬口对水旱轮作系统中机插粳稻生长和产量的影响,探索不同轮作模式中机插粳稻氮肥减施方式,实现减肥不减产、节约成本、减少环境污染的目标。

    方法 

    在云南省保山市隆阳区选择油菜–水稻、小麦–水稻和蚕豆–水稻3种主要轮作模式,以当地主推的粳稻品种隆科16号为试材,设置6个穗肥氮素用量 (N 0、90、120、150、180和210 kg/hm2) 处理,分别以N0、N90、N120、N150、N180、N210表示,按6∶4的比例用作促花肥和保花肥,并以当地高产施氮技术处理 (共施N 285 kg/hm2,基肥、蘖肥、促花肥和保花肥各1/4) 为对照 (CK),研究了机插粳稻产量及其构成因素和氮素吸收、运转及利用效率。

    结果 

    前茬为油菜的稻田土壤含氮量最高,其次为小麦茬,最低的为蚕豆茬。3种轮作模式下,不同穗肥施用量间水稻产量和氮素利用效率差异达到极显著水平。相同氮素用量下,油菜茬口水稻的产量、氮素吸收量和氮肥表观利用率最高,其次是小麦茬口,最低的是蚕豆茬口。3个轮作茬口下,两年平均水稻产量均以N 180 kg/hm2处理最高,与CK相比,在施N减少36.84%的情况下,油菜和小麦茬口的稻谷产量基本保持稳定,蚕豆–水稻模式稻谷增产3.94%。但第二年继续同样处理,油菜、小麦和蚕豆茬口的水稻平均产量分别减少1.07、0.30和0.29 t/hm2。只施穗肥氮可增加水稻的有效穗,虽然有效穗的增加量略低于对照,但总颖花量与对照差异不显著。油菜–水稻模式中穗肥用量为N 180 kg/hm2的处理氮肥农学利用率最高。

    结论 

    在水旱轮作系统中,油菜茬口残留的肥力要高于小麦和蚕豆茬口。小麦–水稻和蚕豆–水稻轮作,两年内水稻可不施基肥和分蘖肥,只施N 180 kg/hm2作穗肥,按促花肥∶保花肥为6∶4的比例施用,能够实现减肥不减产的目标。而油菜–水稻轮作体系采用此施肥方法,减氮效果明显,但持续减氮栽培可能会大幅降低水稻产量。

    Abstract:
    Objectives 

    The soil fertility after the harvest of pre-crop affects the growth and yield of the following crops in a rotation system. We investigated the soil fertilities in the main rotation systems, and the suitable nitrogen fertilizer rates and application times for the following rice production, in order to achieve the goal of reducing nitrogen fertilizer input and maintain high yield of rice.

    Methods 

    Field experiments were conducted in the japonica rice region of Yunnan Province, using rice cultivar of ‘Longke16’ as tested materials. The tested three rotation systems were oilseed rape-rice, wheat-rice, and broad bean-rice. Six nitrogen rates of 0, 90, 120, 150, 180 and 210 kg/hm2 (expressed as N0, N90, N120, N150, N180, N210, respectively) were topdressed as spikelet-promoting and spikelet-sustaining fertilizer in ratio of 6∶4. Local recommended high-yield N management (N 285 kg/hm2 in total, evenly divided and applied as basal, tillering, spikelet-promoting and spikelet-sustaining fertilizer) was used as control. The 0–20 cm soil fertility were measured before rice seeding, and the rice yields and nitrogen utilization were investigated at harvest.

    Results 

    Among the three rotation systems, the field after oilseed rape had the highest soil N content, followed by that after wheat, and the lowest in that after broad bean. As a result, the yields and N utilization efficiencies of following rice were significantly different. All the yield, N uptake, apparent N use efficiency of the rotation systems were in descent order of oilseed rape-rice, wheat-rice and broad bean-rice system. The highest yield was achieved at N rate of 180 kg/hm2 in all the three rotation systems. Compared with CK, nitrogen input in N180 was reduced by 36.84%, while the rice yield kept stable in the oilseed rape-rice and wheat-rice system , and was increased by 3.94% in broad bean-rice system. For two consecutive years of reduced nitrogen cultivation, the rice yields reduction of 1.07, 0.30, and 0.29 t/ hm2 occurred in oilseed rape-rice system, wheat-rice and broad bean-rice system. The application of panicle fertilizer alone increased the number of effective panicles. Although the increase in the number of effective panicles was slightly lower than that of the control, there was no significant difference in the total number of spikelets. The highest N agronomic efficiency was achieved when the panicle fertilizer application rate was 180 kg/hm2 in the oilseed rape-rice rotation system.

    Conclusions 

    In the paddy-upland rotation systems, the fertility of field after oilseed rape is higher than taht after wheat and broad bean. For rice after wheat and broad bean, base and tiller fertilizers are not necessary, top-dressing N 180 kg/hm2 as panicle fertilizer (spikelet-promoting to spikelet-sustaining in ratio of 6∶4) will increase the rice yield and N use efficiencies within two years. However, the sustainability of the N management needs further study for rice after oilseed rape.

  • 水稻是我国主要粮食作物之一,近年来我国水稻总产量持续增加,有效保障了我国粮食安全,但是过量施肥特别是氮肥问题一直是水稻生产面临的主要问题之一[1-2]。有研究表明,我国氮肥用量较世界平均水平高出约75%,而氮肥的利用率仅达到世界平均水平的30%左右[3-4],由于高投入低利用,大量的氮肥流失到环境中,造成环境污染同时增加了水稻种植的成本[5-6],因此在水稻生产中,在不减产情况下减少氮肥的投入,对水稻的可持续发展具有重要的意义。水旱轮作可以提高土壤的透气性和氧化还原电位,降低还原性物质的浓度,消除有毒还原性物质[7-8],促进土壤有机质的矿化,提高土壤养分利用率[9-10],还能增加有益微生物的丰度,减少土传病害的发生,抑制杂草[11-12],是我国南方稻区运用较为广泛的耕作模式之一。但不同旱作茬口土壤的养分差异很大 [13-14],前作的秸秆和施肥都会影响稻田肥力水平[15-16]。为了避免氮肥的流失,水旱轮作中水稻与旱作的氮肥的供需应密切协调[17],在种植水稻时需根据不同土壤肥力状况进行肥料管理。研究表明,水稻的氮素吸收高峰出现在幼穗分化至抽穗期[18],目前基、蘖氮用量普遍偏高[19]。水稻生育前期较高的氮肥施用量有利于水稻的返青和分蘖[20],但由于此时水稻还没有形成庞大的根系群体,对稻田土壤和灌溉水中氮肥的吸收量有限,大量的氮肥作为基肥施入到稻田中,加剧了氮素损失的风险[21]。长期定位试验监测表明,水稻移栽至返青拔节期间稻田氮素径流流失量占整个水稻季氮素流失量的60%左右[22]。Li等[23]研究表明,在一定施氮量情况下降低基肥的用量能够减少氮的流失,提高氮肥的利用率和水稻的产量。蔡一霞等[24]研究认为,减少基肥氮施用和部分氮肥后移至抽穗期施用,能提高稻米产量、改善部分品质性状。Peng等[3]研究表明,对于中国大部分稻区,减少30%水稻生育前期的氮肥施用量不会引起水稻显著减产。刘汝亮等[25]认为将水稻部分基施氮肥后移用作分蘖肥和穗肥,各处理在氮素投入降低20%的基础上水稻产量没有降低,显著提高了氮肥利用率。杨从党等[26]研究表明,随着氮肥用量的降低和氮肥后移比例的增加,粳稻产量均比对照增产 3.0%左右,并且施氮量为当地施氮总量 60%,按基肥∶蘖氮∶促花肥∶保花肥为 0∶0∶6∶4 的比例施用,水稻的产量最高。显然,前人的研究表明,水稻前期需肥量小,适当降低水稻前期的氮肥用量或者不施基蘖氮,并不影响水稻的生长和产量,还有利于减少氮素的流失。水旱轮作系统中,稻田氮素水平可根据前茬作物的种类和残留秸秆的类型、数量、质量等因素的改变而变化[27]。为了探索不同茬口下水稻的氮肥减施技术,本研究在3种不同旱作茬口下,以水稻不施基、蘖氮肥为前提,研究了水稻穗肥不同氮用量对产量和氮肥利用的影响,为水旱轮作模式中探索水稻栽培氮肥减量增效技术提供数据数据支撑。

    试验于2015和2016年在云南省保山市隆阳区金鸡乡进行,海拔1650 m。以当地主推粳稻隆科16为试材,肥料为普通尿素 (含N 46%)。种植模式为油菜–水稻 (以下简称油–稻)、小麦–水稻 (以下简称麦–稻) 和蚕豆–水稻 (以下简称豆–稻) 轮作模式,均连续种植5年以上,各田块的土壤理化性状见表1。试验于4月下旬育秧,5月下旬移栽,10月上旬收获。

