Effects of combination ratio and application method of conventional urea and controlled release urea on soil nitrogen supply and spring maize yield
-
摘要:目的
宁夏南部山区玉米生产中施肥不合理,氮素供需矛盾突出。研究普通尿素与控释尿素配施对土壤氮素、酶活性及玉米产量形成的影响,为玉米高产高效栽培提供一定的理论依据。
方法以先玉698为试材,在施氮225 kg/hm2条件下,设置控释尿素和普通尿素配施比例及施用时期处理:不施肥 (T1);普通尿素2/3基施、1/3小喇叭口期追施 (T2);1/3控释尿素氮 + 1/3普通尿素氮基施,小喇叭口期1/3普通尿素氮追施 (T3);2/3控释尿素氮 + 1/3普通尿素氮一次基施 (T4);控释尿素一次基施 (T5)。探讨不同处理对土壤不同形态氮素含量、土壤酶活性、植株氮素利用效率及产量的影响,并对相关指标进行主成分分析。
结果在玉米灌浆期,T3、T4、T5处理0—20、20—40 cm土层NH4+-N含量均显著高于T2处理 (P < 0.05);土壤NO3–-N含量在0—20 cm土层玉米拔节期T2处理较T3、T4、T5处理高,灌浆期T3、T4、T5处理较T2处理高,20—40 cm土层,玉米大喇叭口期T2处理较T3、T4、T5处理高,成熟期T3、T4、T5处理较T2处理高,且处理间差异达到显著水平 (P < 0.05);土壤无机氮含量,在玉米拔节期0—20、20—40 cm土层T2处理较T3、T4、T5处理高,在玉米成熟期0—20、20—40 cm土层T3、T4、T5处理较T2处理高,且处理间差异达到显著水平 (P < 0.05)。在玉米拔节期0—20 cm土层T2处理的脲酶活性较T4、T5处理分别高45.8%、54.7%,同时期20—40 cm土层T2处理的土壤脲酶活性分别较T4、T5处理高出38.2%、76.9%,在灌浆期20—40 cm土层T5处理的脲酶活性较T2处理提高15.6%;随着控释尿素比例增加,土壤碱性磷酸酶活性达到峰值的时间延长;过氧化氢酶活性在施控释尿素的土壤中变化不明显。两年试验T4处理的平均产量较T2处理高出6.89%,相对经济效益较T2处理高出6.76%。通过对所测土壤指标与产量进行主成分分析,结果表明硝态氮、无机氮对产量的贡献率最高。
结论普通尿素与控释尿素配施可以调节耕层土壤铵态氮、硝态氮、无机氮含量,提高土壤脲酶、碱性磷酸酶活性,确保土壤持续稳定地供给玉米生长发育所需的氮素。在施N 225 kg/hm2条件下,普通尿素与控释尿素按1﹕2配合一次性基施,可协调肥料氮素释放与作物养分吸收,实现土壤供氮与作物需氮之间的平衡,达到作物绿色高产高效栽培的目的。
Abstract:ObjectivesUnreasonable fertilization in maize (Zea mays L.) production in the mountainous regions of southern Ningxia will cause imbalance between the N supply and demand. We studied the combination ratio and application method of conventional urea and controlled release urea, in order to propose an efficient and economically suitable nitrogen management strategy for maize production.
MethodsIn this research, spring maize cultivar ‘Xianyu 698’ was used as the experimental materials, the controlled release urea (CRU) and conventional urea (urea) were applied in different proportions and growing stages of maize, at the total N input rate of 225 kg/hm2. The five treatments were: T1, no fertilization; T2, urea, 2/3 base applied and 1/3 top-dressed; T3, 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4, total N basal applied in one time (2/3 CRU + 1/3 urea); T5, total N basal applied in one time (100% CRU). The soil N contents and some enzyme activities, and the maize plant N contents and yield were measured.
ResultsIn grain filling period of maize, the NH4+-N contents in 0–20 and 20–40 cm soil layers of T3, T4 and T5 were all significantly higher than those of T2. In the 0–20 cm soil layer, the NO3–-N content of T2 was higher than those of T3, T4 and T5, respectively. In the maize filling period, those of T3, T4 and T5 were higher than that of T2, respectively. In the 20–40 cm soil layer, the soil NO3–-N content of T2 was higher than those of T3, T4 and T5, respectively. Those of T3, T4 and T5 were higher than that of T2 in maize ripening period. The difference among treatments in the same period reached a significant level (P < 0.05). In the jointing stage of maize, the soil inorganic nitrogen content of T2 in 0–20 and 20–40 cm soil layers was higher than those of T3, T4 and T5, respectively. In the mature stage of maize, the soil inorganic nitrogen contents of T3, T4 and T5 in 0–20 and 20–40 cm soil layers were higher than those of T2, respectively. The difference among treatments in the same period reached a significant level (P < 0.05). At the jointing stage of maize, the urease activity of T2 in 0–20 cm soil layer was 45.8% and 54.7% higher than those of T4 and T5. At the same time, the soil urease activity of T2 in 20–40 cm soil layer was 38.2% and 76.9% higher than those of T4 and T5. During the grain filling stage of maize, the urease activity of T5 in the 20–40 cm soil layer was increased by 15.6% compared with T2. With the increase of the proportion of controlled release urea, the later the activity of soil alkaline phosphatase reached peak. Catalase activity did not change significantly in controlled release urea treatment. The average yield of T4 in the two-year experiment was 6.89% higher than that of T2, and the relative economic benefit was 6.67% higher than that of T2. Principal component analysis of soil related indicators and yields showed that nitrate nitrogen, inorganic nitrogen contributed to the yield most.
ConclusionComprehensively, compared with conventional urea, conventional urea combined with controlled release urea has more positive effects on the content of ammonium nitrogen, nitrate nitrogen and inorganic nitrogen in the plough layer soil, coordinates the activities of soil urease and alkaline phosphatase, and improves the nitrogen needed for the soil to sustain and stably supply the growth and development of maize. Conventional urea/controlled release urea is applied in the ratio of 1∶2 in the circumstances of equal nitrogen fertilization, which can fully exert the advantages of the nutrient release characteristics and the crop nutrient absorption, achieve the balance between the level of nitrogen supply in the soil and the nitrogen requirement of crops. At the same time, this pattern could achieve the goal of high yield and high efficiency cultivation of spring maize.
-
Keywords:
- spring maize /
- controlled release urea /
- combination ratio /
- application time /
