• ISSN 1008-505X
  • CN 11-3996/S

黄土高原纬度梯度下草本植物生物量的变化及其氮、磷化学计量学特征

李婷, 邓强, 袁志友, 焦峰

李婷, 邓强, 袁志友, 焦峰. 黄土高原纬度梯度下草本植物生物量的变化及其氮、磷化学计量学特征[J]. 植物营养与肥料学报, 2015, 21(3): 743-751. DOI: 10.11674/zwyf.2015.0322
引用本文: 李婷, 邓强, 袁志友, 焦峰. 黄土高原纬度梯度下草本植物生物量的变化及其氮、磷化学计量学特征[J]. 植物营养与肥料学报, 2015, 21(3): 743-751. DOI: 10.11674/zwyf.2015.0322
LI Ting, DENG Qiang, YUAN Zhi-you, JIAO Feng. Latitude gradient changes on herbaceous biomass and leaf N and P stoichiometry characteristics in Loess Plateau[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(3): 743-751. DOI: 10.11674/zwyf.2015.0322
Citation: LI Ting, DENG Qiang, YUAN Zhi-you, JIAO Feng. Latitude gradient changes on herbaceous biomass and leaf N and P stoichiometry characteristics in Loess Plateau[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(3): 743-751. DOI: 10.11674/zwyf.2015.0322

黄土高原纬度梯度下草本植物生物量的变化及其氮、磷化学计量学特征

基金项目: 

国家自然科学基金(41271043,31370455);中国科学院知识创新工程“百人计划”项目;中国科学院知识创新重要方向项目(KZCX2-EW-406)资助。

详细信息
    作者简介:

    李婷(1988—), 女,山东烟台人,硕士研究生,主要从事植物生态学研究。

  • 中图分类号: Q948.1

Latitude gradient changes on herbaceous biomass and leaf N and P stoichiometry characteristics in Loess Plateau

