Nitrogen use efficiency and fate of new urea types in a winter wheat-summer maize rotation system
-
摘要:目的
以华北平原冬小麦–夏玉米轮作体系为研究对象,探究新型尿素对作物氮素吸收及去向的影响。
方法于2016年10月至2017年9月,在河北省辛集市河北农业大学马庄试验站进行小麦15N田间微区试验,微区面积为1 m2,设置施用普通尿素、普通尿素 + 硝化抑制剂 (Nr)、控失尿素、聚能网尿素和腐植酸尿素5个处理,各施肥处理氮素施用量均为N 225 kg/hm2,并以不施氮肥处理为对照。
结果5个氮肥处理相比,控失尿素处理的冬小麦产量最高,为8123 kg/hm2;腐植酸尿素处理次之,为8083 kg/hm2;再次为聚能网尿素处理,为8049 kg/hm2。控失尿素、腐植酸尿素、聚能网尿素、普通尿素 + Nr、普通尿素的15N当季利用率分别为43.6%、41.1%、37.8%、34.2%、32.2%;控失尿素、腐植酸尿素的15N当季利用率显著高于普通尿素 + Nr和普通尿素处理,聚能网尿素的15N当季利用率显著高于普通尿素,普通尿素 + Nr处理则与普通尿素处理的15当季利用率无显著差异;控失尿素的15N当季利用效果最为突出,较普通尿素15N当季利用率提高了35.4%,腐植酸尿素、聚能网尿素较普通尿素15N当季利用率显著提高了27.6%、17.4%。后茬玉米能吸收利用前茬小麦残留在土壤中的氮素,但后茬玉米的土壤残留15N利用率仅为2.98%~3.62%,4种新型尿素处理间后茬玉米15N利用率无显著性差异。小麦收获后,4种新型尿素均显著提高了土壤上层 (0—40 cm) 硝态氮残留量,有利于后茬玉米对氮素的吸收,减少氮素淋溶的可能性。肥料氮总损失表现为控失尿素、聚能网尿素 < 腐植酸尿素、普通尿素 + Nr < 普通尿素。
结论新型尿素显著促进作物对氮素的吸收利用,减少氮素损失,获得高产。4种新型尿素相比,控失尿素增产增效最为突出,土壤中氮残留少,损失率低,其当季利用率、残留率和损失率分别为43.6%、40.8%和15.6%;腐植酸尿素氮当季利用率仅次于控失尿素,而损失率较高达19.8%;聚能网尿素有利于氮素固持在土壤中,其残留率、损失率分别为46.1%、16.1%;普通尿素 + Nr处理的氮素当季利用率偏低而土壤残留率最高,分别为34.2%和47.4%。
Abstract:ObjectivesIn this paper, the effects of new urea types on two successive crops were assessed in a winter wheat-summer maize rotation system in North China plain.
MethodsA field microplot experiment was conducted at Mazhuang Experimental Station of Hebei Agricultural University, Xinji City, Hebei Province in October 2016 through September 2017. The area of each plot was 1 m2 and the total N input in each plot, except control, was N 225 kg/hm2. Five types of urea were used as treatments, namely: common urea, urea + nitrification inhibitor Nr (UNr), controlled loss urea (CLU), shaped-energy network urea (ENU), and humic acid urea (HAU). The nitrogen (15N)-use efficiency, residual amount of nitrogen in 0–200 cm soil depth, and the nitrogen loss rate were examined and analyzed after wheat and maize harvest.
ResultsThe highest grain yield of winter wheat was achieved in CLU treatment (8123 kg/hm2), followed by HAU (8083 kg/hm2) and ENU (8049 kg/hm2). The total 15N utilization rates of wheat in CLU, HAU, ENU, UNr, and common urea were 43.6%, 41.1%, 37.8%, 34.2%, and 32.2%, respectively. All the new urea types, especially CLU and HAU treatments enhanced the total 15N-use efficiency of the wheat crop compared with common urea. CLU, HAU, and ENU enhanced the 15N efficiency of wheat compared with common urea by 35.4%, 27.6%, and 17.4%, respectively. The residual effect of urea on 15N utilization rate of the following maize was similar among the five urea types (2.98%–3.62%). After wheat harvest, all the four types of urea significantly increased the residual nitrate N in 0–40 cm soil depth with less potential for loss through leaching, while the total fertilizer N loss was in the order: CLU, ENU < HAU, UNr < common urea.