- yield
-
在玉米生长发育和产量形成过程中,氮扮演着重要角色[1-4]。近年来在农业生产中对氮肥施用不合理,导致氮肥利用率低,效益下降,同时造成水体污染,对生态环境构成潜在威胁[5-8]。为了减少氮素的损失,提高肥料利用率,世界各国开展了广泛的研究,如平衡施肥、肥料深施、多次施肥技术、新型肥料的研发等。随着农村劳动力的逐渐减少,农村施肥逐渐向便捷化发展,缓/控释尿素因其简便高效的特点在农业生产中已成为研究热点[9]。
玉米是宁夏南部山区主栽作物,近年来,由于农村青壮年多外出务工、农村劳力减少,且在玉米拔节期追肥困难,田间施肥常出现底肥、追肥“一炮轰”的现象,导致氮素养分释放过快,难以实现玉米高产高效栽培。王寅等[10]提出控释尿素与尿素按适宜比例掺混施用作为当前普通肥料一次性施用的替代技术,可达到节本增效的目的。有学者用盆栽试验研究控释尿素与普通尿素配施对夏玉米生育期土壤NH4+-N和NO3–-N的影响表明,土壤中NH4+-N含量保持在较稳定水平,可有效降低NO3–-N的淋失,防止对环境的污染[11]。李玉浩等[12]通过研究盆栽水稻表明,控释氮肥与普通尿素配施增加了土壤中无机氮含量,促进了土壤微生物繁殖,达到了水稻增产目标。王素萍等[13]研究控释尿素和普通尿素配施对田间土壤无机氮的影响表明,两者配施的土壤无机氮含量明显高于单施普通尿素。王晓琪等[14]以普通尿素为对照,通过水稻试验表明,在相同施氮量条件下控释尿素能够为水稻提供较为稳定的氮素来源,更有利于水稻中后期氮素供应。郭新送等[15]通过研究控释尿素配施微生物菌剂对小麦氮肥利用率及土壤酶活性的影响表明,控释尿素配施微生物菌剂能够提高土壤硝态氮、铵态氮含量,提高土壤脲酶、过氧化氢酶和蔗糖酶活性。尿素与控释氮肥配施土壤中NO3–-N和NH4+-N浓度增加,特别是在作物生育后期,土壤氮素的淋溶降低,最终可提高作物产量和氮素利用效率,同时降低肥料成本和施肥所需的劳动力[16]。但是,有关普通尿素与控释尿素配施对宁夏南部山区玉米种植带土壤的氮素供应、酶活性及玉米产量的影响研究相对较少。因此,通过开展普通/控释尿素对土壤不同形态氮、土壤酶活性及玉米产量的影响研究,找出更有利于玉米绿色高效生产的施肥方式,为宁夏南部山区玉米高产高效栽培提供科学依据与理论支撑。
1. 材料与方法
1.1 试验地概况
试验点位于宁夏固原市彭阳县城阳乡长城村。地处宁夏南部边缘,六盘山东麓,北纬35°51′42′′,东经106°40′ 27′′,海拔高度为1660 m,属黄土高原半干旱雨养农业区,年降水量350~500 mm,7—9月降水占全年60 %以上,2017、2018年玉米生育期 (4—9月) 降雨量分别为337、578 mm,无霜期140~170天,年平均气温8.0℃,≥ 10℃积温约2700℃。土壤类型为黄绵土,两年试验在同一区域的不同地块进行种植,处理相同。土壤的基础理化性质如表1。
表 1 试验地0—40 cm土层理化性质Table 1. Physical and chemical properties of 0–40 cm layer of the experimental soil年份
Year土壤容重 (g/cm3)
Bulk density有机质 (g/kg)
Organic matter全氮(g/kg)
Total N碱解氮 (mg/kg)
Available N有效磷 (mg/kg)
Available P速效钾 (mg/kg)
Available K全盐 (g/kg)
Total saltpH 2017 1.51 16.46 0.62 88.25 29.23 126.24 1.95 7.44 2018 1.49 14.59 0.69 88.25 35.23 142.24 1.95 8.74 1.2 试验设计
1.2.1 供试材料
供试玉米品种为先玉698。供试尿素 (N ≥ 46.4%) 由中国石化宁夏分公司生产,聚氨酯包膜控释尿素 (纯N ≥ 43.2%) 生产商为宁夏荣和绿色科技有限公司,释放期为70天。
1.2.2 试验设计
设5个处理,具体为:不施肥 (T1);普通尿素2/3基施,1/3在小喇叭口期追施 (T2);1/3控释尿素氮 + 1/3普通尿素氮基施,1/3普通尿素氮在小喇叭口期追施 (T3);2/3控释尿素氮 + 1/3普通尿素氮一次基施 (T4);控释尿素一次基施 (T5)。小区面积为33.4 m2,每个处理4次重复。除T1外,所有处理施化肥量均为N 225 kg/hm2、P2O5 120 kg/hm2(过磷酸钙) 和K2O 60 kg/hm2(硫酸钾),基施氮肥和磷钾肥在玉米播种前分小区均匀撒施后进行旋耕,整地,起垄覆膜。追施氮肥于小喇叭口期进行。
1.2.3 种植方式及田间管理
玉米采用全覆膜双垄沟播技术种植,播深3~4 cm,种植行距为宽窄行起垄种植,宽行60 cm、窄行50 cm,株距为30.3 cm,垄高6 cm,垄沟深3 cm,种植密度为60000株/hm2,播种方式为人工精量点播,其他管理与大田管理一致。2017年4月20日播种,10月3日收获;2018年4月17日播种,9月25日成熟,10月5日收获。
1.3 测定指标及方法
1.3.1 土样采集
2018年在玉米拔节期、大喇叭口期、花期、灌浆期、成熟期取样,共取5次。用土钻分2层 (0—20、20—40 cm) 取土样,将所取鲜土进行分装,带回实验室进行风干过筛,测定不同形态氮素及土壤酶活性。
1.3.2 氮素测定
称取过1 mm筛风干土样5 g于塑料瓶中,加入0.5 mol/L硫酸钾30 mL,振荡1 h,过滤到干燥三角瓶中。硝态氮含量采用紫外分光光度计法[17]测定,铵态氮含量采用靛酚蓝比色法[16] 测定。土壤无机氮含量为铵态氮与硝态氮含量之和[17-18]。
1.3.3 土壤酶活性测定
土壤脲酶活性采用比色法测定,碱性磷酸酶活性采用比色法测定,过氧化氢酶活性采用滴定法测定[19-20]。
1.3.4 植株氮素测定
2017、2018年在玉米收获期,每小区选取代表性植株5株,分成茎鞘、叶、籽粒和苞叶,105℃下杀青30 min,80℃下烘干至恒重,测定干物重后进行粉碎,采用半微量凯氏定氮法测定氮含量。氮素利用率计算方法参照Moll等[21]:
氮肥农学利用率 (kg/kg) = (施氮区玉米产量 − 对照区玉米产量)/施氮量;
氮素表观利用率 = (施氮区玉米地上部吸氮量−对照区玉米地上部吸氮量)/施氮量 × 100%;
肥料氮贡献率 (fertilizer contribution ratio, FCR, %) = (施氮区产量 − 对照区产量) /施氮区产量 × 100
1.3.5 产量构成因素
玉米收获时,收获试验小区中间4行,在大田直接测定其果穗总鲜重,将穗脱粒,并用美国帝强Mini GAC水分仪对籽粒进行水分测定,并计算其出籽率。折算成14%含水率的产量。从所收获的玉米穗中取20穗进行考种。相对增产率 (%) = (施肥区产量 − 不施肥区产量)/不施肥区产量 × 100;总收益 (× 104元/hm2) = 各处理产量 × 单价
1.4 数据处理
数据采用Excel 2003、SPSS17.0、R3.5.1、Duncan新复极差法进行统计分析,Origin 2018绘图。
2. 结果与分析
2.1 普通尿素与控释尿素配施对土壤氮含量的影响
2.1.1 NH4+-N含量
由表2可见,0—20 cm土层NH4+-N含量拔节期各施肥处理间没有显著差异,大喇叭口期T2、T4、T5处理显著低于T3处理;花期T3、T4处理显著高于T2处理,与T5处理差异不显著,灌浆期T5处理显著高于T4处理,T4处理显著高于T3和T2处理,成熟期各施肥处理间差异均不显著;20−40 cm土层,T2和T3处理在拔节期、大喇叭口期均显著高于T4和T5处理,花期以T3处理最高,其显著高于T2和T5处理;灌浆期T5处理显著高于其他处理,T3处理又显著高于T2和T4处理。综合两层土壤NH4+-N含量的变化规律可得出:在玉米拔节期和花期,T3处理两层土壤NH4+-N均较高,在花期之后T4和T5较高,主要是由于控释尿素的释放及玉米对NH4+-N吸收的结果,而T2处理的土壤NH4+-N含量与玉米需求的吻合度不如T3、T4处理。
表 2 普通尿素与控释尿素配施对不同土层NH4+-N含量的影响 (mg/kg)Table 2. Effects of conventional urea combined with controlled release urea on NH4+-N content in different soil layers土层 (cm)
Soil layer处理
Treatment拔节期
Jointing stage大喇叭口期
Big bell stage花期
Flowering stage灌浆期
Filling stage成熟期
Mature stage0—20 T1 6.28 ± 0.83 b 9.64 ± 1.25 b 5.42 ± 0.63 c 8.28 ± 0.10 b 6.21 ± 0.28 b T2 8.87 ± 0.27 a 7.17 ± 0.63 c 6.81 ± 0.42 b 5.27 ± 0.39 c 7.15 ± 0.27 a T3 8.85 ± 0.31 a 10.90 ± 0.13 a 9.13 ± 0.87 a 6.07 ± 0.61 c 7.82 ± 0.36 a T4 8.72 ± 0.41 a 8.93 ± 0.38 c 8.18 ± 0.35 a 8.67 ± 0.45 b 7.69 ± 0.36 a T5 8.46 ± 0.49 a 7.52 ± 0.35 c 7.65 ± 0.15 ab 11.99 ± 0.69 a 7.71 ± 0.87 a 20—40 T1 4.64 ± 0.31 c 6.40 ± 0.31 a 3.51 ± 0.51 c 4.95 ± 0.31 c 5.05 ± 0.16 bc T2 8.46 ± 0.29 a 6.93 ± 0.66 a 3.93 ± 0.32 bc 4.93 ± 0.18 c 4.92 ± 0.28 bc T3 8.04 ± 0.28 a 7.05 ± 0.33 a 5.59 ± 0.49 a 7.87 ± 0.83 b 4.48 ± 0.21 c T4 6.96 ± 0.45 b 5.42 ± 0.11 b 4.60 ± 0.92 ab 5.76 ± 0.91 c 5.39 ± 0.53 ab T5 6.90 ± 0.27 b 4.61 ± 0.59 c 4.10 ± 0.26 bc 11.01 ± 0.69 a 5.79 ± 0.13 a 注(Note):T1—不施肥No fertilization; T2—普通尿素 2/3 基施、1/3 追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施Total N basal applied in one time (2/3 CRU + 1/3 urea); T5一控释尿素一次基施 Total N basal applied in one time (100% CRU). 表中数值为平均值 ± 标准差 Data in the table are mean value ± standard deviation; 同列数值后不同小写字母表示同一土层不同处理间差异显著 (P<0.05) Values followed by different lowercase letters in column are significantly different among treatments in the same soil layer (P<0.05). 2.1.2 土壤NO3–-N含量
表3显示,各处理间土壤硝态氮含量差异显著 (P < 0.05)。在0—20 cm土层,玉米拔节期、大喇叭口期T2处理显著高于T3、T4、T5处理,在玉米花期、灌浆期、成熟期T3、T4、T5处理显著高于T2处理;在20—40 cm土层,玉米拔节期、大喇叭口期、花期T2处理显著高于T3、T4、T5处理,在灌浆期、成熟期T4、T5处理分别显著高于T2处理。综合来看,在玉米大喇叭口期之前T2处理在各土层的NO3–-N含量明显高于同时期的其它处理,在玉米花期之后T5处理在各土层的NO3–-N含量明显高于同时期的其它处理,T2处理与T5处理的NO3–-N含量在玉米生育期的两端呈现较高分布,T3、T4处理在玉米拔节期、花期及灌浆期保持相对平稳,更有利于玉米根系对土壤中NO3–-N进行有效的吸收。