  • 摘要: 【目的】 植物生物量可以表征植物的生长状况和自然环境的变化动向,化学计量学特征能够反映植物养分含量及养分利用策略,本研究以草本植物生物量和草本植物叶片化学计量学特征为研究对象,探讨黄土高原地区草本植物生物量及其叶片氮、磷化学计量学特征沿纬度梯度的变化规律,为预测黄土高原植物的生长发育前景、生态系统的土壤养分状况、植物营养元素的限制情况提供参考依据。【方法】 以陕西省延安市的富县、甘泉县、安塞县和榆林市的靖边县、横山县和榆阳区为研究区域,测定黄土高原地区草本植物生物量和草本植物叶片氮(N)、磷(P)含量,比较不同纬度梯度下不同植被带的草本植物生物量的大小;利用方差分析将本研究中黄土高原地区草本植物叶片氮、磷含量以及N/P与全球、中国尺度等其他研究结果进行比较,分析黄土高原植物生长中的主要限制元素;利用回归分析阐明不同纬度梯度下草本植物生物量的变化规律及其叶片氮、磷的化学计量学特征。【结果】 1)在35.95~38.36N的纬度范围内,黄土高原不同植被带草本植物生物量的变化范围为9.10~27.59 g/m2,算术平均值为19.45 g/m2,变异系数为30.3% 。4个不同植被带草本植物生物量的大小顺序为草原带>森林-草原带>森林带>草原-荒漠带。且随着纬度的升高,草本植物生物量呈先增加后减少的趋势。2)黄土高原草本植物叶片氮、磷含量和N/P的变化范围分别为18.09~33.17 mg/g、 1.07~1.7 mg/g和15.4~21.6;平均值分别为 25.79 mg/g、1.37 mg/g和18.71, 变异系数分别为17.1%、13.9%和9.94%, 其中草本植物叶片氮的变异系数最高,N/P最低。草本植物叶片氮、磷之间存在显著的相关关系,且随着纬度的升高,草本植物叶片氮、磷含量也随之升高,而N/P随纬度的升高变化不明显。3)黄土高原草本植物叶片氮含量(25.79 mg/g)高于全球尺度的平均氮含量(20.09 mg/g),而草本植物叶片磷含量(1.37 mg/g)低于全球尺度的平均磷含量(1.77 mg/g),因此该地区草本植物具有较高的N/P。【结论】 黄土高原草本植物生物量与纬度存在一定的相关性,且并不是简单的线性相关,其生物量的变化也与植被带的物种组成有关;黄土高原草本植物叶片氮、磷含量与纬度之间存在显著的正相关关系,而N/P与纬度之间没有显著的相关性。与全球尺度相比,黄土高原地区草本植物生长更易受磷限制。
    Abstract: 【Objective】 Plant biomass can give an index to the trends of plant growth conditions and the change of natural environment, stoichiometry can reflect the plant nutrient content and using strategy. Our objective was to examine changes of herbaceous biomass and leaf N and P stoichiometry characteristics along latitudinal gradient in Loess Plateau, and to provide references for the prediction of plant growth and development prospect in Loess Plateau, soil nutrient status of the ecosystem and constraints of plant nutrition elements. 【Methods】 We investigated the herbaceous biomass and leaf N and P contents, and compared the herbaceous biomass amounts of different vegetation zones along the latitudinal gradient in Loess Plateau in Shanxi Province, including Fu County, Ganquan County, Ansai County, Jingbian County and Hengshan County and Yuyang District. One-way analysis and regression analysis were conducted to find main constraints of plant nutrition elements and to examine overall patterns of response of the herbaceous biomass, leaf N and P stoichiometry to latitude. 【Results】 Across the 35.95-38.36N latitude gradient, the range of herbaceous biomass amounts of different vegetation zones in Loess Plateau is from 9.10 to 27.59 g/m2, and the arithmetic mean is 19.45 g/m2 and the coefficient of variation is 30.3%. The herbaceous biomass amounts in the four different vegetation zones are in order of grass zone >forest-grass zone >forest zone >grass-desert zone, and with the increase of latitude, the herbaceous biomass amounts are first increased and then decreased. The leaf N and P stoichiometry characteristics are primarily from 18.08 to 33.17 mg/g for N, from 1.07 to 1.7 mg/g for P and from 15.4-21.6 for the N/P ratio, the arithmetic means are 25.79 mg/g, 1.37 mg/g and 18.71, separately, and the variation coefficients are 17.1%, 13.9% and 9.94% in which the leaf N content is the greatest and the N/P ratio is the lowest. The leaf N and P are closely correlated, and leaf N and P significantly increases with latitude increasing, but the N/P ratios is not. The leaf N content in Loess Plateau is higher than the global average level and the leaf P content in Loess Plateau is lower than the global average level, consequently leading to a higher N/P ratio in Loess Plateau. 【Conclusions】 There is a certain correlation between the herbaceous biomass and latitude, however, that is not a simple linear correlation, and the change of herbaceous biomass is also related with species composition of the vegetation zones. There are obvious correlations between leaf N and P and latitude, while the relationship between the N/P ratio and latitude is not significant. These results demonstrate that the plants are under P limitation in Loess Plateau.
  • [null] [1] 郝文芳, 陈存根, 梁宗锁, 马丽. 植被生物量的研究进展[J]. 西北农林科技大学学报(自然科学版), 2008, 36(2): 175-182.