ConclusionsThe new urea types significantly promotes the absorption and utilization of nitrogen by crops, realize high yields, and reduces losses of N. Compared with other three new types of urea and common urea, CLU promotes the highest biomass production and N efficiency with less residual nitrogen in the soil and low loss rate. On the other hand, ENU promotes higher nitrogen retention in the soil with low loss rate.
-
Keywords:
- new urea /
- winter wheat-summer maize /
- fate of nitrogen /
- N residual effect /
- 15N
-
氮肥利用率低、损失率高是我国普遍现象[1-2]。当前我国农田施用氮肥(N)约为3100万 t/年,损失率达40%~50%[3]。我国氮肥利用效率远低于世界发达国家水平[4],其主要原因为农民在农业生产实践中往往忽视残留氮肥的后效,仍按传统方式施肥,而长期大量施用氮肥会造成土壤氮素的大量累积[5],且易在灌溉或降水作用下以硝态氮为主要形式向土壤深层淋洗,从而污染地下水[6]。新型控释尿素较普通尿素养分释放慢,可提高氮肥利用率、减少氮肥淋失、降低环境污染[7-8]。因此,研究不同新型尿素的农田氮素吸收和去向,对筛选出优质氮肥种类及其在农业生产中的推广应用有重要的指导意义。新型尿素有利于改善土壤质量,提高土壤透气保水能力,且能够有效提高土壤微生物多样性,是节本增效、环境友好的土壤改良剂[9]。控失尿素中的控失剂能够固化土壤氮素,延缓养分释放[10]。控失尿素具有使用方便、增效节肥、保护环境等特征,可有效提高小麦、玉米、水稻等作物的养分吸收利用能力及产量和品质[11-12]。聚能网尿素有较多络合基团与强螯合功能的高分子活性物质,作物生长所需的养分可以吸附在根系周围并在需要时转移到茎和叶,促使作物生长发育[13]。普通尿素中不同用量聚能网能适度改善玉米地上部养分积累量,促进养分吸收利用,增加玉米产量,提高经济效益[14]。腐植酸是动植物残骸经过微生物分解和转化,以及一系列地球化学过程形成和累积的一类成分复杂的天然有机高分子混合物[15]。研究表明,腐植酸氮肥可改善养分在土壤中的分布,满足根系的养分吸收;又可提高尿素中氮的稳定性,提高氮肥利用率,减少氮素损失[16-18]。目前,河南心连心化肥有限公司研制出新型缓释尿素,已在全国24个省市进行试验示范,试验结果显示增产增效、环境友好,与普通尿素相比,施用聚能网尿素可使玉米产量增加6.63%~23.70%,氮肥利用率提高24.79%[14],施用控失尿素较普通尿素可使小麦增产7.32%,氮肥利用率达32.85%[19]。施用腐植酸尿素较传统氮肥可使小麦增产10%以上,氮肥利用率提高11%~12%[20]。Bhogal等[21]研究表明,后茬作物能利用前茬残留氮素的8%~20%,残留氮具有较强后效。虽然已有研究报道了不同施氮水平[22]、不同田间管理方式[23]、耕层水氮调控[24]或根层调控[25]等条件下冬小麦–夏玉米轮作体系氮素吸收及去向,而有关新型尿素对该轮作体系氮素吸收利用、损失及后效的影响鲜有报道。因此,本研究采用15N示踪技术进行田间微区试验,研究小麦对不同类型缓释尿素氮素的吸收利用和残留氮素在土壤及环境中的去向及后效,从而优选出高产高效的氮肥种类,为其在农业生产中的应用和推广提供理论依据。
1. 材料与方法
1.1 试验地概况
本试验于2016年10月至2017年9月在河北农业大学辛集试验站进行。该试验站位于北纬37°51′,东经115°15′,地处低洼平原和山麓平原过渡带;四季分明,年平均气温为13°C,年平均降水量490 mm,主要集中在6—8月份,占全年降水量的三分之二。试验期间的降雨情况见图1,其中小麦和玉米季降水量分别为110、260 mm,小麦季较为干旱,玉米季雨水较多。试验地土壤为冲积性潮褐土,0—100 cm土壤基本理化性状见表1。