表 3 普通尿素与控释尿素配施对不同土层NO3–-N含量的影响 (mg/kg)Table 3. Effects of conventional urea combined with controlled release urea on NO3–-N content in different soil layers土层 (cm)
Soil layer处理
Treatment拔节期
Jointing stage大喇叭口期
Big bell stage花期
Flowering stage灌浆期
Filling stage成熟期
Mature stage0—20 T1 22.09 ± 1.00 d 20.78 ± 1.73 b 8.52 ± 0.73 d 19.20 ± 1.18 e 36.46 ± 0.51 d T2 70.78 ± 2.12 a 24.92 ± 3.13 a 11.64 ± 0.89 c 43.18 ± 0.84 d 35.87 ± 0.28 e T3 23.94 ± 0.65 d 16.68 ± 0.75 c 15.24 ± 1.03 b 69.03 ± 0.41 b 76.87 ± 1.19 c T4 50.15 ± 0.99 b 12.00 ± 0.07 d 15.41 ± 0.96 b 66.14 ± 0.42 c 85.19 ± 0.88 b T5 33.17 ± 1.39 c 21.81 ± 0.74 b 20.58 ± 1.32 a 92.75 ± 0.16 a 97.73 ± 2.59 a 20—40 T1 27.79 ± 0.93 e 19.17 ± 1.10 e 13.64 ± 0.93 e 13.80 ± 0.78 e 20.90 ± 0.58 d T2 86.68 ± 2.56 a 83.51 ± 0.42 a 37.37 ± 0.59 a 32.72 ± 0.57 c 18.17 ± 0.54 e T3 61.25 ± 0.82 c 52.84 ± 2.34 b 21.34 ± 1.39 c 23.19 ± 0.13 d 22.20 ± 0.27 c T4 66.65 ± 1.71 b 35.36 ± 0.63 c 31.15 ± 0.94 b 59.33 ± 0.48 a 24.73 ± 0.26 b T5 55.17 ± 1.44 d 21.79 ± 0.73 d 17.36 ± 0.43 d 36.42 ± 1.03 b 80.08 ± 0.98 a 注(Note):T1—不施肥No fertilization; T2—普通尿素 2/3 基施、1/3 追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施Total N basal applied in one time (2/3 CRU + 1/3 urea); T5一控释尿素一次基施 Total N basal applied in one time (100% CRU). 表中数值为平均值 ± 标准差 Data in the table are mean value ± standard deviation; 同列数值后不同小写字母表示同一土层不同处理间差异显著 (P<0. 05) Values followed by different lowercase letters in column are significantly different among treatments in the same soil layer (P<0. 05). 2.1.3 土壤无机氮含量
由表4可见,相同土层同一时期各处理土壤无机氮含量差异显著 (P < 0. 05)。且普通尿素与控释尿素配施下0—20、20—40 cm土层的无机氮含量在玉米生育中、后期有明显的提升。T3、T4处理在玉米生育期对土壤无机氮释放速度控制较好,能够持续供应玉米生长发育所需的氮素养分。0—20 cm土层,在玉米大喇叭口期之前T2处理的无机氮含量处于较高水平,花期之后各生育期T3、T4、T5处理的无机氮含量逐渐增大,玉米拔节期、大喇叭口期T2处理高于T3、T4、T5处理;灌浆期、成熟期T3、T4、T5处理高于T2处理。在20—40 cm土层,玉米拔节期、大喇叭口期、花期T2处理高于T3、T4、T5处理;灌浆期T4处理较T2处理高72.91%,成熟期T3、T4、T5处理分别较T2处理高出15.6%、30.5%、271.9%。这进一步说明普通尿素与控释尿素配施更有利于土壤中无机氮的持续供给,防止玉米根系早衰。
表 4 普通尿素与控释尿素配施对不同土层无机氮含量的影响 (mg/kg)Table 4. Effects of conventional urea combined with controlled release urea on inorganic nitrogen content in different soil layers土层 (cm)
Soil layer处理
Treatment拔节期
Jointing stage大喇叭口期
Big bell stage花期
Flowering stage灌浆期
Filling stage成熟期
Mature stage0—20 T1 28.37 ± 2.27 e 30.43 ± 3.03 b 13.94 ± 1.14 d 27.48 ± 0.85 d 42.67 ± 0.28 e T2 79.65 ± 0.67 a 33.86 ± 1.15 a 18.45 ± 1.15 c 48.45 ± 0.43 c 44.03 ± 0.88 d T3 32.79 ± 1.45 d 27.59 ± 1.86 bc 23.37 ± 0.96 b 74.10 ± 0.33 b 84.69 ± 11.50 c T4 58.87 ± 0.22 b 20.93 ± 0.80 c 23.59 ± 1.75 b 74.82 ± 0.51 b 92.89 ± 0.97 b T5 41.63 ± 1.08 c 29.34 ± 0.33 b 28.23 ± 0.30 a 104.75 ± 0.65 a 105.45 ± 12.79 a 20—40 T1 32.43 ± 2.30 e 25.57 ± 0.49 d 17.15 ± 0.28 e 18.76 ± 1.17 e 25.96 ± 0.54 c T2 95.14 ± 1.55 a 90.45 ± 2.77 a 41.30 ± 1.81 a 37.65 ± 1.36 c 23.09 ± 1.07 d T3 69.29 ± 1.04 c 59.89 ± 0.56 b 26.93 ± 0.88 c 31.07 ± 0.88 d 26.69 ± 0.93 c T4 73.61 ± 1.06 b 40.78 ± 0.97 c 35.75 ± 0.70 b 65.10 ± 0.27 a 30.13 ± 0.03 b T5 62.07 ± 0.48 d 26.40 ± 1.68 d 21.47 ± 1.33 d 47.43 ± 0.74 b 85.88 ± 1.09 a 注(Note):T1—不施肥No fertilization; T2—普通尿素 2/3 基施、1/3 追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施Total N basal applied in one time (2/3 CRU + 1/3 urea); T5一控释尿素一次基施 Total N basal applied in one time (100% CRU).表中数值为平均值 ± 标准差 Data in the table are the mean value ± standard deviation; 同列数值后不同小写字母表示同一土层不同处理间差异显著 (P<0.05) Values followed by different lowercase letters in column are significantly different among treatments in the same soil layer (P<0. 05). 2.2 普通尿素与控释尿素配施对土壤酶活性的影响
2.2.1 土壤脲酶活性
由图1可知,在玉米生育期内0—20 cm土层,T2、T3处理玉米拔节期的土壤脲酶活性达到最大值,T2处理较同时期的T4、T5处理分别提高45.8%、54.7%。T5处理的土壤脲酶活性在玉米生育前期相对较低,灌浆期达到最大值,T4处理在该时期同样达到最大值,且不同处理间在同一生育期的差异达到显著水平 (P < 0.05)。20—40 cm土层,T2、T3处理玉米拔节期的脲酶活性同样达到最高值,T2处理分别较同时期的T4、T5处理高出35.3%、76.9%,在灌浆期T5处理的脲酶活性较T2处理提高15.6%。
图 1 普通尿素与控释尿素配施对不同土层脲酶活性的影响[注(Note):T1—不施肥No fertilization; T2—普通尿素2/3基施、1/3追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施Total N basal applied in one time (2/3 CRU + 1/3 urea); T5一控释尿素一次基施 Total N basal applied in one time (100% CRU). 柱上不同字母表示相同生育期不同处理间差异达 5% 显著水平 Different letters above the bars indicate significance among treatments at the same stage at the 5% level.]Figure 1. Effects of conventional urea combined with controlled release urea on urease activity in different soil layers2.2.2 土壤碱性磷酸酶活性
图2表明,各土层的碱性磷酸酶活性变化趋势一致。土壤碱性磷酸酶活性在整个生育期差异较小,随控释尿素的施入量不同达到峰值时间不同,随着控释尿素比例的增加,碱性磷酸酶活性达到峰值的时间推迟。0—20 cm土层,T2处理在玉米生育前期较高,拔节期T2处理分别较T3、T4、T5处理高6.5%、27.8%、185.5%,大喇叭口期T3处理较T2处理高17.9%,而T4、T5处理在生育后期持续升高,在成熟期T4、T5处理分别较T2处理高出17.1%、17.0%。20—40 cm土层,在大喇叭口期,T2处理分别较T3、T4、T5处理高11.8%、42.1%、39.5%,成熟期T3、T4、T5处理分别较T2处理高出20.3%、51.4%、73.3%,说明控释尿素可以调节土壤碱性磷酸酶活性,在一定程度上提高耕层土壤肥力。
图 2 普通尿素与控释尿素配施对不同土层碱性磷酸酶活性的影响[注(Note):T1—不施肥No fertilization; T2—普通尿素2/3基施、1/3追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施Total N basal applied in one time (2/3 CRU + 1/3 urea); T5一控释尿素一次基施 Total N basal applied in one time (100% CRU). 柱上不同字母表示相同生育期处理间差异达5%显著水平 Different letters above the bars indicate significance among treatments at the same stage at the 5% level.]Figure 2. Effects of conventional urea combined with controlled release urea on alkaline phosphatase activityin different soil layers2.2.3 土壤过氧化氢酶活性