    表  1  供试土壤基本理化性状 (2016年)
    Table  1.  Basic physicochemical properties of the tested soil in 2016
    轮作模式
    Rotation system
    pH有机质(g/kg)
    Organic matter
    水解性氮 (mg/kg)
    Hydrolysable N
    有效磷 (mg/kg)
    Available P
    速效钾 (mg/kg)
    Available K
    全氮 (g/kg)
    Total N
    全磷 (g/kg)
    Total P
    全钾 (g/kg)
    Total K
    油–稻
    Oilseed rape-rice
    7.66 a73.90 a230 a48.6 b310 a3.64 a0.75 a9.04 b
    麦–稻
    Wheat-rice
    7.06 a 68.70 ab236 a45.3 b171 b3.24 b0.87 a8.30 c
    豆–稻
    Broad bean-rice
    7.52 a60.00 b196 b83.7 a167 c3.06 b0.85 a9.96 a
      注(Note):同列数字后不同字母表示不同田块间差异达 5% 显著水平 Values followed by the different letters in a column indicate significant difference among different fields at the 5% level.
    下载: 导出CSV 
    | 显示表格

    水稻试验设置施N 0、90、120、150、180、210 kg/hm2 6个水平,分别用N0、N90、N120、N150、N180、N210表示,全部氮作为穗肥,按6∶4分为促花肥和保花肥两次追施。促花肥在水稻倒4叶刚抽出叶尖时施入,保花肥在水稻倒2叶刚抽出叶尖时施入。对照为当地高产施氮技术 (CK),氮肥用量为N 285 kg/hm2,等量分为基肥、蘖氮、促花肥和保花肥,基肥于整田时施入,分蘖氮于移栽后15天施入,促花肥和保花肥施入时间同上。所有处理基施P2O5 90 kg/hm2、K2O 75 kg/hm2等量分为底肥和促花肥。各处理随机区组排列,3次重复。小区面积20 m2 (4 m × 5 m),小区间用塑料隔水板隔开。水稻移栽统一采用机插方式进行,株行距为30 cm × 15 cm,移栽密度为22.2万蔸/hm2

    2016年,在倒4叶期 (施促花肥前)、齐穗期和成熟期,取代表性植株3穴,分茎鞘、叶片、穗3部分,105℃杀青30 min,80℃烘至恒重后称干重,并依据“NY/T2017—2011植物中氮、磷、钾的测定”方法测定含氮量。

    土壤pH依据“NY/T1377—2007”、有机质含量依据“NY/T1121.6—2006”、水解性氮含量依据“LY/T1228—2015”、有效磷含量依据“NY/T1121.7—2014”、速效钾含量依据“NY/T889—2004”、全氮含量依据“NY/T1121.24—2012”、全磷含量依据“GB/9837—88”、全钾含量依据“GB/9836—88”测定。

    收获时,各小区随机取两个点,每个点调查20穴,计算出平均有效穗;另取有代表性的植株3穴,分析穗粒数、结实率和千粒重等性状。各小区实收称重,用谷物水分测量仪 (PM-8188 New) 测定各小区的谷物水分含量,折算成14.5%标准含水量,计作各小区的实际产量。

    茎鞘 (叶、穗) 氮素吸收量 (kg/hm2) = 茎鞘 (叶、穗) 干物质量 × 茎鞘 (叶、穗) 含氮率[28]

    茎鞘 (叶片) 氮素转运量 (kg/hm2) = 齐穗期茎鞘 (叶片) 氮吸收量-成熟期茎鞘 (叶片) 氮吸收量[29]

    氮素收获指数 (%) = 穗粒氮吸收量/地上部分氮吸收量 × 100[29]

    氮素干物质生产效率 (kg/kg) = 成熟期单位面积植株干物质量/地上部分氮吸收量[29]

    氮素稻谷生产效率 (kg/kg) = 实际产量/地上部分氮吸收量[29]

    氮肥偏生产力 (kg/kg) = 施氮区实际产量/施氮量[29]

    氮肥表观利用率 (%) = (施氮区地上部氮吸收量-不施氮区地上部氮吸收量)/施氮量 × 100[29]

    氮肥农学利用率 (kg/kg) = (施氮区产量-不施氮区产量)/施氮量[29]

    使用 Microsoft excel 2010和SPSS 19.0进行数据的统计分析。

    轮作模式和穗肥氮用量对水稻产量及有效穗、颖花量、实粒数的影响均达到显著或极显著水平,两因素互作效应对实际产量和有效穗的影响达到极显著水平,对总颖花量影响达到显著水平 (表2)。轮作模式对实际产量的影响要大于施氮量。不同轮作模式中水稻产量高低顺序为油–稻 > 麦–稻 > 豆–稻。只施穗肥氮的处理中,2015和2016年不同轮作模式水稻的最佳穗肥氮用量不同。油菜茬口2015年N150、N180、N210处理与对照相比,稻谷产量均表现为增产,而2016年继续减少肥料用量,所有处理稻谷产量显著低于对照,且总体减肥量越大,稻谷产量越低。小麦茬口水稻两年产量比较稳定,施氮量在N180和210 kg/hm2下,产量与其对照差异不显著。蚕豆茬口均以N180 kg/hm2的产量最高,2015年显著高于对照,2016年与对照无显著差异。从两年的平均产量看,3种茬口下水稻产量均以N 180 kg/hm2处理最高,与其CK相比,施纯氮减少36.84%,油菜和小麦茬口的稻谷产量基本保持稳定,蚕豆–水稻模式稻谷产量增加3.94%。3种茬口下水稻减氮栽培第2年产量均低于第1年,其中油菜茬口减产幅度最大,到达了1.07 t/hm2,小麦和蚕豆茬口分别减产了0.30 和0.29 t/hm2

    表  2  不同轮作模式穗肥氮用量对水稻产量与产量构成因子的影响
    Table  2.  Effects of panicle N application rates on yield and its compositions under different rotation systems
    轮作模式
    Rotation system
    处理
    Treatment
    有效穗 (× 104/hm2)
    Effective panicles
    总颖花量 (× 104/hm2)
    Total spikelets
    实粒数 (No./panicle)
    Filled spikelet
    千粒重 (g)
    1000-grain weight
    实际产量 (t/hm2)
    Actual yield
    2015201620152016201520162015201620152016
    油–稻
    Oilseed rape-rice
    N0248.82 d238.28 d36259.92 c33359.90 d137.93 cd132.51 b29.67 a30.30 a10.57 c9.35 e
    N90270.44 c258.26 c40805.91 b36479.54 c141.77 bc133.49 b28.33 b29.87 b10.97 c9.69 de
    N120282.45 b270.10 b42694.59 b38606.28 b142.25 bc135.47 ab28.00 b29.60 bc11.87 ab10.34 cd
    N150283.14 b272.32 b46369.26 a39303.22 b149.53 a136.28 ab28.33 b29.53 c12.25 a10.64 bc
    N180296.87 a281.20 ab45955.86 a41588.04 a143.64 b138.50 a28.00 b29.50 c12.13 a11.13 b
    N210297.90 a272.32 b46071.45 a40938.42 a139.23 bcd135.33 ab28.33 b29.33 c12.08 a11.03 b
    CK299.96 a286.38 a46271.74 a41928.55 a135.55 d135.37 ab28.00 b29.53 c11.52 b11.75 a
    平均Average282.80268.4143489.8238886.28141.42135.2828.3829.6711.6310.56
    麦–稻
    Wheat-rice
    N0241.61 d238.28 e33332.12 d32130.98 d132.18 a129.98 ab30.33 a30.40 a9.21 d9.16 c
    N90258.09 c247.16 de36225.13 c33670.71 c131.45 a131.25 ab29.00 b29.77 b10.00 c9.77 b
    N120262.55 c252.34 cd37845.51 bc34620.20 bc134.23 a131.66 a29.67 ab29.67 bc10.11 c9.82 b
    N150279.36 b259.00 bc39188.34 ab35751.71 b129.55 a131.44 ab29.00 b29.60 bc10.25 bc9.91 ab
    N180285.54 ab267.88 b40043.43 ab38155.83 a129.00 a133.50 a29.00 b29.50 bc10.59 ab10.31 ab
    N210287.60 a283.42 a40740.47 a38360.86 a130.66 a127.18 b28.67 b29.13 d10.67 ab10.12 ab
    CK288.63 a286.38 a39724.18 ab39355.98 a129.31 a130.09 ab29.33 b29.43 c10.82 a10.46 a
    平均Average271.91262.0738157.0336006.61130.91130.7329.2929.6410.249.94
    豆–稻
    Broad bean-rice
    N0226.51 d234.58 d29565.40 b31734.53 d124.83 b128.99 b29.67 a29.73 a8.85 d8.98 c
    N90270.44 bc253.82 c36363.25 a34581.68 c127.22 b129.28 b29.00 a29.67 a9.64 c9.68 ab
    N120270.44 bc264.18 bc38155.80 a36399.24 b134.25 a130.05 b29.00 a29.57 ab10.13 b9.72 ab
    N150271.13 bc273.80 ab38164.86 a38107.61 a134.39 a131.47 ab29.67 a29.53 ab10.21 b10.03 ab
    N180273.87 ab275.28 ab38774.99 a38737.07 a133.65 a131.94 ab29.67 a29.47 ab10.72 a10.12 a
    N210279.02 a278.24 a38645.07 a37446.25 ab129.68 ab128.84 b29.33 a29.33 b10.21 b9.45 bc
    CK264.95 c272.32 ab37136.39 a38549.23 a132.87 a134.93 a30.00 a29.57 ab10.15 b9.89 ab
    平均Average265.20264.6036686.5436507.95130.98130.7929.4829.559.999.70
    FF-value
    轮作模式 (R)
    Rotation model
    171.24**4.68*172.00**73.68**123.69**24.65**24.75**2.89394.33**41.37**
    施氮量 (N)
    Nitrogen rate
    270.30**48.72**57.16**99.19**7.81**3.90**4.70**25.79**67.25**21.98**
    R × N15.86**2.78**2.31*2.39*5.40**1.251.802.58*4.29**3.10**
    注(Note):CK—N 285 kg/hm2,等量分为基肥、蘖肥、促花肥和保花肥施入 N 285 kg/hm2 was divided evenly into four parts, and applied as basal, tillering, spikelet-promoting and spikelet-sustaining stage. 同列数据后不同字母表示处理间差异达 5% 显著水平 Values followed by different letters in a column indicate significant difference among different treatments at the 5% level. *—P < 0.05; **—P < 0.01.
    下载: 导出CSV 
    | 显示表格