表 1 试验地土壤基本理化性状Table 1. Basic physical and chemical properties of the soil in the field experiment土层深度
Soil depth
(cm)pH
(H2O∶soil=1∶1)全氮
Total N
(g/kg)速效钾
Available K
(mg/kg)有效磷
Olsen-P
(mg/kg)有机质
Organic matter
(g/kg)硝态氮
NO3–-N
(mg/kg)土壤机械组成 (粘/粉/砂)
Soil mechanical composition
(clay/silt/sand) (%)容重
Bulk density
(g/cm3)0—20 8.3 1.5 115.7 32.5 21.3 18.3 5.27/60.88/33.84 1.3 20—40 8.5 0.8 111.4 24.7 12.4 25.1 3.48/56.98/39.54 1.4 40—60 8.4 1.7 103.1 8.6 8.3 8.0 6.09/61.69/32.22 1.5 60—80 8.6 0.5 46.1 5.9 2.7 8.9 4.11/57.52/38.37 1.4 80—100 8.4 0.4 63.6 16.8 3.1 4.2 4.07/64.09/31.84 1.4 1.2 供试尿素
选择控失剂、聚能网材料、腐植酸作为添加剂,与丰度为5.18%的15N标记尿素配合,造粒、过筛并自然风干后成粒,制成含氮量44%的控失尿素、含氮量46%的聚能网尿素、含氮量46%的腐植酸尿素。硝化抑制剂2-氯-6-三氯甲基吡啶(简称Nr),用普通尿素与纯氮量为1%的Nr制成含Nr尿素(普通尿素 +Nr)。
1.3 试验设计
试验共设置6个处理,分别为:1) 不施氮,2) 普通尿素,3) 普通尿素 + Nr,4) 控失尿素,5) 聚能网尿素,6) 腐植酸尿素。其中,3)~6)为4种新型尿素,氮均为15N。每个处理3个重复,共18个微区,采取随机区组的排列方式。微区用长1 m、宽1 m、高0.5 m的铁皮框制成,地面以上保留0.05 m,垂直向下嵌入0.45 m,小区间间隔1 m,试验区四周设2 m保护行。
氮素用量为225 kg/hm2,较农民传统用量(250 kg/hm2)降低了10%。具体施肥情况如下:小麦季各处理基施磷、钾量相同,分别为P2O5 90 kg/hm2、K2O 75 kg/hm2;基施氮肥135 kg/hm2 (N),追施氮肥90 kg/hm2 (N);种植前取出约2 kg土,过5 mm筛后,再与氮磷钾肥混匀,均匀撒施到微区,翻耕后播种;追肥时,先将15N标记的尿素溶解于水中,再用喷壶将溶液均匀喷洒到微区,最后浇上60 mm的水。夏玉米季氮肥种类均为普通尿素,用量为225 kg/hm2 (N),按照1∶1的比例分别在三叶期和十叶期,采用沟施覆土的施肥方式施用,不施用磷肥和钾肥。
1.4 种植方式和田间管理
1) 冬小麦:供试小麦品种为冀麦585,行距15 cm,播种量为300 kg/hm2。肥料撒施,翻耕后于2016年9月30日播种,2017年6月7日收获。由于小麦生长季雨水较少,为保证土壤墒情,在播前、越冬期、拔节期、追肥期、扬花期分别灌水60 mm。灌水时,缓慢浇入1 m2微区内,防止溢出。
2) 夏玉米:供试玉米品种为先玉335,行距60 cm、株距30 cm,每个微区6株。于2017年6月13日播种,在铁皮框内进行人工开沟播种,播后灌水70 mm。2017年10月15日收获。
其他田间管理同常规。
1.5 样品采集与测定
1) 植物样品:将15N 微区的植株地上部分沿地面全部割下称鲜重,并将籽粒和秸秆分开,风干后称重,之后在65℃下烘干,称干重。随机选取20株植株样品全部粉碎过0.15 mm筛,混匀后,连续用4分法取测定所需的样品量,用于测定植株含氮量和15N丰度。
2) 土壤样品:小麦和玉米收获时,在微区采集0—200 cm的土壤 (以20 cm为间隔,每区取两钻,等层混匀),要避免各点间和各层间污染,用于测定全氮含量和15N丰度。取样后,将取样孔用性质相同的土壤填充、压实,以保证填充后的土壤容重与原土壤接近,此过程注意防止上层15N对下层土壤的污染,最后用标杆标记。