图3表明,各处理过氧化氢酶活性在不同土层的变化趋势基本一致皆表现为先增后降,最终趋于平稳。在0—20 cm土层,玉米大喇叭口期T3、T4、T5处理分别较T2处理高3.2%、7.6%、1.8%,且在此时期不同处理间差异达显著水平 (P < 0.05);在20—40 cm土层,花期T3、T4、T5处理分别较T2处理高3.0%、3.0%、6.5%。
图 3 普通尿素与控释尿素配施对不同土层过氧化氢酶活性的影响[注(Note):T1—不施肥No fertilization; T2—普通尿素2/3基施、1/3追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施Total N basal applied in one time (2/3 CRU + 1/3 urea); T5一控释尿素一次基施 Total N basal applied in one time (100% CRU). 柱上不同字母表示相同生育期不同处理间差异达5%显著水平 Different letters above the bars indicate significance among treatments at the same stage at the 5% level.]Figure 3. Effects of conventional urea combined with controlled release urea on catalase activity in different soil layers2.3 普通尿素与控释尿素配施对玉米产量构成因素、氮肥利用效率及经济效益的影响
2.3.1 玉米产量及其构成因素
由表5可见,两年试验中T3、T4处理的千粒重、穗粒数在5个处理中处于较高水平,两年的平均千粒重T3处理分别较T2、T5处理两年均值高出4.7%、4.9%,且处理间差异达到显著水平 (P < 0.05),表明普通尿素与控释尿素配施的玉米果穗生长发育状况良好。两年试验产量T3、T4处理显著高于其他处理,2017年T3、T4处理较T2处理分别增产8.8%、8.6%,2018年T3、T4处理较T2处理分别增产4.9%、5.6%,说明普通尿素与控释尿素配施能够增加籽粒重量和数量,达到增产目的。且年份间的差异达到显著水平 (P < 0.05)。
表 5 普通尿素与控释尿素配施对玉米产量及产量构成因素的影响Table 5. Effects of conventional urea combined with controlled release urea on maize yield and yield components年份
Year处理
Treatment产量 (t/hm2)
Yield相对增收率 (%)
Relative yield increase收获穗数 (× 104 ears/hm2)
Harvest ears穗粒数
kernel number per ear千粒重 (g)
1000-grain weight2017 T1 8.83 d 5.97 a 537 c 279.54 c T2 11.11 c 25.8 5.94 a 641 b 289.98 c T3 12.09 a 36.9 5.94 a 653 a 309.90 a T4 12.06 a 36.6 5.95 a 652 a 306.01 a T5 11.72 b 32.7 5.93 a 643 b 301.71 b 2018 T1 13.25 b 5.97 a 627 b 370.25 c T2 13.85 b 4.5 6.04 a 642 a 382.68 b T3 14.53 a 9.7 6.02 a 638 b 394.03 a T4 14.62 a 10.3 6.08 a 641 a 385.61 b T5 13.93 b 5.1 6.07 a 634 b 369.12 c 均值Mean T1 11.04 c 5.95 a 582 d 324.90 d T2 12.48 b 13.0 5.99 a 641.5 b 336.33 c T3 13.31 a 20.6 5.98 a 645.5 a 351.97 a T4 13.34 a 20.8 6.02 a 646.5 a 345.81 b T5 12.83 b 16.2 6.00 a 638.5 c 335.42 c 变异来源Source of varieties 处理Treatment (T) * * NS * * 年份 Year (Y) * * NS * * T × Y * * NS * * 注(Note):T1—不施肥 No fertilization; T2—普通尿素 2/3 基施、1/3 追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施 Total N basal applied in one time (2/3 CRU + 1/3 urea); T5—控释尿素一次基施 Total N basal applied in one time (100% CRU). 同列数值后不同小写字母表示处理间差异达显著水平 (P<0.05) Values followed by different lowercase letters in a column are significantly different among treatments (P<0. 05); NS—不显著 No significance;*—P<0.05. 2.3.2 氮素利用率
T3、T4处理的氮肥农学利用率、氮素表观利用率和氮肥贡献率均高于T2和T5处理 (表6)。不同氮肥处理的氮素农学利用率 (AEN) 差异达到显著水平 (P < 0.05)。两年AEN的平均值,T3、T4、T5处理分别较当地传统模式T2处理提高74.9%、84.9%、20.2%;不同的氮肥处理对氮素表观利用率 (ANUE) 的影响同样达到显著水平,T3、T4、T5处理分别较当地传统模式T2处理提高49.3%、59.1%、21.9%;两年的氮肥贡献率 (FCR) 的平均水平亦呈现相同规律,T3、T4、T5处理分别较当地传统模式T2处理提高38.5%、65.6%、12.4%。可见,控释尿素与普通尿素的不同比例配施下氮素利用相关指标均高于尿素单施,控释尿素与普通尿素配施可有效地促进植株氮素吸收,实现氮素的高效利用。
表 6 普通尿素与控释尿素配施对氮素利用效率的影响Table 6. Effects of conventional urea combined with controlled release urea on nitrogen use efficiency年份Year 处理Treatment AEN (kg/kg) ANUE (%) FCR (%) 2017 T2 8.96 c 15.37 d 17.76 d T3 14.31 a 36.84 b 22.41 b T4 15.32 a 42.24 a 27.01 a T5 10.96 b 29.20 c 19.95 c 2018 T2 2.67 b 35.36 b 4.33 c T3 6.03 a 38.91 a 8.18 b T4 6.18 a 38.48 a 9.56 a T5 3.02 b 32.64 c 4.88 c 注(Note):T1—不施肥 No fertilization; T2—普通尿素 2/3 基施、1/3 追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施 Total N basal applied in one time (2/3 CRU + 1/3 urea); T5—控释尿素一次基施 Total N basal applied in one time (100% CRU). AEN—氮肥农学利用率 Nitrogen agronomy efficiency; ANUE—氮素表观利用率 Nitrogen apparent use efficiency; FCR—氮肥贡献率 Nitrogen fertilizer contribution rate. 同列数值后不同小写字母表示同一年份不同处理间差异显著 (P< 0.05) Values followed by different lowercase letters in a column are significantly different among treatments in the same year (P< 0. 05). 2.3.3 玉米经济效益
表7显示,综合两年玉米种植的经济效益,总收益在两年间的差异明显。2017年T2、T3、T4、T5处理的相对增收率分别为25.8%、36.9%、36.6%、32.7%,2018年T3、T4处理的相对增收率分别为9.7%、10.3%,T2、T5处理的相对增收率为4.5%、5.1%。综合比较两年经济效益,每年各处理间的差异达到显著水平 (P < 0.05),以T3、T4处理效果较优。T4处理虽然增加了肥料成本,但其产量高,同时减少了追肥环节劳动力的投入,相对收益最佳。说明在施氮量为225 kg/hm2时,普通尿素与控释尿素以1﹕2比例一次基施,可以同时达到增加玉米产量和经济效益的目的。
表 7 普通尿素与控释尿素配施对玉米相对经济效益的影响Table 7. Effects of conventional urea combined with controlled release urea on the relative economic benefits of maize年份
Year处理
Treatment总收益
Total income
(× 104 yuan/hm2)氮肥投入
N fertilizer cost
(yuan/hm2)追肥劳力投入
Fertilization labor input
(yuan/hm2)相对经济效益
Relative economic benefit
(× 104 yuan/hm2)2017 T1 1.41 d 1.41 T2 1.78 c 1027.2 450 1.63 T3 1.93 a 1292.4 450 1.76 T4 1.93 a 1557.7 0 1.77 T5 1.88 b 1822.9 0 1.69 2018 T1 2.12 c 2.12 T2 2.22 b 1027.2 450 2.07 T3 2.32 a 1292.4 450 2.15 T4 2.34 a 1557.7 0 2.18 T5 2.23 b 1822.9 0 2.05 注(Note):T1—不施肥 No fertilization; T2—普通尿素 2/3 基施、1/3 追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施 Total N basal applied in one time (2/3 CRU + 1/3 urea); T5—控释尿素一次基施 Total N basal applied in one time (100% CRU). 尿素 Urea—2100 yuan/t; 控释尿素 CRU—3500 yuan/t;玉米籽粒 Grain of maize—1700 yuan/t (2017)、1600 元 yuan/t (2018); 人工成本 Labor cost—450 yuan/hm2;同列数值后不同小写字母表示同一年份不同处理间差异显著 (P<0.05) Values followed by different lowercase letters in a column are significantly different among treatments in the same year (P<0. 05). 2.4 玉米产量与土壤不同形态氮、土壤酶活性的主成分分析