    从产量构成因子可以看出,有效穗受穗肥氮用量的影响要大于轮作模式,而穗实粒数则相反。油–稻模式的有效穗、总颖花量、穗实粒数最高。随着穗肥氮用量的增加有效穗总体呈增加趋势,千粒重则呈降低趋势,一定范围内水稻的实粒数随穗肥氮用量的增加而增加,穗粒数与有效穗的协同效应增加,使得总颖花量无显著减少,最终实现稳产。两年3种轮作模式中,只施穗肥氮处理的最大有效穗数、穗粒数和颖花量与CK相比差异不显著。

    水稻茎鞘氮素吸收量为齐穗期 > 成熟期 > 倒4叶期,叶片氮素吸收量为齐穗期 > 倒4叶期 > 成熟期 (表3)。不同轮作模式和不同穗肥氮用量对水稻各时期氮素吸收量的影响差异均达到了极显著水平。倒4叶期,CK处理水稻茎鞘和叶片的氮素吸收量最高,不施基蘖氮肥处理间茎鞘和叶片氮素吸收量差异不显著。主要原因是除CK外,其他处理均尚未施氮肥。穗肥氮的用量低于180 kg/hm2时,随着氮肥用量的增加齐穗期水稻各器官氮素吸收量增加,当穗肥氮的用量超过180 kg/hm2时,各器官氮素吸收量开始降低;成熟期随着穗肥氮用量的增加,各器官的氮素吸收量呈上升趋势,N180和N210处理各器官氮素吸收量相对较高,穗部氮素吸收量与CK差异不显著。

    表  3  不同轮作模式下穗肥氮用量对水稻不同阶段各器官氮素吸收量的影响 (kg/hm2)
    Table  3.  Effects of panicle N application rates on N uptake in each organ of rice at different growth stages under different rotation systems
    轮作模式
    Rotation system
    处理
    Treatment
    倒4叶期Inverse 4th leaf stage齐穗期Full heading stage成熟期Maturity
    茎鞘
    Stem and sheath

    Leaf
    茎鞘
    Stem and sheath

    Leaf

    Panicle
    茎鞘
    Stem and sheath

    Leaf

    Panicle
    油–稻
    Oilseed
    rape-rice
    N013.30 b20.02 b39.43 d65.07 f16.58 d19.04 c12.21 c113.96 c
    N9013.01 b19.65 b47.04 d80.01 de17.81 c22.74 bc14.63 bc133.66 b
    N12013.40 b19.90 b58.30 c86.50 c19.46 b27.44 ab17.71 ab138.91 b
    N15012.97 b19.59 b71.93 b91.55 b20.00 b29.38 a17.16 ab139.44 b
    N18013.33 b19.69 b85.69 a99.05 a21.69 a30.81 a18.41 a153.57 a
    N21012.96 b19.29 b74.95 b83.43 cd16.93 cd31.07 a18.01 a159.03 a
    CK17.56 a23.66 a58.78 c77.94 e19.19 b27.48 ab13.48 c164.13 a
    平均Average13.7920.2662.3083.3718.8126.8515.95143.24
    麦–稻
    Wheat-rice
    N011.04 b18.80 b33.66 d46.81 d14.74 d17.13 d9.18 d102.31 d
    N9011.08 b19.25 ab37.15 d52.02 c16.14 c21.27 cd12.80 c120.69 c
    N12011.70 b19.03 b45.46 c58.34 b17.49 b22.61 bcd13.23 bc121.69 bc
    N15011.78 b19.31 ab51.85 bc59.85 b18.00 b28.31 ab17.04 a123.74 bc
    N18011.43 b19.74 ab62.07 a62.42 b20.47 a33.18 a17.55 a132.45 abc
    N21011.48 b19.42 ab49.48 bc59.68 b18.68 b28.40 ab16.20 ab137.92 a
    CK15.14 a20.93 a54.83 ab69.17 a18.47 b25.39 bc17.57 a 133.77 ab
    平均Average11.9519.5047.7958.3317.7125.1814.80124.65
    豆–稻
    Broad
    bean-rice
    N012.44 b21.87 b31.99 c46.08 e13.98 d15.50 b7.58 b101.67 b
    N9012.53 b20.55 b38.98 bc58.41 d16.33 c21.10 a9.96 ab110.10 ab
    N12012.72 b21.48 b46.15 b62.28 d17.11 bc23.50 a11.82 a114.53 a
    N15012.72 b21.42 b55.37 a69.66 c17.65 b23.63 a11.55 a113.09 ab
    N18012.68 b20.81 b62.14 a74.04 b19.36 a24.54 a12.08 a121.15 a
    N21012.86 b20.84 b57.12 a80.25 a18.95 a26.75 a12.61 a114.63 a
    CK14.86 a24.64 a59.40 a79.33 a19.56 a23.58 a12.13 a116.48 a
    平均Average12.9721.6650.1667.1517.5622.6511.10113.09
    FF-value
    轮作模式 (R)
    Rotation model
    83.15**30.04**52.72**576.31**21.84**8.51**41.00**98.19**
    施氮量Nitrogen rate (N)71.83**14.32**54.96**122.26**59.71**15.05**13.55**23.71**
    R×N3.06**1.253.07**20.83**6.14**0.782.05*2.49*
    注(Note):CK—N 285 kg/hm2,等量分为基肥、蘖肥、促花肥和保花肥施入 N 285 kg/hm2 was divided evenly into four parts, and applied as basal, tillering, spikelet-promoting and spikelet-sustaining stage. 同列数据后不同字母表示处理间差异达5%显著水平 Values followed by the different letters in a column indicate significant difference among different treatments at the 5% level; *—P < 0.05; **—P < 0.01.
    下载: 导出CSV 
    | 显示表格

    水稻叶片的氮素转运量明显高于茎鞘 (图1)。油–稻轮作茎鞘和叶片的氮素转运量最大,其次是豆–稻,麦–稻最小。在只施穗肥氮处理中,3种轮作模式水稻茎鞘氮素的转运量变化规律相一致,都表现出随穗肥氮用量的增加而增加,当穗肥氮用量超过N180处理时氮素的转运量开始下降。3种模式下水稻叶片的氮素转运量的变化规律差异较大,油–稻模式的变化规律与茎鞘的变化规律相同,豆–稻模式叶片氮素转运量随穗肥氮用量增加而增加,麦–稻模式中所有处理间水稻叶片的氮素转运量变化不大。从3种轮作模式中只施穗肥的氮素转运量最高处理与CK相比,油–稻模式水稻茎鞘和叶片氮素转运量均高于CK;豆–稻模式的茎鞘和叶片的氮素转运量与CK差异不大;麦–稻模式茎鞘的氮素转运量与CK相近,叶片的氮素转运量略低于CK。

    图  1  不同轮作模式下穗肥氮用量对水稻氮素转运量的影响
    Figure  1.  N translocation amount in rice as affected by panicle N application rates under different rotation systems

    3种轮作模式中,豆–稻轮作模式中水稻的氮素收获指数、干物质生产效率和稻谷生产效率的平均值都高于麦–稻和油–稻轮作模式,而油–稻轮作模式水稻的氮肥偏生产力、氮肥表观利用率和氮肥农学利用率的平均值要高于麦–稻和豆–稻轮作模式。只施穗肥氮处理中,油–稻轮作模式中N180处理的氮肥农学利用率最高,氮素收获指数、氮素稻谷生产效率和氮肥偏生产力总体表现出随穗肥氮用量的增加而降低的趋势;水稻的氮素稻谷生产效率、氮肥偏生产力、氮肥表观利用率和氮肥农学利用率最高值处理都高于CK,表明只施适量穗肥氮能够提高氮素的稻谷生产效率和氮素利用效率 (表4)。