3) 15N丰度测定:土壤和植株的15N及全氮含量通过美国热电公司同位素比率质谱仪 (Thermo-Fisher Delta V Advantage IRMS) 测定。
1.6 计算方法
植株中来自化肥的氮量%Ndff (kg/hm2) = 植物%Ndff × 植物吸氮量 (kg/hm2);
土壤各层来自15N肥料的氮量%Ndff (kg/hm2) = 土壤各层全氮含量 (kg/hm2) × 土壤各层%Ndff;
土壤各层全氮来自标记15N的%Ndff =
土壤各层全氮的15N原子百分超标记的15N原子百分超 × 100化肥氮损失量 (kg/hm2) = 15N标记肥料施用量 - 植株吸收15N标记肥料量 - 土壤残留15N标记肥料量;
化肥氮损失率 (%) =
化肥氮损失量标记氮肥施用量 × 100土壤氮库总平衡[26-27] = 0—200 cm土体残留15N标记肥料氮 + 秸秆还田氮 + 干湿沉降氮 + 灌溉氮 + 种子氮−作物吸收土壤氮
1.7 数据统计与分析
试验数据均使用Excel和SPSS 21.0软件进行统计分析。
2. 结果与分析
2.1 冬小麦生物量及对标记氮的吸收利用
由表2可知,冬小麦籽粒产量在施用控失尿素、聚能网尿素、腐植酸尿素后较CK和普通尿素处理均显著增加,籽粒产量最高的是控失尿素处理,为8123 kg/hm2,与不施氮肥和施普通尿素处理相比,产量分别增加了44.2%、11.2%;腐植酸尿素、聚能网尿素处理的籽粒产量较普通尿素处理分别提高了10.7%、10.2%;普通尿素处理的冬小麦籽粒产量低于普通尿素 + Nr处理,但差异不显著。各处理间秸秆生物量差异不显著。
表 2 冬小麦生物量及对标记15N肥料的利用率Table 2. Winter wheat biomass, nitrogen uptake and the utilization of labeled 15N fertilizer处理
Treatment生物量 (kg/hm2)
Biomass吸氮量 (kg/hm2)
N absorption15N吸收量 (kg/hm2)
15N absorption15N利用率 (%)
15N utilization efficiency籽粒
Grain秸秆
Straw总计
Total籽粒
Grain秸秆
Straw总计
Total籽粒
Grain秸秆
Straw总计
Total籽粒
Grain秸秆
Straw总计
TotalCK 5632 c 5884 a 11516 b 101.4 c 17.0 c 118.4 c 普通尿素 Common urea 7302 b 6017 a 13319 ab 140.2 b 28.7 b 168.9 b 59.9 c 12.6 c 72.5 c 26.6 c 5.6 c 32.2 c 普通尿素 + Nr
Common urea + Nitrapyrin7656 ab 6105 a 13761 ab 153.9 b 30.0 b 184.9 b 63.3 bc 13.8 bc 77.1 bc 28.1 bc 6.1 bc 34.2 bc 控失尿素
Loss controlled urea8123 a 6379 a 14502 a 171.4 a 37.0 a 208.4 a 77.8 a 20.2 a 98.0 a 34.6 a 9.0 a 43.6 a 聚能网尿素
Energy maintaining net urea8049 a 6317 a 14366 a 173.9 a 33.2 a 207.0 a 69.8 ab 15.3 ab 85.1 ab 31.0 ab 6.8 ab 37.8 ab 腐植酸尿素