产量与土壤不同形态氮、土壤酶活性的主成分分析,通过三次回归模拟,其贡献率达到89.06%,第一主成分中贡献率较高的指标是土壤硝态氮和无机氮,第二主成分中贡献较高的是土壤脲酶活性,在第一、第二主成分中土壤碱性磷酸酶活性的系数均为负值,在一定程度说明其对产量的贡献较小 (表8)。由此说明,土壤硝态氮对玉米产量的影响较大。综合得分T1、T2、T3、T4、T5处理分别为–5.38、–1.99、–1.24、5.38、1.47,其中以T4处理最优。
表 8 主成分特征值Table 8. The eigenvalue of principal components项目 Item PC1 PC2 PC3 特征值Eigenvalue 1.74 1.36 1.17 贡献率Contribution rate (%) 43.08 26.51 19.47 累计贡献率Cumulative contribution (%) 43.08 69.59 89.06 产量Yield 0.34 0.49 –0.09 土壤硝态氮Soil NO3–-N 0.55 0.02 0.13 土壤铵态氮Soil NH4+-N 0.22 –0.23 –0.72 土壤无机氮Soil inorganic N 0.55 –0.07 –0.10 土壤脲酶Soil urease –0.06 0.54 –0.53 土壤碱性磷酸酶Soil alkaline phosphatase –0.11 –0.59 –0.34 土壤过氧化氢酶Soil catalase 0.47 –0.25 0.23 3. 讨论
3.1 普通尿素与控释尿素配施对土壤NH4+-N、NO3–-N、无机氮含量的影响
有学者通过研究普通/控释尿素配施对水稻田土壤养分的影响发现,普通尿素与控释尿素掺混后,会使土壤硝态氮、铵态氮和碱解氮含量维持在较高水平,有利于水稻中后期氮素供应[14]。杨雯玉等[22]通过研究普通尿素与控释尿素配施对冬小麦的生长影响表明,普通尿素与控释尿素配施可以降低土壤中硝态氮的含量,增加氮素利用效率,增加产量,这与本研究的结果基本一致。本研究表明,在施入纯氮225 kg/hm2时,普通尿素与控释尿素以1∶2的比例一次性基施或是普通尿素与控释尿素1/3∶1/3基施并在玉米拔节期追施1/3的普通尿素更有利于玉米的高产,主要因为其在玉米灌浆期能够持续供应养分。说明在这两种施肥条件下玉米的需氮水平与土壤供应氮素的能力基本吻合,从而提高玉米产量。
从土壤铵态氮、硝态氮、无机态氮含量对普通尿素与控释尿素的响应可以看出,T2与T5处理3种状态氮的含量变化规律正好相反,T2处理在玉米生育前期各种形态的氮素水平相对处于较高水平,且在玉米生育中期较深土层的土壤硝态氮、无机氮含量明显高于同时期的其他施氮处理。T5处理在玉米生育前期的氮素水平相对较低,中后期土壤中各种形态的氮素释放,这与李泽丽等[23]在小麦上应用控释尿素的变化规律基本一致。土壤无机氮含量一方面与作物的吸收有一定的关系,同时与土壤的微环境有一定的关系,在等氮素养分投入的情况下,在玉米成熟期,各处理间土壤无机氮含量差异显著,除与控释肥养分释放缓慢的特性相关外,土壤无机氮含量与土壤微生物固定的氮也有一定的关系,这也是需要进一步研究的内容。普通尿素 (T2) 处理由于本身的速效性,使得前期土壤硝态氮含量相对较高。而T3、T4处理在玉米生育期内对土壤硝态氮含量的控制较好,能够持续供应玉米生长发育所需的氮素养分。说明普通尿素与控制尿素配施更有利于土壤无机氮的供应,与王寅等[10]的研究结果相近。
3.2 普通尿素与控释尿素配施对土壤酶活性的影响
脲酶广泛存在于土壤中,是一种分解酰胺氮的酶,能促进有机质分子中肽键的水解,促进尿素水解生成NH3、CO2和水,NH4+-N又是植物主要氮素来源之一[24]。人们常用土壤脲酶活性表征土壤的氮素转化状况。张敬昇等[25]研究表明,控释氮素掺混普通尿素,掺混40%以上控释尿素能明显提升稻、麦生育中后期土壤脲酶活性,刺激土壤脲酶与蛋白酶参与氮素转换,促进了土壤氮素有效性,与本试验的研究结果基本相符。本试验研究表明,普通尿素与控释尿素配施可以调节0—40 cm土层土壤脲酶活性。脲酶活性在一定程度上反映尿素的分解水平,脲酶活性较高说明分解氮素的水平较高,进而维持土壤供应氮素的水平,改善土壤肥力。在降雨较多的月份,降雨在一定程度上会降低土壤温度,并使得无机氮素养分稀释、下渗,使得脲酶转化酰胺态氮素的速率增加。中后期T3、T4处理的脲酶活性相对稳定,说明普通尿素与控释尿素配施在一定程度上会影响脲酶活性。总体而言,T3、T4处理土壤脲酶活性相对平稳,说明普通尿素与控释尿素配施在玉米生长发育中后期对土壤0—40 cm土层的土壤脲酶活性有一定的提升。
碱性磷酸酶 (ALP或AKP) 是一组水解酶类,这组酶在碱性条件下具有较高的活力,在pH 4~9的土壤中均有磷酸酶,磷酸酶对土壤磷素的有效性具有重要作用[26-27]。本试验研究表明,在玉米生育期内0—20 cm土层土壤碱性磷酸酶活性在不同处理间差异显著,玉米生育中后期T4的碱性磷酸酶活性高于T2处理,说明控释尿素的施入可以提高玉米中后期土壤碱性磷酸酶的活性。20—40 cm土层土壤碱性磷酸酶活性变化趋势与0—20cm土层变化趋势一致。从不同时期的表现来看,在同一氮素水平下随着控释尿素比例的增加,土壤碱性磷酸酶活性逐渐升高,但到达峰值所用时间因控释尿素的施入量不同而异,说明控释尿素可调节土壤中的养分供应。
过氧化氢酶广泛存在于土壤中和生物体内,其可以将过氧化氢分解 (分解为分子氧和水),有利于防止过氧化氢对生物体的毒害作用,它与有机质和微生物数量有关,一般认为,土壤肥力因子与过氧化氢酶活性成正比[28]。本试验通过测定土壤过氧化氢酶活性,了解了土壤中过氧化氢酶活性的高低,土壤过氧化氢酶活性较高时,可以缓解植株根系的“自毒”现象,使根系对土壤无机氮持续吸收,进而减少植株因过氧化氢积累而使得功能根系失活,影响植株正常生长,在玉米生育前期T3、T4处理的土壤过氧化氢酶活性较高,在玉米生育后期T4、T5处理的土壤过氧化氢酶活性较高。
综上所述,土壤酶活性会受土壤无机氮含量变化的影响而略有差异,在玉米花期及之后各生育期,土壤脲酶、土壤碱性磷酸酶活性与土壤无机氮含量的变化趋势一致,有可能是由于土壤无机氮的释放改变了土壤微环境,进而导致碱性磷酸酶的活性发生变化,也有可能是由于土壤微生物及根系分泌物对碱性磷酸酶活性造成的影响。土壤过氧化氢酶活性的变化趋势与土壤无机氮含量的变化趋势不同,但从植物根系对无机氮的吸收而言,碱性磷酸酶活性越高,越有利于植株对无机氮的吸收。
3.3 普通尿素与控释尿素配施对玉米产量的影响
玉米产量的高低除受自身遗传特性影响外,还受栽培措施、地理位置、农田微环境的影响。前人对控释肥料与玉米产量之间的关系已经做了较多的研究,朱荣[29]在旱地研究表明,普通尿素与控释尿素配施可以提高玉米产量和经济效益,这与本研究结果一致;姬景红等[30]研究表明,普通尿素与控释尿素以40%和60%的比例混合施用可以提高玉米产量,且能提高氮素利用效率;李玮等[31]通过研究基施缓释尿素与普通尿素表明,缓释尿素处理持续供应氮素能力更好,以缓释尿素50%作基肥的处理玉米产量及氮肥利用率较高;周勇明等[32]研究海藻酸尿素对夏玉米产量和氮肥利用率的影响表明,在施纯氮180 kg/hm2水平下,海藻酸尿素可显著提高玉米产量。王忠孝等[33]研究相关文献表明,产量在7500~9000 kg/hm2,其氮素吸收量为165~225 kg,产量在10500~13500 kg/hm2,其氮素吸收量为225~270 kg,因此要使玉米达到高产,就需要一定的氮素作为基础,进而发挥品种的生产潜力。邵国庆等[34]研究表明,与常规尿素处理相比,控释尿素处理花前根系数量、活性和根冠比均较低,但花后三者能维持较高水平,更有利于产量形成。郭金金等[35]研究发现,尿素与缓释氮肥掺混时,施氮量为180 kg/hm2是玉米高效生产的最佳施氮量,表明尿素与缓释肥3∶7掺混对玉米的生长指标、干物质累积量、产量及产量构成要素都有显著的影响。
本试验研究表明,与不施肥料、单施普通尿素、单施控释尿素相比,普通尿素与控释尿素配施条件下的玉米产量及产量构成要素均表现较好,两年产量和氮素利用效率差异明显,主要原因是由于两年的降雨量差异明显,对于旱作区的玉米种植,限制玉米高产的因素主要是水分供应,但水分的多少人为不可控制,而从作物产量的角度考虑,普通尿素与控释尿素配施对宁夏南部山区覆膜春玉米产量、效益有一定的提高,其中以T4处理最优。
4. 结论
在施N 225 kg/hm2的前提下,普通尿素与控释尿素以1∶2的比例混合一次性基施,不仅可以保证玉米中后期耕层土壤 (0—40 cm土层) 具有较高的无机氮含量、土壤酶活性,而且由于无需进行追肥,获得了最佳产量、肥效和经济效益。
-
图 1 普通尿素与控释尿素配施对不同土层脲酶活性的影响
[注(Note):T1—不施肥No fertilization; T2—普通尿素2/3基施、1/3追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施Total N basal applied in one time (2/3 CRU + 1/3 urea); T5一控释尿素一次基施 Total N basal applied in one time (100% CRU). 柱上不同字母表示相同生育期不同处理间差异达 5% 显著水平 Different letters above the bars indicate significance among treatments at the same stage at the 5% level.]
Figure 1. Effects of conventional urea combined with controlled release urea on urease activity in different soil layers
图 2 普通尿素与控释尿素配施对不同土层碱性磷酸酶活性的影响
[注(Note):T1—不施肥No fertilization; T2—普通尿素2/3基施、1/3追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施Total N basal applied in one time (2/3 CRU + 1/3 urea); T5一控释尿素一次基施 Total N basal applied in one time (100% CRU). 柱上不同字母表示相同生育期处理间差异达5%显著水平 Different letters above the bars indicate significance among treatments at the same stage at the 5% level.]
Figure 2. Effects of conventional urea combined with controlled release urea on alkaline phosphatase activityin different soil layers
图 3 普通尿素与控释尿素配施对不同土层过氧化氢酶活性的影响
[注(Note):T1—不施肥No fertilization; T2—普通尿素2/3基施、1/3追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施Total N basal applied in one time (2/3 CRU + 1/3 urea); T5一控释尿素一次基施 Total N basal applied in one time (100% CRU). 柱上不同字母表示相同生育期不同处理间差异达5%显著水平 Different letters above the bars indicate significance among treatments at the same stage at the 5% level.]
