[null] |
[1] 郝文芳, 陈存根, 梁宗锁, 马丽. 植被生物量的研究进展[J]. 西北农林科技大学学报(自然科学版), 2008, 36(2): 175-182. Hao W F, Chen C G, Liang Z S, Ma L. Research advances in vegetation biomass[J]. Journal of Northwest A&F University(Natural Science Edition), 2008, 36(2): 175-182. [2] 郭娜, 刘剑秋. 植物生物量研究概述(综述)[J]. 亚热带植物科学, 2011, 40(2): 83-88. Guo N, Liu J Q. A review of research on plant biomass[J]. Subtropical Plant Science, 2011,40(2): 83-88. [3] Elser J J, Dobberfuhl D R. Organism size, life history, and N:P stoichiometry[J]. Bioscience,1996, 46(9): 674-684. [4] 曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6): 1007-1019. Zeng D H, Chen,G S. Ecological stoichiometry: a science to explore the complexity of living systems[J]. Acta Phytoecological Sinica, 2005, 29(6): 1007-1019. [5] Güsewell S. N/P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2005, 164(2): 243-266. [6] Chapin F S, Matson P A, Mooney H A. Principles of terrestrial ecosystem ecology[M]. New York: Springer-Verlag New York, 2004. [7] Vitousek P. Nutrient cycling and nutrient use efficiency[J]. The American Naturalist, 1982, 110(4): 553-572. [8] 刘雯霞, 朱柯嘉. 青藏高原东缘高寒草甸不同功能群植物氮磷化学计量特征研究[J]. 中国草地学报, 2013, 35(2): 52-58. Liu W X, Zhu K J. Characteristics of nitrogen and phosphorus stoichiometry of plants in different functional groups on Alpine Meadow in the eastern edge of Tibetan Plateau[J]. Acta Agrectir Sinica, 2013, 35(2): 52-58. [9] 刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征[J]. 植物生态学报, 2010,34(1): 64-71. Liu X Z, Zhou G Y, Zhang D Q et al. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China[J]. Acta Phytoecological Sinica, 2010, 34(1): 64-71. [10] Aerts R, Chapin F. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Researh, 1999, 30(2): 1-67. [11] Wassen M J, Venterink H G M O, Swart E O A M. Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems[J]. Journal of Vegetation Science,1995, 6(1): 5-16. [12] He J, Fang J, Wang Z et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China[J]. Oecologia, 2006, 149(1): 115-122. [13] Elser J, Fagan W, Denno R et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(11): 578-580. [14] Braakhekke W G, Hooftman D A P. The resource balance hypothesis of plant species diversity in grassland[J]. Journal of Vegetation Science, 1999, 10(2): 187-200. [15] Reich P B, Ellsworth D S, Walters M B, Vose J M. Generality of leaf trait relationships: a test across six biomes[J]. Ecology, 1999, 80(6): 1955-1969. [16] Thompson K, Parkinson J, Band S, Spencer R. A comparative study of leaf nutrient concentrations in a regional herbaceous flora[J]. New Phytologist, 1997, 136(4): 679-698. [17] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 2004, 101(30): 11001-11006. [18] Wright I J, Reich P B, Cornelissen J H C et al. Assessing the generality of global leaf trait relationships[J]. New Phytologist, 2005, 166(2): 485-496. [19] Wright I J, Reich P B, Westoby M et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827. [20] Han W, Fang J, Guo D, Zhang Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377-385. [21] 任书杰, 于贵瑞, 陶波, 王绍强. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学,2007, 28(12): 2665-2673. Ren S J, Yu G R, Tao B,Wang S Q. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Environmental Science. 2007, 28(12): 2665-2673. [22] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. Bao S D. Soil agrochemistry analysis[M].Beijing: China Agriculture Press, 2000. [23] 郑淑霞, 上官周平. 黄土高原地区植物叶片养分组成的空间分布格局[J]. 自然科学进展, 2006, 16(8): 965-973. Zheng S X, Shangguan Z P. Spatial patterns for variations in leaf nutrient contents in Loess Plateau[J]. Progress in Natural Science, 2006, 16(8): 965-973. [24] 白永飞, 李凌浩. 锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究[J]. 