    表  4  不同轮作模式下穗肥氮用量对水稻氮素利用效率的影响
    Table  4.  Effects of panicle N application rates on N use efficiency in rice under different rotation systems
    轮作模式
    Rotation
    system
    处理
    Treatment
    氮素收获指数
    NHI
    (%)
    氮素干物质生产效率
    NBPE
    (kg/kg)
    氮素稻谷生产效率
    NGPE
    (kg/kg)
    氮肥偏生产力
    NPP
    (kg/kg)
    氮肥表观利用率
    NAUE
    (%)
    氮肥农学利用率
    NAE
    (kg /kg)
    油–稻
    Oilseed rape-rice
    N078.46 ab98.31 a64.42 a
    N9077.88 ab89.94 bcd58.27 b109.36 a23.37 ab5.50 b
    N12075.47 b91.99 bc56.18 bc86.18 b30.12 a8.29 ab
    N15074.95 b94.76 ab57.23 b70.92 c25.38 ab8.61 ab
    N18075.75 b91.37 bc54.95 bc61.81 d30.49 a9.88 a
    N21076.33 b86.82 cd52.98 c52.51 e28.67 ab8.00 ab
    CK80.04 a84.68 d57.32 b41.23 f20.06 b8.44 ab
    平均Average76.9891.1257.3470.3326.358.12
    麦–稻
    Wheat-rice
    N079.54 a107.63 a71.28 a
    N9078.00 ab96.50 b63.18 b108.58 a29.04 a6.77 a
    N12077.25 ab96.80 b62.33 bc81.83 b24.09 ab5.47 a
    N15073.10 c92.47 bc58.81 cd66.04 c26.98 a4.95 a
    N18072.25 c88.55 c56.49 d57.30 d30.31 a6.39 a
    N21075.64 bc87.50 c55.51 d48.19 e25.67 a4.55 a
    CK75.76 bc90.52 bc59.26 cd36.68 f16.88 b4.53 a
    平均Average75.9494.2860.9866.4325.495.45
    豆–稻
    Broad bean-rice
    N081.48 a109.61 a71.98 a
    N9078.03 b103.70 ab68.67 ab107.61 a18.22 ab7.79 a
    N12076.49 b101.71 b64.94 bcd81.01 b20.92 a6.15 ab
    N15076.27 b105.74 ab67.68 bc66.89 c15.68 ab7.00 a
    N18076.80 b100.58 b64.19 cd56.23 d18.34 ab6.32 ab
    N21074.44 b100.58 b61.37 d45.00 e13.92 ab2.22 c
    CK76.55 b108.36 a65.01 bcd34.71 f9.63 b3.19 bc
    平均Average77.15104.3266.2665.2416.125.45
    FF-value
    轮作模式 (R)
    Rotation model
    2.2080.34**88.91**33.27**24.25**11.53**
    施氮量 (N)
    Nitrogen rate
    7.36**13.71**30.53**1529.04**5.36**2.33
    R × N1.743.10**1.521.080.832.03
    注(Note):NHI—N harvest index; NBPE—N use efficiency for biomass production; NGPE—N use efficiency for grain production; NPP—Partial factor productivity of applied N; NAUE—N apparent use efficiency; NAE—N agronomy efficiency. 同列数字后不同字母表示差异达 5% 显著水平 Values followed by different letters in a column indicate significant difference among different treatments at the 5% level. **—P < 0.01.
    下载: 导出CSV 
    | 显示表格

    不同轮作模式间水稻的氮素干物质生产效率、氮素稻谷生产效率、氮肥偏生产力、氮肥表观利用率和氮肥农学利用率差异都达到了极显著水平,而水稻的氮素收获指数差异不显著。不同肥穗肥氮用量间水稻的氮素收获指数、氮素干物质生产效率、氮素谷物生产效率、氮肥偏生产力和氮素表观利用率差异达到极显著水平,氮肥农学利用率差异不显著。不同轮作模式和穗肥氮用量互作对水稻的氮素干物质生产效率影响差异达到极显著水平,其余各指标差异不显著。

    不同轮作模式对水稻的影响主要来自于上茬残留的秸秆及施肥量[15-16,27],本研究中,油-稻模式田间土壤肥力和水稻产量最高,其次是麦-稻,豆-稻模式最低,其主要原因是在油菜种植过程中大量施肥,同时油菜生长过程和收获后大量的枯叶及秸秆还入田,提高了土壤的肥力,增加了水稻的产量[30]。小麦在当地主要用作牲畜的饲料,对产量要求不高,施肥量少于油菜,并且收获后小麦地上部分的生物产量全部带出田,所以田间的肥力水平与水稻的产量都小于油–稻轮作模式。有研究表明豆科植物把大气中的氮固定到土壤中,能增加后续作物的产量[31-32]。本研究中农户习惯在蚕豆种植中不施肥料,并且在蚕豆成熟后,将全部秸秆带走作为牲畜的饲料,这种不平衡施肥和残茬清除会导致土壤肥力水平的下降[33],所以豆-稻模式田间的肥力水平与水稻产量最低。从水稻实际产量方差分析的F值来看,轮作模式对产量的影响最大,其次是穗肥氮用量,最小的是两者互作效应,这说明在不施基蘖肥氮只施穗肥氮的条件下,基础地力是影响水稻产量的主要因素,在较高的基础地力条件下,不施基蘖肥氮只施穗肥氮水稻更容易获得较高产量,这与郑盛华等[34]的研究结果相一致。本研究还表明,水稻减氮施肥的第二年产量均低于第一年,其中油菜茬口减产幅度最大,这可能是由于第一年减氮后稻田肥力降低,在冬季种植油菜时油菜长势不如第一年,秸秆还田量减少,导致了后茬水稻田肥力下降,从而影响了第二年减肥试验水稻的产量,而小麦和蚕豆秸秆还田量少,对稻田的影响较小,所以两年水稻产量变化较小。

    合理的氮肥运筹,特别是穗肥氮的用量一直是学者们研究的重点之一。蒋琪等[35]在基蘖肥氮为165 kg/hm2的条件下研究了超级稻不同穗肥氮用量,结果表明穗肥氮用量为 120 kg/hm2时超级稻生育后期群体结构合理、穗部经济性状协调,有利于籽粒生长和产量提高。李刚华等[36]则认为,生产中不同品种应有不同的穗肥氮施用量,在基肥为95.39 kg/hm2不施分蘖肥氮的前提下,86优8号最佳穗肥氮用量为120 kg/hm2,武育粳3号最佳穗肥氮用量为 180 kg/hm2。显然穗肥氮的用量与品种和基蘖肥氮的用量存在着一定的关系,基肥和分蘖肥氮能使水稻快速返青并促进分蘖的发生,从而获得较高的有效穗[37-39],在水稻生产中具有重要的作用。本研究中CK处理的有效穗相对较高,也证明了基蘖肥氮能增加水稻有效穗,提高产量。但前期水稻尚未形成强大的根系,植株对氮素的吸收能力有限,氮肥用量过大容易造成稻田氮素流失引起面源污染[40-41],适当减少水稻前期氮肥基肥施用量,增加中后期分蘖肥和穗肥氮的施用量,可有效提高水稻产量[42-43]。本研究以水旱轮作中上一季残留的肥力充当水稻的基肥和分蘖氮,在水稻种植过程中不施基蘖氮的目的是在稳产的前提下尽量减少氮肥投入,结果显示,在不施基蘖肥氮条件下合理的穗肥氮用量同样能够增加水稻的有效穗,虽然有效穗的增加量略低于CK处理,但总颖花量与CK的差异不显著。从两年的平均产量来看,油–稻、麦–稻和豆–稻3种轮作模式中,不施基蘖氮,仅施用180 kg/hm2纯氮作穗肥的处理,比CK减少36.84 %的纯氮投入,但稻谷产量与其持平。

    水稻氮素吸收利用效率受到水稻自身的氮素吸收能力以及肥料类型、施肥量、施肥方法、土壤类型、耕作措施等因素的影响[40,44-45]。前人[46-47]研究表明,提升穗肥氮肥比例是提升氮肥利用率的有效途径。吴文革等[48]指出,提高穗肥氮比例有利于增加氮素吸收量,提高氮肥的当季利用率、氮素的回收率和氮素收获指数,但就氮肥肥效而言并不是穗肥氮比例越高越好。杨从党等[26]研究表明,随着氮肥用量的降低和氮肥后移比例的增加,籼稻的氮肥农学利用率由7.11 kg/kg 提高到11.35 kg/kg,粳稻的氮肥农学利用率由10.10 kg/kg 提高到19.59 kg/kg,粳稻不施基蘖肥氮只施穗肥氮的水稻氮肥农学利用率高于其他施基蘖肥氮处理。本研究表明,不施基蘖肥氮条件下,施用适量的穗肥氮都能提高水稻的氮素表观利用率和氮素农学利用,但过高的穗肥氮用量会造成氮素利用效率的下降 (表4),这与刘立军等[40]的研究结果一致。水稻的收获部位是籽粒,氮素的谷物生产效率是衡量水稻氮素利用效率的重要指标。本研究表明,除CK外,不施穗肥氮处理水稻的氮素收获指数、氮素稻谷生产效率和氮素干物质生产效率最高,这是因为增加穗肥氮用量,水稻群体增大,地上部分氮素积累量增加的缘故;氮肥偏生产力随施氮量的增加而显著降低,氮肥表观利用率差异不显著,说明穗肥氮用量增加可以增加水稻地上部分氮素积累量,但随着氮肥用量的增加投入的单位肥料氮所能生产的水稻籽粒产量降低。穗肥不同施氮量的水稻氮肥利用情况在不同轮作模式中表现不同,说明水稻穗肥氮的利用情况与前期水稻长势有关。