Humic acid urea8083 a 6276 a 14297 a 178.9 a 33.7 a 212.6 a 76.2 a 16.2 ab 92.4 a 33.9 a 7.2 ab 41.1 a 注(Note):同列数字后不同字母表示处理间差异显著 (P < 0.05) Different lowercase letters in a column indicate significant difference among treatments (P < 0.05). 与不施氮处理相比,控失尿素、聚能网尿素和腐植酸尿素处理的籽粒吸氮量提高了69.0%、71.5%和76.4%;控失尿素、聚能网尿素和腐植酸尿素处理的秸秆吸氮量较普通尿素处理分别提高了28.9%、15.7%和17.4%。普通尿素 + Nr和普通尿素处理的籽粒和秸秆吸氮量均显著高于CK;控失尿素、聚能网尿素和腐植酸尿素处理的籽粒和秸秆吸氮量显著高于普通尿素 + Nr处理。
普通尿素处理小麦籽粒15N利用率最低,仅为26.6%;普通尿素 + Nr处理略高于普通尿素处理,但差异不显著;聚能网尿素处理为31.0%,显著高于普通尿素处理;控失尿素、腐植酸尿素处理小麦籽粒15N利用率分别为34.6%、33.9%,高于聚能网尿素处理(31.0%)。普通尿素处理秸秆15N利用率最低,仅为5.6%;普通尿素 + Nr处理略高于普通尿素处理,但差异不显著;控失尿素处理的秸秆15N利用率最高,为9.0%,显著高于普通尿素 +Nr处理;腐植酸尿素和聚能网尿素处理次之,分别为7.2%、6.8%,显著高于普通尿素处理。与普通尿素处理相比,控失尿素、腐植酸尿素、聚能网尿素处理总体15N利用率分别提高35.4%、27.6%、17.4%。
2.2 土壤剖面硝态氮的运移与15N丰度变化
小麦收获后0—200 cm土壤硝态氮的变化特征(图2 )显示,普通尿素硝态氮含量在60—100 cm有明显增加趋势;0—20 cm表层聚能网尿素处理硝态氮浓度最大,为29.4 mg/kg;普通尿素 + Nr处理次之,为29.1 mg/kg;腐植酸尿素处理再其次,为22.1 mg/kg,均高于普通尿素处理。说明分别施用4种新型尿素有降低土壤硝态氮向下运移转化的作用。
由冬小麦收获后土壤全氮原子百分超(图2 )可知,普通尿素处理在80—100 cm处出现最高峰,说明施用普通尿素易使硝态氮向下运移转化。控失尿素、聚能网尿素、腐植酸尿素与普通尿素 + Nr处理变化趋势相似,各土层15N垂直分布自上而下递减,15N主要残留在0—40 cm土层,分别占15N总残留量的52.4%、54.6%、53.8%、51.0%,100—120 cm以下15N含量分布下降趋势渐缓,趋于平稳。说明4种新型尿素可延缓氮素向土壤深层的运移转化,以供后茬玉米吸收利用。
2.3 小麦季氮肥去向与平衡
表3表明,普通尿素处理作物的15N吸收和土壤残留量均最低。普通尿素 + Nr处理作物的15N吸收率虽然略高于普通尿素处理,但土壤的15N残留量显著高于普通尿素处理。聚能网尿素处理15N吸收率显著高于普通尿素处理,占37.8%;控失尿素和腐植酸尿素处理15N吸收率则显著高于普通尿素和普通尿素 +Nr处理,分别占43.6%、41.1%。普通尿素处理的土壤15N残留率最低,仅37.1%;腐植酸尿素处理的15N残留率与普通尿素处理差异不显著;控失尿素处理的土壤15N残留率显著高于普通尿素处理,为40.8%;聚能网尿素和普通尿素 + Nr处理15N残留率显著高于控失尿素处理。普通尿素处理的肥料氮总损失显著高于其他处理;控失尿素、聚能网尿素处理的肥料氮总损失最小。说明4种新型尿素处理有提高作物吸氮量、增加土壤氮肥残留、减少氮肥损失的效果,且控失尿素处理的总损失率更小。
表 3 冬小麦季15N肥料主要去向及比例Table 3. Amount and rate in the main fate of 15N fertilizers in winter wheat season处理
Treatment施氮量 (N, kg/hm2)
N application rate作物吸收
Crop absorption0—200 cm土壤残留
Soil residue in 0–200 cm layer15N肥料的损失
Loss of 15N fertilizer(kg/hm2) (%) (kg/hm2) (%) (kg/hm2) (%) 普通尿素 Common urea 225 72.5 c 32.2 c 83.5 c 37.1 c 69.0 a 30.7 a 普通尿素 + Nr
Common urea + Nitrapyrin225 77.1 bc 34.2 bc 106.8 a 47.4 a 41.1 b 18.4 b 控失尿素