Figure 3. Effects of conventional urea combined with controlled release urea on catalase activity in different soil layers
表 1 试验地0—40 cm土层理化性质
Table 1 Physical and chemical properties of 0–40 cm layer of the experimental soil
年份
Year土壤容重 (g/cm3)
Bulk density有机质 (g/kg)
Organic matter全氮(g/kg)
Total N碱解氮 (mg/kg)
Available N有效磷 (mg/kg)
Available P速效钾 (mg/kg)
Available K全盐 (g/kg)
Total saltpH 2017 1.51 16.46 0.62 88.25 29.23 126.24 1.95 7.44 2018 1.49 14.59 0.69 88.25 35.23 142.24 1.95 8.74 表 2 普通尿素与控释尿素配施对不同土层NH4+-N含量的影响 (mg/kg)
Table 2 Effects of conventional urea combined with controlled release urea on NH4+-N content in different soil layers
土层 (cm)
Soil layer处理
Treatment拔节期
Jointing stage大喇叭口期
Big bell stage花期
Flowering stage灌浆期
Filling stage成熟期
Mature stage0—20 T1 6.28 ± 0.83 b 9.64 ± 1.25 b 5.42 ± 0.63 c 8.28 ± 0.10 b 6.21 ± 0.28 b T2 8.87 ± 0.27 a 7.17 ± 0.63 c 6.81 ± 0.42 b 5.27 ± 0.39 c 7.15 ± 0.27 a T3 8.85 ± 0.31 a 10.90 ± 0.13 a 9.13 ± 0.87 a 6.07 ± 0.61 c 7.82 ± 0.36 a T4 8.72 ± 0.41 a 8.93 ± 0.38 c 8.18 ± 0.35 a 8.67 ± 0.45 b 7.69 ± 0.36 a T5 8.46 ± 0.49 a 7.52 ± 0.35 c 7.65 ± 0.15 ab 11.99 ± 0.69 a 7.71 ± 0.87 a 20—40 T1 4.64 ± 0.31 c 6.40 ± 0.31 a 3.51 ± 0.51 c 4.95 ± 0.31 c 5.05 ± 0.16 bc T2 8.46 ± 0.29 a 6.93 ± 0.66 a 3.93 ± 0.32 bc 4.93 ± 0.18 c 4.92 ± 0.28 bc T3 8.04 ± 0.28 a 7.05 ± 0.33 a 5.59 ± 0.49 a 7.87 ± 0.83 b 4.48 ± 0.21 c T4 6.96 ± 0.45 b 5.42 ± 0.11 b 4.60 ± 0.92 ab 5.76 ± 0.91 c 5.39 ± 0.53 ab T5 6.90 ± 0.27 b 4.61 ± 0.59 c 4.10 ± 0.26 bc 11.01 ± 0.69 a 5.79 ± 0.13 a 注(Note):T1—不施肥No fertilization; T2—普通尿素 2/3 基施、1/3 追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施Total N basal applied in one time (2/3 CRU + 1/3 urea); T5一控释尿素一次基施 Total N basal applied in one time (100% CRU). 表中数值为平均值 ± 标准差 Data in the table are mean value ± standard deviation; 同列数值后不同小写字母表示同一土层不同处理间差异显著 (P<0.05) Values followed by different lowercase letters in column are significantly different among treatments in the same soil layer (P<0.05). 表 3 普通尿素与控释尿素配施对不同土层NO3–-N含量的影响 (mg/kg)
Table 3 Effects of conventional urea combined with controlled release urea on NO3–-N content in different soil layers
土层 (cm)
Soil layer处理
Treatment拔节期
Jointing stage大喇叭口期
Big bell stage花期
Flowering stage灌浆期
Filling stage成熟期
Mature stage0—20 T1 22.09 ± 1.00 d 20.78 ± 1.73 b 8.52 ± 0.73 d 19.20 ± 1.18 e 36.46 ± 0.51 d T2 70.78 ± 2.12 a 24.92 ± 3.13 a 11.64 ± 0.89 c 43.18 ± 0.84 d 35.87 ± 0.28 e T3 23.94 ± 0.65 d 16.68 ± 0.75 c 15.24 ± 1.03 b 69.03 ± 0.41 b 76.87 ± 1.19 c T4 50.15 ± 0.99 b 12.00 ± 0.07 d 15.41 ± 0.96 b 66.14 ± 0.42 c 85.19 ± 0.88 b T5 33.17 ± 1.39 c 21.81 ± 0.74 b 20.58 ± 1.32 a 92.75 ± 0.16 a 97.73 ± 2.59 a 20—40 T1 27.79 ± 0.93 e 19.17 ± 1.10 e 13.64 ± 0.93 e 13.80 ± 0.78 e 20.90 ± 0.58 d T2 86.68 ± 2.56 a 83.51 ± 0.42 a 37.37 ± 0.59 a 32.72 ± 0.57 c 18.17 ± 0.54 e T3 61.25 ± 0.82 c 52.84 ± 2.34 b 21.34 ± 1.39 c 23.19 ± 0.13 d 22.20 ± 0.27 c T4 66.65 ± 1.71 b 35.36 ± 0.63 c 31.15 ± 0.94 b 59.33 ± 0.48 a 24.73 ± 0.26 b T5 55.17 ± 1.44 d 21.79 ± 0.73 d 17.36 ± 0.43 d 36.42 ± 1.03 b 80.08 ± 0.98 a 注(Note):T1—不施肥No fertilization; T2—普通尿素 2/3 基施、1/3 追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施Total N basal applied in one time (2/3 CRU + 1/3 urea); T5一控释尿素一次基施 Total N basal applied in one time (100% CRU). 表中数值为平均值 ± 标准差 Data in the table are mean value ± standard deviation; 同列数值后不同小写字母表示同一土层不同处理间差异显著 (P<0. 05) Values followed by different lowercase letters in column are significantly different among treatments in the same soil layer (P<0. 05). 表 4 普通尿素与控释尿素配施对不同土层无机氮含量的影响 (mg/kg)
Table 4 Effects of conventional urea combined with controlled release urea on inorganic nitrogen content in different soil layers
土层 (cm)
Soil layer处理
Treatment拔节期
Jointing stage大喇叭口期
Big bell stage花期
Flowering stage灌浆期
Filling stage成熟期
Mature stage0—20 T1 28.37 ± 2.27 e 30.43 ± 3.03 b 13.94 ± 1.14 d 27.48 ± 0.85 d 42.67 ± 0.28 e T2 79.65 ± 0.67 a 33.86 ± 1.15 a 18.45 ± 1.15 c 48.45 ± 0.43 c 44.03 ± 0.88 d T3 32.79 ± 1.45 d 27.59 ± 1.86 bc 23.37 ± 0.96 b 74.10 ± 0.33 b 84.69 ± 11.50 c T4 58.87 ± 0.22 b 20.93 ± 0.80 c 23.59 ± 1.75 b 74.82 ± 0.51 b 92.89 ± 0.97 b T5 41.63 ± 1.08 c 29.34 ± 0.33 b 28.23 ± 0.30 a 104.75 ± 0.65 a 105.45 ± 12.79 a 20—40 T1 32.43 ± 2.30 e 25.57 ± 0.49 d 17.15 ± 0.28 e 18.76 ± 1.17 e 25.96 ± 0.54 c T2 95.14 ± 1.55 a 90.45 ± 2.77 a 41.30 ± 1.81 a 37.65 ± 1.36 c 23.09 ± 1.07 d T3 69.29 ± 1.04 c 59.89 ± 0.56 b 26.93 ± 0.88 c 31.07 ± 0.88 d 26.69 ± 0.93 c T4 73.61 ± 1.06 b 40.78 ± 0.97 c 35.75 ± 0.70 b 65.10 ± 0.27 a 30.13 ± 0.03 b T5 62.07 ± 0.48 d 26.40 ± 1.68 d 21.47 ± 1.33 d 47.43 ± 0.74 b 85.88 ± 1.09 a 注(Note):T1—不施肥No fertilization; T2—普通尿素 2/3 基施、1/3 追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施Total N basal applied in one time (2/3 CRU + 1/3 urea); T5一控释尿素一次基施 Total N basal applied in one time (100% CRU).表中数值为平均值 ± 标准差 Data in the table are the mean value ± standard deviation; 同列数值后不同小写字母表示同一土层不同处理间差异显著 (P<0.05) Values followed by different lowercase letters in column are significantly different among treatments in the same soil layer (P<0. 05). 表 5 普通尿素与控释尿素配施对玉米产量及产量构成因素的影响
Table 5 Effects of conventional urea combined with controlled release urea on maize yield and yield components
年份
Year处理
Treatment产量 (t/hm2)
Yield相对增收率 (%)
Relative yield increase收获穗数 (× 104 ears/hm2)
Harvest ears穗粒数
kernel number per ear千粒重 (g)
1000-grain weight2017 T1 8.83 d 5.97 a 537 c 279.54 c T2 11.11 c 25.8 5.94 a 641 b 289.98 c T3 12.09 a 36.9 5.94 a 653 a 309.90 a T4 12.06 a 36.6 5.95 a 652 a 306.01 a T5 11.72 b 32.7 5.93 a 643 b 301.71 b 2018 T1 13.25 b 5.97 a 627 b 370.25 c T2 13.85 b 4.5 6.04 a 642 a 382.68 b T3 14.53 a 9.7 6.02 a 638 b 394.03 a T4 14.62 a 10.3 6.08 a 641 a 385.61 b T5 13.93 b 5.1 6.07 a 634 b 369.12 c 均值Mean T1 11.04 c 5.95 a 582 d 324.90 d T2 12.48 b 13.0 5.99 a 641.5 b 336.33 c T3 13.31 a 20.6 5.98 a 645.5 a 351.97 a T4 13.34 a 20.8 6.02 a 646.5 a 345.81 b T5 12.83 b 16.2 6.00 a 638.5 c 335.42 c 变异来源Source of varieties 处理Treatment (T) * * NS * * 年份 Year (Y) * * NS * * T × Y * * NS * * 注(Note):T1—不施肥 No fertilization; T2—普通尿素 2/3 基施、1/3 追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施 Total N basal applied in one time (2/3 CRU + 1/3 urea); T5—控释尿素一次基施 Total N basal applied in one time (100% CRU). 同列数值后不同小写字母表示处理间差异达显著水平 (P<0.05) Values followed by different lowercase letters in a column are significantly different among treatments (P<0. 05); NS—不显著 No significance;*—P<0.05. 表 6 普通尿素与控释尿素配施对氮素利用效率的影响
Table 6 Effects of conventional urea combined with controlled release urea on nitrogen use efficiency
年份Year 处理Treatment AEN (kg/kg) ANUE (%) FCR (%) 2017 T2 8.96 c 15.37 d 17.76 d T3 14.31 a 36.84 b 22.41 b T4 15.32 a 42.24 a 27.01 a T5 10.96 b 29.20 c 19.95 c 2018 T2 2.67 b 35.36 b 4.33 c T3 6.03 a 38.91 a 8.18 b T4 6.18 a 38.48 a 9.56 a T5 3.02 b 32.64 c 4.88 c 注(Note):T1—不施肥 No fertilization; T2—普通尿素 2/3 基施、1/3 追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施 Total N basal applied in one time (2/3 CRU + 1/3 urea); T5—控释尿素一次基施 Total N basal applied in one time (100% CRU). AEN—氮肥农学利用率 Nitrogen agronomy efficiency; ANUE—氮素表观利用率 Nitrogen apparent use efficiency; FCR—氮肥贡献率 Nitrogen fertilizer contribution rate. 同列数值后不同小写字母表示同一年份不同处理间差异显著 (P< 0.05) Values followed by different lowercase letters in a column are significantly different among treatments in the same year (P< 0. 05). 表 7 普通尿素与控释尿素配施对玉米相对经济效益的影响
Table 7 Effects of conventional urea combined with controlled release urea on the relative economic benefits of maize
年份
Year处理
Treatment总收益
Total income
(× 104 yuan/hm2)氮肥投入
N fertilizer cost
(yuan/hm2)追肥劳力投入
Fertilization labor input
(yuan/hm2)相对经济效益
Relative economic benefit
(× 104 yuan/hm2)2017 T1 1.41 d 1.41 T2 1.78 c 1027.2 450 1.63 T3 1.93 a 1292.4 450 1.76 T4 1.93 a 1557.7 0 1.77 T5 1.88 b 1822.9 0 1.69 2018 T1 2.12 c 2.12 T2 2.22 b 1027.2 450 2.07 T3 2.32 a 1292.4 450 2.15 T4 2.34 a 1557.7 0 2.18 T5 2.23 b 1822.9 0 2.05 注(Note):T1—不施肥 No fertilization; T2—普通尿素 2/3 基施、1/3 追施 Urea, 2/3N was applied as basal and 1/3N as topdressing; T3—1/3 控释尿素 + 1/3 普通尿素基施,1/3 普通尿素氮追施 2/3 N (half CRU and half urea) basal applied, and 1/3 N in urea top-dressed; T4—2/3 控释尿素 + 1/3 普通尿素一次基施 Total N basal applied in one time (2/3 CRU + 1/3 urea); T5—控释尿素一次基施 Total N basal applied in one time (100% CRU). 尿素 Urea—2100 yuan/t; 控释尿素 CRU—3500 yuan/t;玉米籽粒 Grain of maize—1700 yuan/t (2017)、1600 元 yuan/t (2018); 人工成本 Labor cost—450 yuan/hm2;同列数值后不同小写字母表示同一年份不同处理间差异显著 (P<0.05) Values followed by different lowercase letters in a column are significantly different among treatments in the same year (P<0. 05). 表 8 主成分特征值
Table 8 The eigenvalue of principal components
项目 Item PC1 PC2 PC3 特征值Eigenvalue 1.74 1.36 1.17 贡献率Contribution rate (%) 43.08 26.51 19.47 累计贡献率Cumulative contribution (%) 43.08 69.59 89.06 产量Yield 0.34 0.49 –0.09 土壤硝态氮Soil NO3–-N 0.55 0.02 0.13 土壤铵态氮Soil NH4+-N 0.22 –0.23 –0.72 土壤无机氮Soil inorganic N 0.55 –0.07 –0.10 土壤脲酶Soil urease –0.06 0.54 –0.53 土壤碱性磷酸酶Soil alkaline phosphatase –0.11 –0.59 –0.34 土壤过氧化氢酶Soil catalase 0.47 –0.25 0.23 -
[1] 周顺利, 张福锁, 王兴任. 土壤硝态氮时空变异与土壤氮素表观盈亏研究 Ⅰ. 冬小麦[J]. 生态学报, 2001, 21(11): 1782–1789. DOI: 10.3321/j.issn:1000-0933.2001.11.006 Zhou S L, Zhang F S, Wang X R. Studies on the spatio-temporal variations of soil NO3--N and apparent budget of soil nitrogen I. Winter wheat[J]. Acta Ecologica Sinica, 2001, 21(11): 1782–1789. DOI: 10.3321/j.issn:1000-0933.2001.11.006
[2] Olfs H W, Blankenau K, Brentrup F, et al. Soil- and plant-based nitrogen-fertilizer recommendations in arable farming[J]. Journal of Plant Nutrition and Soil Science, 2005, 168(93): 414–431.