    不同轮作作物残留在土壤中的养分含量不同,3种轮作方式水稻产量高低顺序为:油–稻 > 麦–稻 > 豆–稻。后茬水稻采用不施基蘖肥氮只施穗肥氮的方式,茬口对水稻产量的影响大于氮肥用量。在第一年,在CK基础上,减少 36.84 %的纯氮投入量基本不降低水稻产量;在第二年,茬口对水稻产量的影响减小,降低氮肥用量会显著降低油–稻系统中水稻的产量,麦–稻和豆–稻系统水稻产量基本稳定。因此,若轮作系统以两年为一个周期,油菜–水稻轮作施肥可在轮作第一年减施氮量,第二年需适当补充基蘖肥氮,以保证水稻产量的稳定。小麦–水稻和蚕豆–水稻轮作,两年内可不施基蘖肥氮,只施N 180 kg/hm2作穗肥,按促花肥∶保花肥为6∶4的比例施用,能够实现减肥不减产的目标,但超过两年后效果还需继续进行试验研究。

  • 图  1   不同轮作模式下穗肥氮用量对水稻氮素转运量的影响

    Figure  1.   N translocation amount in rice as affected by panicle N application rates under different rotation systems

    表  1   供试土壤基本理化性状 (2016年)

    Table  1   Basic physicochemical properties of the tested soil in 2016

    轮作模式
    Rotation system
    pH有机质(g/kg)
    Organic matter
    水解性氮 (mg/kg)
    Hydrolysable N
    有效磷 (mg/kg)
    Available P
    速效钾 (mg/kg)
    Available K
    全氮 (g/kg)
    Total N
    全磷 (g/kg)
    Total P
    全钾 (g/kg)
    Total K
    油–稻
    Oilseed rape-rice
    7.66 a73.90 a230 a48.6 b310 a3.64 a0.75 a9.04 b
    麦–稻
    Wheat-rice
    7.06 a 68.70 ab236 a45.3 b171 b3.24 b0.87 a8.30 c
    豆–稻
    Broad bean-rice
    7.52 a60.00 b196 b83.7 a167 c3.06 b0.85 a9.96 a
      注(Note):同列数字后不同字母表示不同田块间差异达 5% 显著水平 Values followed by the different letters in a column indicate significant difference among different fields at the 5% level.
    下载: 导出CSV

    表  2   不同轮作模式穗肥氮用量对水稻产量与产量构成因子的影响

    Table  2   Effects of panicle N application rates on yield and its compositions under different rotation systems

    轮作模式
    Rotation system
    处理
    Treatment
    有效穗 (× 104/hm2)
    Effective panicles
    总颖花量 (× 104/hm2)
    Total spikelets
    实粒数 (No./panicle)
    Filled spikelet
    千粒重 (g)
    1000-grain weight
    实际产量 (t/hm2)
    Actual yield
    2015201620152016201520162015201620152016
    油–稻
    Oilseed rape-rice
    N0248.82 d238.28 d36259.92 c33359.90 d137.93 cd132.51 b29.67 a30.30 a10.57 c9.35 e
    N90270.44 c258.26 c40805.91 b36479.54 c141.77 bc133.49 b28.33 b29.87 b10.97 c9.69 de
    N120282.45 b270.10 b42694.59 b38606.28 b142.25 bc135.47 ab28.00 b29.60 bc11.87 ab10.34 cd
    N150283.14 b272.32 b46369.26 a39303.22 b149.53 a136.28 ab28.33 b29.53 c12.25 a10.64 bc
    N180296.87 a281.20 ab45955.86 a41588.04 a143.64 b138.50 a28.00 b29.50 c12.13 a11.13 b
    N210297.90 a272.32 b46071.45 a40938.42 a139.23 bcd135.33 ab28.33 b29.33 c12.08 a11.03 b
    CK299.96 a286.38 a46271.74 a41928.55 a135.55 d135.37 ab28.00 b29.53 c11.52 b11.75 a
    平均Average282.80268.4143489.8238886.28141.42135.2828.3829.6711.6310.56
    麦–稻
    Wheat-rice
    N0241.61 d238.28 e33332.12 d32130.98 d132.18 a129.98 ab30.33 a30.40 a9.21 d9.16 c
    N90258.09 c247.16 de36225.13 c33670.71 c131.45 a131.25 ab29.00 b29.77 b10.00 c9.77 b
    N120262.55 c252.34 cd37845.51 bc34620.20 bc134.23 a131.66 a29.67 ab29.67 bc10.11 c9.82 b
    N150279.36 b259.00 bc39188.34 ab35751.71 b129.55 a131.44 ab29.00 b29.60 bc10.25 bc9.91 ab
    N180285.54 ab267.88 b40043.43 ab38155.83 a129.00 a133.50 a29.00 b29.50 bc10.59 ab10.31 ab
    N210287.60 a283.42 a40740.47 a38360.86 a130.66 a127.18 b28.67 b29.13 d10.67 ab10.12 ab
    CK288.63 a286.38 a39724.18 ab39355.98 a129.31 a130.09 ab29.33 b29.43 c10.82 a10.46 a
    平均Average271.91262.0738157.0336006.61130.91130.7329.2929.6410.249.94
    豆–稻
    Broad bean-rice
    N0226.51 d234.58 d29565.40 b31734.53 d124.83 b128.99 b29.67 a29.73 a8.85 d8.98 c
    N90270.44 bc253.82 c36363.25 a34581.68 c127.22 b129.28 b29.00 a29.67 a9.64 c9.68 ab
    N120270.44 bc264.18 bc38155.80 a36399.24 b134.25 a130.05 b29.00 a29.57 ab10.13 b9.72 ab
    N150271.13 bc273.80 ab38164.86 a38107.61 a134.39 a131.47 ab29.67 a29.53 ab10.21 b10.03 ab
    N180273.87 ab275.28 ab38774.99 a38737.07 a133.65 a131.94 ab29.67 a29.47 ab10.72 a10.12 a
    N210279.02 a278.24 a38645.07 a37446.25 ab129.68 ab128.84 b29.33 a29.33 b10.21 b9.45 bc
    CK264.95 c272.32 ab37136.39 a38549.23 a132.87 a134.93 a30.00 a29.57 ab10.15 b9.89 ab
    平均Average265.20264.6036686.5436507.95130.98130.7929.4829.559.999.70
    FF-value
    轮作模式 (R)
    Rotation model
    171.24**4.68*172.00**73.68**123.69**24.65**24.75**2.89394.33**41.37**
    施氮量 (N)
    Nitrogen rate
    270.30**48.72**57.16**99.19**7.81**3.90**4.70**25.79**67.25**21.98**
    R × N15.86**2.78**2.31*2.39*5.40**1.251.802.58*4.29**3.10**
    注(Note):CK—N 285 kg/hm2,等量分为基肥、蘖肥、促花肥和保花肥施入 N 285 kg/hm2 was divided evenly into four parts, and applied as basal, tillering, spikelet-promoting and spikelet-sustaining stage. 同列数据后不同字母表示处理间差异达 5% 显著水平 Values followed by different letters in a column indicate significant difference among different treatments at the 5% level. *—P < 0.05; **—P < 0.01.
    下载: 导出CSV

    表  3   不同轮作模式下穗肥氮用量对水稻不同阶段各器官氮素吸收量的影响 (kg/hm2)

    Table  3   Effects of panicle N application rates on N uptake in each organ of rice at different growth stages under different rotation systems

    轮作模式
    Rotation system
    处理
    Treatment
    倒4叶期Inverse 4th leaf stage齐穗期Full heading stage成熟期Maturity
    茎鞘
    Stem and sheath