    Hao W F, Chen C G, Liang Z S, Ma L. Research advances in vegetation biomass[J]. Journal of Northwest A&F University(Natural Science Edition), 2008, 36(2): 175-182.
    [2] 郭娜, 刘剑秋. 植物生物量研究概述(综述)[J]. 亚热带植物科学, 2011, 40(2): 83-88.
    Guo N, Liu J Q. A review of research on plant biomass[J]. Subtropical Plant Science, 2011,40(2): 83-88.
    [3] Elser J J, Dobberfuhl D R. Organism size, life history, and N:P stoichiometry[J]. Bioscience,1996, 46(9): 674-684.
    [4] 曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6): 1007-1019.
    Zeng D H, Chen,G S. Ecological stoichiometry: a science to explore the complexity of living systems[J]. Acta Phytoecological Sinica, 2005, 29(6): 1007-1019.
    [5] Güsewell S. N/P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2005, 164(2): 243-266.
    [6] Chapin F S, Matson P A, Mooney H A. Principles of terrestrial ecosystem ecology[M]. New York: Springer-Verlag New York, 2004.
    [7] Vitousek P. Nutrient cycling and nutrient use efficiency[J]. The American Naturalist, 1982, 110(4): 553-572.
    [8] 刘雯霞, 朱柯嘉. 青藏高原东缘高寒草甸不同功能群植物氮磷化学计量特征研究[J]. 中国草地学报, 2013, 35(2): 52-58.
    Liu W X, Zhu K J. Characteristics of nitrogen and phosphorus stoichiometry of plants in different functional groups on Alpine Meadow in the eastern edge of Tibetan Plateau[J]. Acta Agrectir Sinica, 2013, 35(2): 52-58.
    [9] 刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征[J]. 植物生态学报, 2010,34(1): 64-71.
    Liu X Z, Zhou G Y, Zhang D Q et al. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China[J]. Acta Phytoecological Sinica, 2010, 34(1): 64-71.
    [10] Aerts R, Chapin F. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Researh, 1999, 30(2): 1-67.
    [11] Wassen M J, Venterink H G M O, Swart E O A M. Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems[J]. Journal of Vegetation Science,1995, 6(1): 5-16.
    [12] He J, Fang J, Wang Z et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China[J]. Oecologia, 2006, 149(1): 115-122.
    [13] Elser J, Fagan W, Denno R et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(11): 578-580.
    [14] Braakhekke W G, Hooftman D A P. The resource balance hypothesis of plant species diversity in grassland[J]. Journal of Vegetation Science, 1999, 10(2): 187-200.
    [15] Reich P B, Ellsworth D S, Walters M B, Vose J M. Generality of leaf trait relationships: a test across six biomes[J]. Ecology, 1999, 80(6): 1955-1969.
    [16] Thompson K, Parkinson J, Band S, Spencer R. A comparative study of leaf nutrient concentrations in a regional herbaceous flora[J]. New Phytologist, 1997, 136(4): 679-698.
    [17] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 2004, 101(30): 11001-11006.
    [18] Wright I J, Reich P B, Cornelissen J H C et al. Assessing the generality of global leaf trait relationships[J]. New Phytologist, 2005, 166(2): 485-496.
    [19] Wright I J, Reich P B, Westoby M et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827.
    [20] Han W, Fang J, Guo D, Zhang Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377-385.
    [21] 任书杰, 于贵瑞, 陶波, 王绍强. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学,2007, 28(12): 2665-2673.
    Ren S J, Yu G R, Tao B,Wang S Q. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Environmental Science. 2007, 28(12): 2665-2673.
    [22] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
    Bao S D. Soil agrochemistry analysis[M].Beijing: China Agriculture Press, 2000.
    [23] 郑淑霞, 上官周平. 黄土高原地区植物叶片养分组成的空间分布格局[J]. 自然科学进展, 2006, 16(8): 965-973.
    Zheng S X, Shangguan Z P. Spatial patterns for variations in leaf nutrient contents in Loess Plateau[J]. Progress in Natural Science, 2006, 16(8): 965-973.
    [24] 白永飞, 李凌浩. 锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究[J]. 植物生态学报, 2000, 24(6): 667-673.