[3] 纪德智, 王端, 赵京考, 等. 不同氮肥形式对玉米氮、磷、钾吸收及氮素平衡的影响[J]. 水土保持学报, 2014, 28(4): 104–109. Ji D Z, Wang D, Zhao J K, et al. Effects of different nitrogen forms on nitrogen, phosphorus and potassium uptake and nitrogen balance in maize[J]. Journal of Soil and Water Conservation, 2014, 28(4): 104–109.
[4] 米国华, 陈范骏, 春亮, 等. 玉米氮高效品种的生物学特征[J]. 植物营养与肥料学报, 2007, 13(1): 155–159. DOI: 10.3321/j.issn:1008-505X.2007.01.026 Mi G H, Chen F J, Chun L, et al. Biological characteristics of nitrogen efficient maize genotypes[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(1): 155–159. DOI: 10.3321/j.issn:1008-505X.2007.01.026
[5] 张卫峰, 马林, 黄高强, 等. 中国氮肥发展、贡献和挑战[J]. 中国农业科学, 2013, 46(15): 3161–3171. DOI: 10.3864/j.issn.0578-1752.2013.15.010 Zhang W F, Ma L, Huang G Q, et al. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country[J]. Scientia Agricultura Sinica, 2013, 46(15): 3161–3171. DOI: 10.3864/j.issn.0578-1752.2013.15.010
[6] 吴发启, 赵晓光, 刘秉正, 等. 中国西部生态环境建设[J]. 水土保持研究, 2000, 7(1): 2–5, 22. DOI: 10.3969/j.issn.1005-3409.2000.01.002 Wu F Q, Zhao X G, Liu B Z, et al. Ecological environment construction in the west parts of China[J]. Research of Soil and Water Conservation, 2000, 7 (1): 2–5, 22. DOI: 10.3969/j.issn.1005-3409.2000.01.002
[7] 范霞, 张吉旺, 任佰朝, 等. 不同株高夏玉米品种的氮素吸收与利用特性[J]. 作物学报, 2014, 40(10): 1830–1838. DOI: 10.3724/SP.J.1006.2014.01830 Fan X, Zhang J W, Ren B C, et al. Nitrogen uptake and utilization of summer maize hybrids with different plant heights[J]. Acta Agronomica Sinica, 2014, 40(10): 1830–1838. DOI: 10.3724/SP.J.1006.2014.01830
[8] 王科, 赵亚妮, 王佳锐, 等. 施氮及种植模式对玉米氮素利用效率和土壤硝态氮含量的影响[J]. 水土保持学报, 2015, 29(4): 121–126. Wang K, Zhao Y N, Wang J R, et al. Effects of nitrogen application and planting patterns on nitrogen utilization efficiency of maize and soil nitrate content[J]. Journal of Soil and Water Conservation, 2015, 29(4): 121–126.
[9] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915–924. DOI: 10.3321/j.issn:0564-3929.2008.05.018 Zhang F S, Wang Z Q, Zhang W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915–924. DOI: 10.3321/j.issn:0564-3929.2008.05.018
[10] 王寅, 冯国忠, 张天山, 等. 基于产量、氮效率和经济效益的春玉米控释氮肥掺混比例[J]. 土壤学报, 2015, 52(5): 1153–1165. Wang Y, Feng G Z, Zhang T S, et al. Optimizing blending ratio of controlled release N fertilizer for spring maize based on grain yield, N efficiency, and economic benefit[J]. Acta Pedologica Sinica, 2015, 52(5): 1153–1165.
[11] 李敏, 郭熙盛, 叶舒娅, 等. 控释尿素和普通尿素配施对夏玉米土壤无机氮转化的影响[J]. 河北农业科学, 2009, 13(10): 32–34. DOI: 10.3969/j.issn.1088-1631.2009.10.014 Li M, Guo X S, Ye S Y, et al. Effects of combined application of controlled-release urea and common urea on the inorganic nitrogen transformation in soil inorganic nitrogen of summer maize[J]. Journal of Hebei Agricultural Sciences, 2009, 13(10): 32–34. DOI: 10.3969/j.issn.1088-1631.2009.10.014
[12] 李玉浩, 何杰, 王昌全, 等. 控释氮肥配施尿素对土壤无机氮、微生物及水稻生长的影响[J]. 土壤, 2018, 50(3): 469–475. Li Y H, He J, Wang C Q, et al. Effects of controlled release nitrogen fertilizer combined with urea on soil inorganic nitrogen, microorganism and rice growth[J]. Soils, 2018, 50(3): 469–475.
[13] 王素萍, 李小坤, 鲁剑巍, 等. 控释尿素与尿素配施对油菜籽产量、经济效益和土壤无机氮含量的影响[J]. 中国油料作物学报, 2013, 35(3): 295–300. DOI: 10.7505/j.issn.1007-9084.2013.03.011 Wang S P, Li X K, Lu J W, et al. Effects of combined application of urea and controlled-release urea on yield, profits of rapeseed and soil inorganic nitrogen[J]. Chinese Journal of Oil Crop Sciences, 2013, 35(3): 295–300. DOI: 10.7505/j.issn.1007-9084.2013.03.011
[14] 王晓琪, 朱家辉, 陈宝成, 等. 控释尿素不同比例配施对水稻生长及土壤养分的影响[J]. 水土保持学报, 2016, 30(4): 178–182. Wang X Q, Zhu J H, Chen B C, et al. Effects of different proportion of controlled-release urea on rice growth and soil nutrient[J]. Journal of Soil and Water Conservation, 2016, 30(4): 178–182.
[15] 郭新送, 丁方军, 陈士更, 等. 控释尿素配施微生物菌剂的氮肥利用率及土壤酶活性研究[J]. 水土保持学报, 2016, 30(2): 277–282. Guo X S, Ding F J, Chen S G, et al. Study on nitrogen use efficiency and enzyme activities of combined application of controlled-release urea and microbial inoculants[J]. Journal of Soil and Water Conservation, 2016, 30(2): 277–282.
[16] Zheng W K, Zhang M, Liu Z G, et al. Combining controlled-release urea and normal urea to improve the nitrogen use efficiency and yield under wheat-maize double cropping system[J]. Field Crops Research, 2016, 197(4): 52–62.
[17] 杜森, 高祥照. 土壤分析技术规范[M]. 北京: 中国农业出版社, 2006, 40–51. Du S, Gao X Z. Technical specifications for soil analysis[M]. Beijing: China Agriculture Press, 2006, 40–51.
[18] 郭文淼, 辛宇, 张金尧, 等. 全波长扫描式多功能读数仪–靛酚蓝比色法测定水样铵态氮含量[J]. 中国土壤与肥料, 2018, (4): 166–170. DOI: 10.11838/sfsc.20180427 Guo W M, Xin Y, Zhang J R, et al. Determination of ammonium in water by a microplate reader with indophenol-blue colorimetric method[J]. Soil and Fertilizer Science in China, 2018, (4): 166–170. DOI: 10.11838/sfsc.20180427
[19] 樊军. 黄土高原旱地长期定位试验土壤酶活性研究[D]. 杨凌: 西北农林科技大学硕士学位论文, 2001. Fan J. Study on soil enzyme activities of a long-term experiment in Loess Plateau[D]. Yangling: MS Thesis of Northwest Agricultural and Forestry University, 2001.