    Leaf
    茎鞘
    Stem and sheath

    Leaf

    Panicle
    茎鞘
    Stem and sheath

    Leaf

    Panicle
    油–稻
    Oilseed
    rape-rice
    N013.30 b20.02 b39.43 d65.07 f16.58 d19.04 c12.21 c113.96 c
    N9013.01 b19.65 b47.04 d80.01 de17.81 c22.74 bc14.63 bc133.66 b
    N12013.40 b19.90 b58.30 c86.50 c19.46 b27.44 ab17.71 ab138.91 b
    N15012.97 b19.59 b71.93 b91.55 b20.00 b29.38 a17.16 ab139.44 b
    N18013.33 b19.69 b85.69 a99.05 a21.69 a30.81 a18.41 a153.57 a
    N21012.96 b19.29 b74.95 b83.43 cd16.93 cd31.07 a18.01 a159.03 a
    CK17.56 a23.66 a58.78 c77.94 e19.19 b27.48 ab13.48 c164.13 a
    平均Average13.7920.2662.3083.3718.8126.8515.95143.24
    麦–稻
    Wheat-rice
    N011.04 b18.80 b33.66 d46.81 d14.74 d17.13 d9.18 d102.31 d
    N9011.08 b19.25 ab37.15 d52.02 c16.14 c21.27 cd12.80 c120.69 c
    N12011.70 b19.03 b45.46 c58.34 b17.49 b22.61 bcd13.23 bc121.69 bc
    N15011.78 b19.31 ab51.85 bc59.85 b18.00 b28.31 ab17.04 a123.74 bc
    N18011.43 b19.74 ab62.07 a62.42 b20.47 a33.18 a17.55 a132.45 abc
    N21011.48 b19.42 ab49.48 bc59.68 b18.68 b28.40 ab16.20 ab137.92 a
    CK15.14 a20.93 a54.83 ab69.17 a18.47 b25.39 bc17.57 a 133.77 ab
    平均Average11.9519.5047.7958.3317.7125.1814.80124.65
    豆–稻
    Broad
    bean-rice
    N012.44 b21.87 b31.99 c46.08 e13.98 d15.50 b7.58 b101.67 b
    N9012.53 b20.55 b38.98 bc58.41 d16.33 c21.10 a9.96 ab110.10 ab
    N12012.72 b21.48 b46.15 b62.28 d17.11 bc23.50 a11.82 a114.53 a
    N15012.72 b21.42 b55.37 a69.66 c17.65 b23.63 a11.55 a113.09 ab
    N18012.68 b20.81 b62.14 a74.04 b19.36 a24.54 a12.08 a121.15 a
    N21012.86 b20.84 b57.12 a80.25 a18.95 a26.75 a12.61 a114.63 a
    CK14.86 a24.64 a59.40 a79.33 a19.56 a23.58 a12.13 a116.48 a
    平均Average12.9721.6650.1667.1517.5622.6511.10113.09
    FF-value
    轮作模式 (R)
    Rotation model
    83.15**30.04**52.72**576.31**21.84**8.51**41.00**98.19**
    施氮量Nitrogen rate (N)71.83**14.32**54.96**122.26**59.71**15.05**13.55**23.71**
    R×N3.06**1.253.07**20.83**6.14**0.782.05*2.49*
    注(Note):CK—N 285 kg/hm2,等量分为基肥、蘖肥、促花肥和保花肥施入 N 285 kg/hm2 was divided evenly into four parts, and applied as basal, tillering, spikelet-promoting and spikelet-sustaining stage. 同列数据后不同字母表示处理间差异达5%显著水平 Values followed by the different letters in a column indicate significant difference among different treatments at the 5% level; *—P < 0.05; **—P < 0.01.
    下载: 导出CSV

    表  4   不同轮作模式下穗肥氮用量对水稻氮素利用效率的影响

    Table  4   Effects of panicle N application rates on N use efficiency in rice under different rotation systems

    轮作模式
    Rotation
    system
    处理
    Treatment
    氮素收获指数
    NHI
    (%)
    氮素干物质生产效率
    NBPE
    (kg/kg)
    氮素稻谷生产效率
    NGPE
    (kg/kg)
    氮肥偏生产力
    NPP
    (kg/kg)
    氮肥表观利用率
    NAUE
    (%)
    氮肥农学利用率
    NAE
    (kg /kg)
    油–稻
    Oilseed rape-rice
    N078.46 ab98.31 a64.42 a
    N9077.88 ab89.94 bcd58.27 b109.36 a23.37 ab5.50 b
    N12075.47 b91.99 bc56.18 bc86.18 b30.12 a8.29 ab
    N15074.95 b94.76 ab57.23 b70.92 c25.38 ab8.61 ab
    N18075.75 b91.37 bc54.95 bc61.81 d30.49 a9.88 a
    N21076.33 b86.82 cd52.98 c52.51 e28.67 ab8.00 ab
    CK80.04 a84.68 d57.32 b41.23 f20.06 b8.44 ab
    平均Average76.9891.1257.3470.3326.358.12
    麦–稻
    Wheat-rice
    N079.54 a107.63 a71.28 a
    N9078.00 ab96.50 b63.18 b108.58 a29.04 a6.77 a
    N12077.25 ab96.80 b62.33 bc81.83 b24.09 ab5.47 a
    N15073.10 c92.47 bc58.81 cd66.04 c26.98 a4.95 a
    N18072.25 c88.55 c56.49 d57.30 d30.31 a6.39 a
    N21075.64 bc87.50 c55.51 d48.19 e25.67 a4.55 a
    CK75.76 bc90.52 bc59.26 cd36.68 f16.88 b4.53 a
    平均Average75.9494.2860.9866.4325.495.45
    豆–稻
    Broad bean-rice
    N081.48 a109.61 a71.98 a
    N9078.03 b103.70 ab68.67 ab107.61 a18.22 ab7.79 a
    N12076.49 b101.71 b64.94 bcd81.01 b20.92 a6.15 ab
    N15076.27 b105.74 ab67.68 bc66.89 c15.68 ab7.00 a
    N18076.80 b100.58 b64.19 cd56.23 d18.34 ab6.32 ab
    N21074.44 b100.58 b61.37 d45.00 e13.92 ab2.22 c
    CK76.55 b108.36 a65.01 bcd34.71 f9.63 b3.19 bc
    平均Average77.15104.3266.2665.2416.125.45
    FF-value
    轮作模式 (R)
    Rotation model
    2.2080.34**88.91**33.27**24.25**11.53**
    施氮量 (N)
    Nitrogen rate
    7.36**13.71**30.53**1529.04**5.36**2.33
    R × N1.743.10**1.521.080.832.03
    注(Note):NHI—N harvest index; NBPE—N use efficiency for biomass production; NGPE—N use efficiency for grain production; NPP—Partial factor productivity of applied N; NAUE—N apparent use efficiency; NAE—N agronomy efficiency. 同列数字后不同字母表示差异达 5% 显著水平 Values followed by different letters in a column indicate significant difference among different treatments at the 5% level. **—P < 0.01.
    下载: 导出CSV
  • [1]

    Peng S B, Tang Q, Zou Y. Current status and challenges of rice production in China[J]. Plant Production Science, 2009, 12(1): 3-8. DOI: 10.1626/pps.12.3

    [2]

    Fan M, Shen J, Yuan L, et al. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China[J]. Journal of Experimental Botany, 2011, 63(1): 13-24.

    [3]

    Peng S B, Huang J L, Zhong X H, et al. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Agricultural Sciences in China, 2002, 1(7): 776-785.

    [4] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915-924. DOI: 10.3321/j.issn:0564-3929.2008.05.018

    Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915-924. DOI: 10.3321/j.issn:0564-3929.2008.05.018

    [5] 全为民, 严力蛟. 农业面源污染对水体富营养化的影响及其防治措施[J]. 生态学报, 2002, 22(3): 291-299. DOI: 10.3321/j.issn:1000-0933.2002.03.002

    Quan W M, Yan L J. Effects of agricultural non-point source pollution on eutrophication of water body and its control measure[J]. Acta Ecologica Sinica, 2002, 22(3): 291-299. DOI: 10.3321/j.issn:1000-0933.2002.03.002

    [6]

    Conley D J, Paerl H W, Howarth R W, et al. Controlling eutrophication: nitrogen and phosphorus[J]. Science, 2009, 323(5917): 1014-1015. DOI: 10.1126/science.1167755

    [7]

    Mousavi S F, Yousefi-Moghadam S, Mostafazadeh-Fard B, et al. Effect of puddling intensity on physical properties of a silty clay soil under laboratory and field conditions[J]. Paddy and Water Environment, 2009, 7(1): 45-54. DOI: 10.1007/s10333-008-0148-4

    [8]

    Motschenbacher J, Brye K R, Anders M M. Long-term rice-based cropping system effects on near-surface soil compaction[J]. Agricultural Sciences, 2011, 2(2): 117-124. DOI: 10.4236/as.2011.22017

    [9]

    Kumari M, Chakraborty D, Gathala M K, et al. Soil aggregation and associated organic carbon fractions as affected by tillage in a rice-wheat rotation in North India[J]. Soil Science Society of America Journal, 2011, 75(2): 560-567. DOI: 10.2136/sssaj2010.0185

    [10]

    Bueno C S, Ladha J K. Comparison of soil properties between continuously cultivated and adjacent uncultivated soils in rice-based systems[J]. Biology and Fertility of Soils, 2009, 45(5): 499-509. DOI: 10.1007/s00374-009-0358-y

    [11]

    Turmuktini T, Kantikowati E, Natalie B, et al. Restoring the health of paddy soil by using straw compost and biofertilizers to increase fertilizer efficiency and rice production with SOBARI (System of Organic Based Aerobic Rice Intensification) technology[J]. Asian Journal of Agriculture and Rural Development, 2012, 2(4): 519-526.