    Bai Y F, Li L H. Changes in plant species diversity and productivity along gradients of precipitation and elevation in the Xilin river basin Inner Mongolia[J]. Acta Phytoecological Sinica, 2000, 6(24): 667-673.
    [25] 白永飞, 张丽霞, 张焱, 陈佐忠. 内蒙古锡林河流域草原植物群落功能群植物组成沿水热梯度变化的样带研究[J]. 植物生态学报, 2002, 26(3): 308-316.
    Bai Y F, Zhang L X, Zhang Y, Chen Z Z. Changes in plant functional composition along gradients of precipitation and temperature in the Xilin river basin Inner Mongolia[J]. Acta Phytoecological Sinica, 2002, 26(3): 308-316.
    [26] 邓蕾, 上官周平. 陕西省天然草地生物量空间分布格局及其影响因素[J]. 草地学报, 2012,20(5): 825-835.
    Deng L, Shangguan Z P. Distribution of natural grassland biomass and its relationship with influencing factors in Shaanxi[J]. Acta Agrectir Sinica, 2012, 20(5): 825-835.
    [27] 韩彬, 樊江文, 钟华平. 内蒙古草地样带植物群落生物量的梯度研究[J]. 植物生态学报, 2006, 30(4): 553-562.
    Han B, Fan J W, Zhong H P. Grassland biomass of communities along gradients of the Inner Mongolia grassland transect[J]. Acta Phytoecological Sinica, 2006, 30(4): 553-562.
    [28] 罗天祥, 石培礼, 罗辑, 欧阳华. 青藏高原植被样带地上部分生物量的分布格局[J]. 植物生态学报, 2002, 26(6): 668-676.
    Luo T X, Shi P L, Lu J,OUY H. Distribution patterns of aboveground biomass in Tibetan Alpine vegetation transects[J]. Acta Phytoecologica Sinica,2002, 26(6): 668-676.
    [29] 王辉, 王全九, 邵明安. 降水条件下黄土坡地氮素淋溶特征的研究[J]. 水土保持学报, 2005,19(5): 61-64, 93.
    Wang H, Wang Q J, Shao M A. Characteristics of nitrogen leaching from sloping land on Loess Plateau under rainfall conditions[J]. Journal of Soil and Water Conservation, 2005,19(5): 61-64, 93.
    [30] Van Heerwaarden L, Toet S, Aerts R. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization[J]. Journal of Ecology, 2003, 91(6): 1060-1070.
    [31] Kaiser J. The other global pollutant: Nitrogen proves tough to curb[J]. Science, 2001, 294(5545): 1268.
    [32] Galloway J N, Townsend A R, Erisman J W. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science. 2008, 320(5878): 889-892.
    [33] Hedin L O. Global organization of terrestrial plant-nutrient interactions[J]. Proceedings of the National Academy of Sciences, 2004, 101(30): 10849-10850.
    [34] 全国土壤普查办公室编. 中国土种志[M]. 北京: 中国农业出版社, 1993. 924.
    National Soil Survey Office. China soil species[M].Beijing: China Agriculture Press, 1993. 924.
    [35] Zhang C, Tian H, Liu J Y, Wang S. Pools and distributions of soil phosphorus in China[J]. Global Biogeochemical Cycles, 2005, 19(1): 1029-1035.
    [36] 陈磊, 李鹏, 李占斌, 等. 黄土高原人为加速侵蚀下水土与养分流失耦合研究[J]. 水土保持学报, 2011, 25(3): 7-11.
    Chen L, Li P, Li Z B et al. Study on the coupling effect of erosion and nutrient lost under manmade accelerated erosion on Loess Plateau[J]. Journal of Soil and Water Conservation, 2011, 25(3): 7-11.
    [37] 胡宏祥, 洪天求, 刘路. 水土流失量和养分流失量的预测[J]. 环境科学研究, 2009, 22(3): 356-361.
    Hu H X, Hong T Q, Liu L. Prediction of soil erosion and nutrient loss quantity[J]. Research of Environmental Sciences, 2009, 22(3): 356-361.
    [38] 杨继松, 刘景双, 于君宝. 三江平原沼泽湿地枯落物分解及其营养动态[J]. 生态学报, 2006, 26(5): 1298-1301.
    Yang J S, Liu J S, Yu J B. Decomposition and nutrient dynamics of marsh litter in the Sanjiang Plain,China[J]. Acta Ecologica Sinica, 2006, 26(5): 1298-1301.
    [39] 温达志, 魏平, 张佑昌. 鼎湖山南亚热带森林细根分解干物质损失和元素动态[J]. 生态学杂志, 1998, 17(2): 1-6.
    Wen D Z, Wei P, Zhang Y C. Dry mass loss and chemical changes of the decomposed fine roots in three China south subtropical forests at Dinghushan[J]. Chinese Journal of Ecology,1998, 17(2): 1-6.
    [40] Niklas K J, Owens T, Reich P B, Cobb E D. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth[J]. Ecology Letters, 2005, 8(6): 636-642.
    [41] Koerselman W, Meuleman A F M. The vegetation N/P ratio: a new tool to detect the nature of nutrient limitation[J]. The Journal of Applied Ecology, 1996,33(6): 1441-1450.
    [42] Tessier J T, Raynal D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Journal of Applied Ecology, 2003, 40(3): 523-534.
  • 期刊类型引用(17)