植物生态学报, 2000, 24(6): 667-673. Bai Y F, Li L H. Changes in plant species diversity and productivity along gradients of precipitation and elevation in the Xilin river basin Inner Mongolia[J]. Acta Phytoecological Sinica, 2000, 6(24): 667-673. [25] 白永飞, 张丽霞, 张焱, 陈佐忠. 内蒙古锡林河流域草原植物群落功能群植物组成沿水热梯度变化的样带研究[J]. 植物生态学报, 2002, 26(3): 308-316. Bai Y F, Zhang L X, Zhang Y, Chen Z Z. Changes in plant functional composition along gradients of precipitation and temperature in the Xilin river basin Inner Mongolia[J]. Acta Phytoecological Sinica, 2002, 26(3): 308-316. [26] 邓蕾, 上官周平. 陕西省天然草地生物量空间分布格局及其影响因素[J]. 草地学报, 2012,20(5): 825-835. Deng L, Shangguan Z P. Distribution of natural grassland biomass and its relationship with influencing factors in Shaanxi[J]. Acta Agrectir Sinica, 2012, 20(5): 825-835. [27] 韩彬, 樊江文, 钟华平. 内蒙古草地样带植物群落生物量的梯度研究[J]. 植物生态学报, 2006, 30(4): 553-562. Han B, Fan J W, Zhong H P. Grassland biomass of communities along gradients of the Inner Mongolia grassland transect[J]. Acta Phytoecological Sinica, 2006, 30(4): 553-562. [28] 罗天祥, 石培礼, 罗辑, 欧阳华. 青藏高原植被样带地上部分生物量的分布格局[J]. 植物生态学报, 2002, 26(6): 668-676. Luo T X, Shi P L, Lu J,OUY H. Distribution patterns of aboveground biomass in Tibetan Alpine vegetation transects[J]. Acta Phytoecologica Sinica,2002, 26(6): 668-676. [29] 王辉, 王全九, 邵明安. 降水条件下黄土坡地氮素淋溶特征的研究[J]. 水土保持学报, 2005,19(5): 61-64, 93. Wang H, Wang Q J, Shao M A. Characteristics of nitrogen leaching from sloping land on Loess Plateau under rainfall conditions[J]. Journal of Soil and Water Conservation, 2005,19(5): 61-64, 93. [30] Van Heerwaarden L, Toet S, Aerts R. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization[J]. Journal of Ecology, 2003, 91(6): 1060-1070. [31] Kaiser J. The other global pollutant: Nitrogen proves tough to curb[J]. Science, 2001, 294(5545): 1268. [32] Galloway J N, Townsend A R, Erisman J W. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science. 2008, 320(5878): 889-892. [33] Hedin L O. Global organization of terrestrial plant-nutrient interactions[J]. Proceedings of the National Academy of Sciences, 2004, 101(30): 10849-10850. [34] 全国土壤普查办公室编. 中国土种志[M]. 北京: 中国农业出版社, 1993. 924. National Soil Survey Office. China soil species[M].Beijing: China Agriculture Press, 1993. 924. [35] Zhang C, Tian H, Liu J Y, Wang S. Pools and distributions of soil phosphorus in China[J]. Global Biogeochemical Cycles, 2005, 19(1): 1029-1035. [36] 陈磊, 李鹏, 李占斌, 等. 黄土高原人为加速侵蚀下水土与养分流失耦合研究[J]. 水土保持学报, 2011, 25(3): 7-11. Chen L, Li P, Li Z B et al. Study on the coupling effect of erosion and nutrient lost under manmade accelerated erosion on Loess Plateau[J]. Journal of Soil and Water Conservation, 2011, 25(3): 7-11. [37] 胡宏祥, 洪天求, 刘路. 水土流失量和养分流失量的预测[J]. 环境科学研究, 2009, 22(3): 356-361. Hu H X, Hong T Q, Liu L. Prediction of soil erosion and nutrient loss quantity[J]. Research of Environmental Sciences, 2009, 22(3): 356-361. [38] 杨继松, 刘景双, 于君宝. 三江平原沼泽湿地枯落物分解及其营养动态[J]. 生态学报, 2006, 26(5): 1298-1301. Yang J S, Liu J S, Yu J B. Decomposition and nutrient dynamics of marsh litter in the Sanjiang Plain,China[J]. Acta Ecologica Sinica, 2006, 26(5): 1298-1301. [39] 温达志, 魏平, 张佑昌. 鼎湖山南亚热带森林细根分解干物质损失和元素动态[J]. 生态学杂志, 1998, 17(2): 1-6. Wen D Z, Wei P, Zhang Y C. Dry mass loss and chemical changes of the decomposed fine roots in three China south subtropical forests at Dinghushan[J]. Chinese Journal of Ecology,1998, 17(2): 1-6. [40] Niklas K J, Owens T, Reich P B, Cobb E D. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth[J]. Ecology Letters, 2005, 8(6): 636-642. [41] Koerselman W, Meuleman A F M. The vegetation N/P ratio: a new tool to detect the nature of nutrient limitation[J]. The Journal of Applied Ecology, 1996,33(6): 1441-1450. [42] Tessier J T, Raynal D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Journal of Applied Ecology, 2003, 40(3): 523-534.
|