    [12]

    Ladygina N, Hedlund K. Plant species influence microbial diversity and carbon allocation in the rhizosphere[J]. Soil Biology and Biochemistry, 2010, 42(2): 162-168. DOI: 10.1016/j.soilbio.2009.10.009

    [13] 张翔, 范艺宽, 黄元炯, 等. 河南省不同茬口烟田土壤养分状况评价[J]. 中国烟草学报, 2009, 15(6): 31-35, 40. DOI: 10.3969/j.issn.1004-5708.2009.06.006

    Zhang X, Fan Y K, Huang Y J, et al. Evaluation of nutrients status in tobacco planting soils under different cropping systems in Henan Province[J]. Acta Tabacaria Sinica, 2009, 15(6): 31-35, 40. DOI: 10.3969/j.issn.1004-5708.2009.06.006

    [14] 江凯, 李彰, 王闷灵, 等. 洛阳基本烟田不同茬口土壤特征分析[J]. 江西农业学报, 2010, 22(12): 66-68. DOI: 10.3969/j.issn.1001-8581.2010.12.021

    Jiang K, Li Z, Wang M L, et al. Analysis on soil characteristics of basic tobacco field with different previous crops in Luoyang[J]. Acta Agriculturae Jiangxi, 2010, 22(12): 66-68. DOI: 10.3969/j.issn.1001-8581.2010.12.021

    [15]

    Zhang Y, Chen X P, Ma W Q, Cui Z L. Elucidating variations in nitrogen requirement according to yield, variety and cropping system for Chinese rice production[J]. Pedosphere, 2017, 27(2): 358-363. DOI: 10.1016/S1002-0160(17)60323-0

    [16]

    Ockerby S E, Garside A L, Holden P D, et al. Prior crop and residue incorporation time affect the response of paddy rice to fertilizer nitrogen[J]. Australian Journal of Agricultural Research, 1999, 50(6): 937-944. DOI: 10.1071/AR98087

    [17]

    Cao Y S, Tian Y H, Yin B, Zhu Z L. Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency[J]. Field Crops Research, 2013, 147: 23-31. DOI: 10.1016/j.fcr.2013.03.015

    [18] 刘立军, 杨立年, 孙小淋, 等. 水稻实地氮肥管理的氮肥利用效率及其生理原因[J]. 作物学报, 2009, 35(9): 1672-1680. DOI: 10.3724/SP.J.1006.2009.01672

    Liu L J, Yang L N, Sun X L et al. Use efficiency and its physiological mechanism under site-specific nitrogen management in rice[J]. Acta Agronomica Sinica, 2009, 35(9): 1672-1680. DOI: 10.3724/SP.J.1006.2009.01672

    [19] 丁艳锋, 刘胜环, 王绍华, 等. 氮素基、蘖肥用量对水稻氮素吸收与利用的影响[J]. 作物学报, 2004, 30(8): 762-767. DOI: 10.3321/j.issn:0496-3490.2004.08.005

    Ding Y F, Liu S H, Wang S H, et al. Effects of the amount of basic and tillering nitrogen applied on absorption and utilization of nitrogen in rice[J]. Acta Agronomica Sinica, 2004, 30: 762-767. DOI: 10.3321/j.issn:0496-3490.2004.08.005

    [20] 杨文钰, 屠乃美, 张洪程, 等. 作物栽培学各论: 南方本[M]. 北京: 中国农业出版社, 2003. 46–49.

    Yang W Y, Tu N M, Zhang H C. Individual introduction to crop cultivation (South version)[M]. Beijing: China Agriculture Press, 2003. 46–49.

    [21] 金相灿, 刘鸿亮, 屠清瑛. 中国湖泊富营养化[M]. 北京: 中国环境科学出版社, 1990. 1–5.

    Jin X C, Liu H L, Tu Q Y. Eutrophication of Chinese lakes[M]. Beijing: China Environmental Science Press, 1990. 1–5.

    [22] 郭智, 肖敏, 陈留根, 等. 稻麦两熟农田稻季养分径流流失特征[J]. 生态环境学报, 2010, 19(7): 1622-1627.

    Guo Z, Xiao M, Chen L G, et al. The characteristics of surface runoff losses of soil nitrogen and phosphorus during rice season in intensive rice-wheat rotation field[J]. Ecology and Environmental Sciences, 2010, 19(7): 1622-1627.

    [23]

    Li G H, Lin J J, Xue L H, et al. Fate of basal N under split fertilization in rice with 15N isotope tracer[J]. Pedosphere, 2018, 28(1): 135-143. DOI: 10.1016/S1002-0160(17)60407-7

    [24] 蔡一霞, 刘春香, 王维, 等. 基肥氮后移对早造杂交稻产量、品质及米粉糊化特征的影响[J]. 华南农业大学学报, 2011, 32(2): 1-5. DOI: 10.3969/j.issn.1001-411X.2011.02.001

    Cai Y X, Liu C X, Wang W, et al. Grain yield, quality and the gelatinization of rice flour in early hybrid rice as affected by basic nitrogen postponed for heading stage[J]. Journal of South China Agricultural University, 2011, 32(2): 1-5. DOI: 10.3969/j.issn.1001-411X.2011.02.001

    [25] 刘汝亮, 李友宏, 张爱平, 等. 氮肥后移对引黄灌区水稻产量和氮素淋溶损失的影响[J]. 水土保持学报, 2012, 26(2): 16-20.

    Liu R L, L i Y H, Z hang A P, et al. Effect of postponing N application on rice yield and N losses in yellow river irrigation area[J]. Journal of Soil and Water Conservation, 2012, 26(2): 16-20.

    [26] 杨从党, 龙瑞平, 夏琼梅, 等. 云南水稻氮肥减量后移增效技术研究[J]. 中国稻米, 2019, 25(3): 53-56.

    Yang C D, Long R P, Xia Q M, Study on the synergetic technology of postponing and decreasing nitrogen fertilizer of rice in Yunnan Province[J]. China Rice, 2019, 25(3): 53-56.

    [27]

    Chen S, Xu C, Yan J, et al. The influence of the type of crop residue on soil organic carbon fractions: an 11-year field study of rice-based cropping systems in southeast China[J]. Agriculture, Ecosystems and Environment, 2016, 223: 261-269. DOI: 10.1016/j.agee.2016.03.009

    [28] 郭保卫, 张洪程, 朱大伟, 等. 有序摆抛栽水稻的氮素吸收、利用与分配特征[J]. 作物学报, 2017, 43(1): 97-111. DOI: 10.3724/SP.J.1006.2017.00097

    Guo B W, Zhang H C, Zhu D W, et al. Characteristics of nitrogen uptake, utilization and distribution in ordered transplanting and optimized broadcasting rice[J]. Acta Agronomica Sinica, 2017, 43(1): 97 -111. DOI: 10.3724/SP.J.1006.2017.00097

    [29] 王海月, 李玥, 孙永健, 等. 不同施氮水平下缓释氮肥配施对机插稻氮素利用特征及产量的影响[J]. 中国水稻科学, 2017, 31(1): 50-64.

    Wang H Y, Li Y, Sun Y J, et al. Effects of slow-release urea combined with conventional urea on characteristics of nitrogen utilization and yield in mechanical-transplanted rice under different nitrogen application rates[J]. Chinese Journal of Rice Science, 2017, 31(1): 50-64.

    [30] 周永进, 吴文革, 许有尊, 等. 油菜秸秆还田培肥土壤的效应及对后作水稻产量的影响[J]. 扬州大学学报(农业与生命科学版), 2015, 36(1): 53-58.

    Zhou Y J, Wu W G, Xu Y Z, et al. Effects of returned rapeseed straw on soil fertility and yield of subsequent rice[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2015, 36: 53-58.

    [31]

    Shah Z, Ahmad S R, Rahman H U, et al. Sustaining rice-wheat system through management of legumes. Ⅱ. Effect of green manure legumes and N fertilizer on wheat yield[J]. Pakistan Journal of Botany, 2011, 43: 2093-2097.

    [32]

    Shah Z, Shah S H, Peoples M B, et al. Crop residue and fertilizer N effects on nitrogen fixation and yields of legume-cereal rotations and soil organic fertility[J]. Field Crops Research, 2003, 83(1): 1-11. DOI: 10.1016/S0378-4290(03)00005-4

    [33]

    Lal R. The potential of carbon sequestration in soils of south Asia[A]//. Conserving Soil and Water for Society. 13th International Soil Conservation Organization Conference[C]. Brisbane: Conserving Soil and Water for Society, 2004. 1–6.

    [34] 郑盛华, 陈红琳, 朱孟琦, 等. 水稻产量对川西平原基础肥力和施肥的响应[J]. 中国农业大学学报, 2018, 23(12): 19-26.

    Zheng S H, Chen H L, Zhu M Q, et al. Responses of rice yields to basic soil fertility and fertilization in western Sichuan plain[J]. Journal of China Agricultural University, 2018, 23(12): 19-26.

    [35] 蒋琪, 许国春, 王强盛, 等. 氮素穗肥对超级稻颖果发育及经济性状的影响[J]. 南京农业大学学报, 2016, 39(2): 191-197.

    Jiang Q, Xu G C, Wang Q S, et al. Effects of panicle N fertilizer on caryopsis development and economic characters of super rice[J]. Journal of Nanjing Agricultural University, 2016, 39(2): 191-197.

    [36] 李刚华, 王惠芝, 王绍华, 等. 穗肥对水稻穗分化期碳氮代谢及颖花数的影响[J]. 南京农业大学学报, 2010, 33(1): 1-5.

    Li G H, Wang H Z, Wang S H, et al. Effect of nitrogen applied at rice panicle initiation stage on carbon and nitrogen metabolism and spikelets per panicle[J]. Journal of Nanjing Agricultural University, 2010, 33(1): 1-5.