    1. 于秀立,降瑞娇,徐满厚. 黄土高原东部山地林下不同植物功能群地上生物量对模拟增温的响应. 干旱区资源与环境. 2024(10): 133-143 . 百度学术
    2. 闫媛媛,郭琪,管俊泽,刘志,王东男,谷加存. 红松和水曲柳叶生态化学计量及养分重吸收特征的地理变异. 应用生态学报. 2023(04): 977-984 . 百度学术
    3. 王洁茹,石文凯,吴会峰,胡保安,程小琴,韩海荣. 晋北典型针叶人工林叶功能性状特征及其与土壤因子的关系. 西北植物学报. 2023(05): 835-845 . 百度学术
    4. 郭江,瓮巧云,林红,吕爱枝,刘颖慧,袁进成. 不同纬度地区青贮玉米生长性状、适应性研究. 饲料研究. 2022(06): 118-122 . 百度学术
    5. 王子龙,胡斌,包维楷,李芳兰,胡慧,韦丹丹,杨婷惠,黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素. 植物生态学报. 2022(05): 539-551 . 百度学术
    6. 彭玲莉,亢丹,鄢郭馨,杨凌帆,曾伟坤,雷霆. 土地利用方式对湖泊洲滩湿地植物生物量的影响——以西洞庭湖国家级自然保护区为例. 中南林业科技大学学报. 2020(01): 123-130+159 . 百度学术
    7. 李阳,魏继平,马红媛. 不同种源羊草表型差异性. 生态学报. 2020(04): 1175-1183 . 百度学术
    8. 何靖,田青,宋玲玲. 岷山北坡高海拔区草本植物群落特征及主要植物功能群C、N、P含量分析. 生态环境学报. 2020(03): 489-497 . 百度学术
    9. 伍海兵,张青青,李跃忠,张浪,梁晶. 湿垃圾堆肥产品施用方式对园林植物生长性状的影响. 园林. 2020(06): 19-24 . 百度学术
    10. 张涛,田青,罗立娇,杜佳囝,宋玲玲. 摩天岭北坡低海拔区草本植物生物量及根C、N、P化学计量学特征. 林业科技通讯. 2019(05): 3-6 . 百度学术
    11. 罗立娇,田青,张涛,杜佳囝,宋玲玲. 摩天岭北坡低海拔区草本植物生物量的变化及其叶片C、N、P化学计量学特征. 林业科技通讯. 2019(07): 23-27 . 百度学术
    12. 董雪,辛智鸣,黄雅茹,李新乐,郝玉光,刘芳,刘明虎,李炜. 乌兰布和沙漠典型灌木群落土壤化学计量特征. 生态学报. 2019(17): 6247-6256 . 百度学术
    13. 王玉婕,蓝登明,郭威星,温静,贾荣. 乌拉特中旗荒漠草原草本生物量研究. 内蒙古林业调查设计. 2019(06): 94-96+27 . 百度学术
    14. 黄成成,张瑞海,付卫东,宋振,柏超,王然,张国良. 空心莲子草在不同生境中氮素迁移和表型可塑性差异. 生态环境学报. 2018(04): 663-670 . 百度学术
    15. 王宝荣,杨佳佳,安韶山,张海鑫,白雪娟. 黄土丘陵区植被与地形特征对土壤和土壤微生物生物量生态化学计量特征的影响. 应用生态学报. 2018(01): 247-259 . 百度学术
    16. 刘洋,曾全超,安韶山,李鑫,黄懿梅. 黄土丘陵区草本植物叶片与枯落物生态化学计量学特征. 应用生态学报. 2017(06): 1793-1800 . 百度学术
    17. 唐高溶,郑伟,王祥,朱亚琼. 旅游对喀纳斯景区植被和土壤碳、氮、磷化学计量特征的影响. 草业科学. 2016(08): 1476-1485 . 百度学术

    其他类型引用(29)

计量
  • 文章访问数:  3376
  • HTML全文浏览量:  533
  • PDF下载量:  921
  • 被引次数: 46
出版历程
  • 收稿日期:  2014-07-21
  • 修回日期:  2015-06-25
  • 刊出日期:  2015-05-24

目录

    /

    返回文章
    返回