[20] 周礼恺, 张志明. 土壤酶活性的测定方法[J]. 土壤通报, 1980, (5): 37–38, 49. Zhou L Z, Zhang Z M. Method for determination of soil enzyme activity[J]. Chinese Journal of Soil Science, 1980, (5): 37–38, 49.
[21] Moll R H, Kamprath E J, Jackson W. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J]. Agronomy Journal, 1982, 74(3): 562–564. DOI: 10.2134/agronj1982.00021962007400030037x
[22] 杨雯玉, 贺明荣, 王远军, 等. 控释尿素与普通尿素配施对冬小麦氮肥利用率的影响[J]. 植物营养与肥料学报, 2005, 11(5): 627–633. DOI: 10.3321/j.issn:1008-505X.2005.05.010 Yang W Y, He M R, Wang Y J, et al. Effect of controlled-release urea combined application with urea on nitrogen utilization efficiency of winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2005, 11(5): 627–633. DOI: 10.3321/j.issn:1008-505X.2005.05.010
[23] 李泽丽, 刘之广, 张民, 等. 控释尿素配施黄腐酸对小麦产量及土壤养分供应的影响[J]. 植物营养与肥料学报, 2018, 24(4): 959–968. DOI: 10.11674/zwyf.17426 Li Z L, Liu Z G, Zhang M, et al. Effects of controlled release urea combined with fulvic acid on wheat yield and soil physical and chemical properties[J]. 2018, 24(4): 959–968. DOI: 10.11674/zwyf.17426
[24] 李德斌. 氯嘧磺隆降解及其对土壤微生态影响的研究[D]. 哈尔滨: 东北林业大学博士学位论文, 2012. Li D B. Degradation of chlorimuron-ethyl and its effect on microecology[D]. Harbin: PhD Dissertation of Northeast Forestry University, 2012.
[25] 张敬昇, 王昌全, 李冰, 等. 控释掺混尿素对稻、麦土壤氮与酶活性的影响[J]. 应用生态学报, 2017, 28(6): 1899–1908. Zhang J S, Wang C Q, Li B, et al. Effects of controlled release blend bulk urea on soil nitrogen and soil enzyme activity in wheat and rice fields[J]. Chinese Journal of Applied Ecology, 2017, 28(6): 1899–1908.
[26] 张恩和, 张新慧. 不同生长年限啤酒花土壤酶活性的研究[J]. 草业学报, 2010, 19(6): 35–40. DOI: 10.11686/cyxb20100605 Zhang E H, Zhang X H. Soil enzyme activity in the rhizosphere of Humulus lupulus plants of different ages[J]. Acta Prataculturae Sinica, 2010, 19(6): 35–40. DOI: 10.11686/cyxb20100605
[27] 崔雯雯, 宋全昊, 高小丽, 等. 糜子不同种植方式对土壤酶活性及养分的影响[J]. 植物营养与肥料学报, 2015, 21(1): 234–240. DOI: 10.11674/zwyf.2015.0126 Cui W W, Song Q H, Gao X L, et al. Influence of different cropping patterns on soil enzyme activities and yield of broomcorn millet[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 234–240. DOI: 10.11674/zwyf.2015.0126
[28] 程国玲. 矿物油污染土壤的菌根生物修复研究[D]. 哈尔滨: 东北林业大学博士学位论文, 2004. Cheng G L. Study on mycorrhizal bioremediation of mineral oil contaminated soil[D]. Harbin: PhD Dissertation of Northeast Forestry University, 2004.
[29] 朱荣. 旱地地膜春玉米养分积累及产量形成对氮肥运筹的响应[D]. 银川: 宁夏大学硕士学位论文, 2017. Zhu R. Response of nitrogen application schemes on the nutrient accumulation and yield formation of film mulched spring maize on dry land[D]. Yinchuan: MS Thesis of Ningxia University, 2017.
[30] 姬景红, 李玉影, 刘双全, 等. 控释氮肥对春玉米产量、氮效率及氮素平衡的影响[J]. 农业资源与环境学报, 2017, 34(2): 153–160. Ji J H, Li Y Y, Liu S Q, et al. Effects of controlled-release urea on grain yield of spring maize, nitrogen use efficiency and nitrogen balance[J]. Journal of Agricultural Resources and Environment, 2017, 34(2): 153–160.
[31] 李玮, 翟勇, 冶军, 等. 缓释尿素对滴灌玉米农田土壤无机氮及产量的影响[J]. 玉米科学, 2016, 24(3): 131–137. Li W, Zhai Y, Ye J, et al. Effect of slow-release urea on soil inorganic N and the yield of maize under drip irrigation[J]. Journal of Maize Sciences, 2016, 24(3): 131–137.
[32] 周勇明, 商照聪, 宝德俊, 等. 海藻酸尿素对夏玉米产量和氮肥利用率的影响[J]. 中国土壤与肥料, 2014, (5): 23–26. Zhou Y M, Shang Z C, Bao D J, et al. Effect of applying alginic acid urea on summer maize yield and N use efficiency[J]. Soil and Fertilizer Sciences in China, 2014, (5): 23–26.
[33] 王忠孝, 王庆成, 牛玉贞, 等. 夏玉米高产规律的研究 Ⅲ. 高产栽培途径和措施[J]. 山东农业科学, 1990, 2(2): 6–9. Wang Z X, Wang Q C, Niu Y Z, et al. Studies on high-yield regularity of summer maize Ⅲ. High-yield cultivation ways and measures[J]. Shandong Agricultural Sciences, 1990, 2(2): 6–9.
[34] 邵国庆, 李增嘉, 宁堂原, 等. 不同水分条件下常规尿素和控释氮肥对玉米根冠生长及产量的影响[J]. 作物学报, 2009, 35(1): 118–123. DOI: 10.3724/SP.J.1006.2009.00118 Shao G Q, Li Z J, Ning T Y, et al. Effects of normal urea and release-controlled urea on root and shoot growth and yield of maize in different water conditions[J]. Acta Agronomica Sinica, 2009, 35(1): 118–123. DOI: 10.3724/SP.J.1006.2009.00118
[35] 郭金金, 张富仓, 王海东, 等. 不同施氮量下缓释氮肥与尿素掺混对玉米生长与氮素吸收利用的影响[J]. 中国农业科学, 2017, 50(20): 3930–3943. DOI: 10.3864/j.issn.0578-1752.2017.20.009 Guo J J, Zhang F C, Wang H D, et al. Effects of slow release nitrogen fertilizer and urea blending on maize growth and nitrogen uptake and utilization under different nitrogen application rates[J]. Scientia Agricultura Sinica, 2017, 50(20): 3930–3943. DOI: 10.3864/j.issn.0578-1752.2017.20.009
-
期刊类型引用(14)
1. 陈朝辉,魏廷邦. 水肥耦合对玉米光合作用、干物质积累量和产量的影响. 中国农学通报. 2025(04): 1-9 . 百度学术
2. 贺平,陈玮峰,蔡健,郁洁,张丽,陈雅玲,李云龙,左文刚,单玉华,柏彦超. 普通尿素与控释尿素配比一次性施肥对稻麦产量及氮素利用率的影响. 江苏农业学报. 2025(02): 276-285 . 百度学术
3. 刘颖,赵继浩,王建国,郭峰,张佳蕾,万书波. 砂壤土追施“后援氮”延缓花生衰老. 中国油料作物学报. 2024(03): 635-643 . 百度学术
4. 高丽超,郑文魁,程运龙,张民,王淳. 长期施用控释掺混尿素对麦田土壤酶活性及养分的影响. 水土保持学报. 2023(02): 343-350 . 百度学术
5. 黄巧义,吴永沛,黄旭,李苹,付弘婷,张木,逄玉万,曾招兵,唐拴虎. 控释尿素与尿素配施对甜玉米产量和氮肥利用率的影响. 中国农业科技导报. 2023(02): 163-173 . 百度学术
6. 于浩东,初振宇,汪顺源,郭艳青,任佰朝,张吉旺. 不同控释氮素比例对夏玉米叶片衰老和籽粒灌浆特性的影响. 中国农业科学. 2023(18): 3511-3529 . 百度学术
7. 徐新朋,何萍,周卫. 基于产量反应和农学效率的玉米智能化推荐施肥方法研究. 植物营养与肥料学报. 2023(10): 1820-1829 . 本站查看
8. 王英,武俊英,刘景辉,米俊珍,孙梦媛,张兰英,冯学颖. 控释氮肥减量对旱作糜子田土壤生物学特性及产量的影响. 中国土壤与肥料. 2023(12): 114-124 . 百度学术
9. 于祥,梁熠,王浩,代晓华,马琨,马瑞萍. 覆盖及配施控释尿素对玉米氮素利用及产量的影响. 甘肃农业大学学报. 2022(02): 54-63 . 百度学术
10. 马瑞萍,梁熠,于祥. 缓/控释氮肥输入对玉米生长、氮素利用及环境效应的影响. 浙江农业科学. 2022(09): 1968-1974+1981 . 百度学术
11. 刘仲阳,吴小宾,郑福丽,张灵菲,崔秀敏,谭德水. 我国主要粮食作物一次性施肥的长期效应研究进展. 土壤. 2022(04): 667-675 . 百度学术
12. 刘晶,郑利芳,王颖,党廷辉. 控释尿素施用比例对旱地春玉米产量及土壤硝态氮残留量的影响. 西北农林科技大学学报(自然科学版). 2022(11): 127-134 . 百度学术
13. 毛圆圆,薛军,翟娟,张园梦,张国强,明博,谢瑞芝,王克如,侯鹏,李召锋,李少昆. 水肥一体化条件下密植高产玉米适宜追氮次数研究. 植物营养与肥料学报. 2022(12): 2227-2238 . 本站查看
14. 张磊,孔丽丽,侯云鹏,尹彩侠,赵胤凯,刘志全,徐新朋. 实现黑土玉米高产和养分高效的控释氮肥与尿素掺混比例. 植物营养与肥料学报. 2022(12): 2201-2213 . 本站查看
其他类型引用(5)