    [37] 凌启鸿. 张洪程, 丁艳峰, 等. 水稻精确定量栽培理论与技术[M]. 北京: 中国农业出版社, 2007. 105−112.

    Ling Q H, Zhang H C, Ding Y F, et al. Precise and quantitative cultivation theory and technology of rice[M]. Beijing: China Agriculture Press, 2007. 105−112.

    [38] 余翔, 王强盛, 王夏雯, 等. 机插稻鸭共作系统氮素基蘖肥用量对水稻群体质量与氮素利用的影响[J]. 植物营养与肥料学报, 2009, 15(03): 529-536.

    Yu X, Wang Q S, Wang X W, et al. Effects of the amount of basic and tillering nitrogen on population quality and nitrogen utilization of machine-transplanted rice in rice-duck farming system[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(03): 529-536.

    [39] 刘胜环. 基蘖氮肥用量对水稻群体质量影响及氮肥高效利用机理研究[D]. 南京: 南京农业大学硕士学位论文, 2003.

    Liu S H. Effects of the basic and tillering nitrogen amount on population quality and nitrogen use efficiency in rice[D]. Nanjing: MS Thesis of Nanjing Agricultural University, 2003.

    [40] 刘立军, 徐伟, 桑大志, 等. 实地氮肥管理提高水稻氮肥利用效率[J]. 作物学报, 2006, 32(7): 987-994.

    Liu L J, Xu W, Sang D Z, et al. Site specific nitrogen management increases fertilizer nitrogen use efficiency in rice[J]. Acta Agronomica Sinica, 2006, 32(7): 987-994.

    [41] 刘红江, 郭智, 郑建初, 等. 不同栽培技术对水稻产量及径流NPK流失的影响[J]. 农业环境科学学报, 2015, 34(9): 1790-1796. DOI: 10.11654/jaes.2015.09.023

    Liu H J, Guo Z, Zheng J C, et al. Effect of different cultivation techniques on rice yield and NPK runoff losses[J]. Journal of Agro-Environment Science, 2015, 34(9): 1790-1796. DOI: 10.11654/jaes.2015.09.023

    [42] 李勇, 曹红娣, 储亚云, 等. 麦秆还田氮肥运筹对水稻产量及土壤氮素供应的影响[J]. 土壤, 2010, 42(4): 569-573.

    Li Y, Cao H D, Chu Y Y, et al. Effects of wheat straw returning and nitrogen application model on rice yield and soil nitrogen supply[J]. Soils, 2010, 42(4): 569-573.

    [43] 李录久, 王家嘉, 吴萍萍, 等. 秸秆还田下氮肥运筹对白土田水稻产量和氮吸收利用的影响[J]. 植物营养与肥料学报, 2016, 22(1): 254-262. DOI: 10.11674/zwyf.14154

    Li L J, Wang J J, Wu P P, et al. Effect of different nitrogen application on rice yield and N uptake of white soil under wheat straw turnover[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(1): 254-262. DOI: 10.11674/zwyf.14154

    [44] 董桂春, 陈琛, 袁秋梅, 等. 氮肥处理对氮素高效吸收水稻根系性状及氮肥利用率的影响[J]. 生态学报, 2016, 36(3): 642-651.

    Dong G C, Chen C, Yuan Q M, et al. The effect of nitrogen fertilizer treatments on root traits and nitrogen use efficiency in indica rice varieties with high nitrogen absorption efficiency[J]. Acta Ecologica Sinica, 2016, 36(3): 642-651.

    [45] 何海兵, 杨茹, 廖江, 等. 水分和氮肥管理对灌溉水稻优质高产高效调控机制的研究进展[J]. 中国农业科学, 2016, 49(2): 305-318. DOI: 10.3864/j.issn.0578-1752.2016.02.011

    He H B, Yang R, Liao J, et al. Research advance of high-yielding and high efficiency in resource use and improving grain quality of rice plants under water and nitrogen managements in an irrigated region[J]. Scientia Agricultura Sinica, 2016, 49(2): 305-318. DOI: 10.3864/j.issn.0578-1752.2016.02.011

    [46] 剧成欣, 张耗, 王志琴, 等. 水稻高产和氮肥高效利用研究进展[J]. 中国稻米, 2013, 19(1): 16-21. DOI: 10.3969/j.issn.1006-8082.2013.01.005

    Ju C X, Zhang H, Wang Z Q, et al. Research progress on high yield and high efficient nitrogen utilization in rice[J]. China Rice, 2013, 19(1): 16-21. DOI: 10.3969/j.issn.1006-8082.2013.01.005

    [47] 王蒙, 赵兰坡, 王立春, 等. 氮素运筹对吉林超高产水稻的产量及氮效率的研究[J]. 吉林农业科学, 2012, 37(6): 25-28.

    Wang M, Zhao L P, Wang L C, et al. Research of nitrogen application on super rice yield and nitrogen efficiency in Jilin Province[J]. Journal of Jilin Agricultural Sciences, 2012, 37(6): 25-28.

    [48] 吴文革, 张四海, 赵决建, 等. 氮肥运筹模式对双季稻北缘水稻氮素吸收利用及产量的影响[J]. 植物营养与肥料学报, 2007, 13(5): 757-764. DOI: 10.3321/j.issn:1008-505x.2007.05.001

    Wu W G, Zhang S H, Zhao J J, et al. Nitrogen uptake, utilization and rice yield in the north rim land of double-cropping rice region as affected by different nitrogen management strategies[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(5): 757-764. DOI: 10.3321/j.issn:1008-505x.2007.05.001

  • 期刊类型引用(11)

    1. 胡明明,李志欣,丁峰,陈凯瑞,廖琴,吴子牛,熊莹,付浩,罗永恒,陈宗奎,杨志远,孙永健,马均. 不同水旱轮作模式下秸秆还田与精量减氮对水稻产量、氮素吸收利用及土壤氮含量的影响. 植物营养与肥料学报. 2024(08): 1500-1514 . 本站查看
    2. 浦潇,支玉鑫,李虹颖,陆银萍,熊启中,徐刚,叶新新,张卫峰. 巢湖流域不同轮作模式对水稻氮磷利用率和经济效益的影响评价. 安徽农业大学学报. 2024(04): 659-668 . 百度学术
    3. 赵汉红,梁小军,刘全哲,问宏,吴玉红,王吕,秦宇航,陈浩,白玉海. 不同轮作模式下秸秆还田与氮肥配施对水稻茎蘖动态、群体质量及产量的影响. 陕西农业科学. 2024(12): 93-100 . 百度学术
    4. 左琴,刘彦伶,李渝,黄兴成,张雅蓉,朱华清,杨叶华,熊涵,张文安,蒋太明. 长期不同轮作方式对黄壤区水稻产量和养分吸收及土壤养分含量的影响. 土壤通报. 2023(04): 881-888 . 百度学术
    5. 龙瑞平,张朝钟,戈芹英,万卫东,王勤,李贵勇,夏琼梅,朱海平,杨从党. 水旱轮作下穗肥氮用量对机插粳稻生长特性及经济效益分析. 作物杂志. 2022(01): 124-129 . 百度学术
    6. 李敏,罗德强,蒋明金,江学海,姬广梅,李立江,周维佳. 不同减氮栽培模式对杂交籼稻氮素吸收利用及产量的影响. 植物营养与肥料学报. 2022(04): 598-610 . 本站查看
    7. 张小祥,邵士梅,赵步洪,张耗,季红娟,肖宁,潘存红,李育红,吴云雨,蔡跃,刘建菊,吉春明,张秀琴,刘广青,周长海,黄年生,李爱宏. 氮肥减施模式对不同穗型迟熟中粳水稻产量及氮素吸收利用的影响. 中国水稻科学. 2022(03): 278-294 . 百度学术
    8. 龙瑞平,杨兆春,穆家伟,鲁康兴,李维刚,李贵勇,夏琼梅,朱海平,杨久,张君莉,王瑶,杨从党. 稻鱼共作下氮肥减量后移对水稻生长和氮肥利用效率的影响. 土壤. 2022(04): 708-714 . 百度学术
    9. 李红宇,李逸,赵海成,刘梦红,郑桂萍,吕艳东,范名宇. 点深施肥对寒地水稻产量品质及氮肥利用率的影响. 华北农学报. 2021(01): 159-168 . 百度学术
    10. 朱海平,刘玉文,王耀伟,李如会,田淑玲,欧阳怡平,杨久,杨从党. 薯—稻模式下穗肥用量对直播籼稻产量及群体质量的影响. 云南农业大学学报(自然科学). 2021(04): 573-581 . 百度学术
    11. 吴玉红,王吕,崔月贞,郝兴顺,王保军,田霄鸿,李小刚,秦宇航. 轮作模式及秸秆还田对水稻产量、稻米品质及土壤肥力的影响. 植物营养与肥料学报. 2021(11): 1926-1937 . 本站查看

    其他类型引用(7)

图(1)  /  表(4)
计量
  • 文章访问数:  3605
  • HTML全文浏览量:  2806
  • PDF下载量:  77
  • 被引次数: 18
出版历程
  • 收稿日期:  2019-05-07
  • 录用日期:  2019-08-19
  • 网络出版日期:  2020-04-12
  • 刊出日期:  2020-04-24

目录

/

返回文章
返回