Loss controlled urea225 98.0 a 43.6 a 91.9 b 40.8 b 35.1 c 15.6 c 聚能网尿素
Energy maintaining net urea225 85.1 ab 37.8 ab 103.7 a 46.1 a 36.2 c 16.1 c 腐植酸尿素
Humic acid urea225 92.4 a 41.1 a 88.1 bc 39.1 bc 44.5 b 19.8 b 注(Note):同列数据后不同字母表示处理间差异显著 (P < 0.05) Values followed by different lowercase letters in a column indicate significant difference among treatments (P < 0.05). 前茬玉米秸秆还田,从0—200 cm土体氮库平衡 (表4) 可以得出,作物对氮素的吸收表现为土壤氮 > 肥料氮,各处理土壤氮库均为盈余,表明施入氮肥后可增加氮素在土体中的积累。土体氮库盈余量在45.3~76.4 kg/hm2,表现为普通尿素 + Nr处理 > 普通尿素、聚能网尿素、控失尿素处理 > 腐植酸尿素处理。
表 4 小麦收获后0—200 cm土体氮库平衡 (N kg/hm2)Table 4. The balance of soil nitrogen pool at harvest of wheat within 0–200 cm soil depth处理
Treatment氮肥投入
N input作物吸收土壤氮
N absorption by
crop from soil土壤中残留
肥料氮
Residual
fertilizer N in soil种子氮[28]
Seed N秸秆还田氮[28]
N return from
straw干湿沉降氮 +
灌溉氮
N from dry and
wet deposition+irrigation土壤氮库盈余
Soil N surplus普通尿素
Common urea225 96.4 a 83.5 a 3.6 15.6 58.2 64.5 ab 普通尿素 + Nr
Common urea + Nitrapyrin225 107.8 a 106.8 a 3.6 15.6 58.2 76.4 a 控失尿素
Loss controlled urea225 110.4 a 91.9 a 3.6 15.6 58.2 58.9 ab 聚能网尿素
Energy
maintaining net urea225 121.9 a 103.7 a 3.6 15.6 58.2 59.2 ab 腐植酸尿素
Humic acid urea225 120.2 a 88.1 a 3.6 15.6 58.2 45.3 b 注(Note):同列数据后不同字母表示处理间差异显著 (P < 0.05) Values followed by different lowercase letters in a column indicate significant difference among treatments (P < 0.05). 2.4 后茬玉米的产量及其对前茬残留标记氮的吸收利用
小麦收获后在原微区种植夏玉米,前茬小麦施用的控失尿素、聚能网尿素,腐植酸尿素具有持效性,可使后茬玉米籽粒产量显著增加;除不施氮处理外,茎秆生物量在其他处理间差异不显著。不施氮和施普通尿素处理的籽粒吸氮量显著低于控失尿素、聚能网尿素,腐植酸尿素处理;普通尿素 + Nr处理的籽粒吸氮量略高于普通尿素处理,但差异不显著;与普通尿素处理相比,腐植酸尿素、控失尿素、聚能网尿素处理的籽粒吸氮量显著提高13.0%、18.5%、18.5%。各施氮处理茎秆吸氮量未表现出显著差异。由夏玉米季对残留15N的吸收利用情况可以看出,后茬玉米可以吸收利用土壤中残留的15N,控失尿素、聚能网尿素、腐植酸尿素的15N吸收量分别为7.95、8.16、7.90 kg/hm2,显著高于普通尿素 (6.70 kg/hm2),而15N利用率在各类尿素处理间的差异并不显著 (表5)。
表 5 后茬玉米生物量、吸氮量及对残留15N肥料的利用率Table 5. Biomass, nitrogen uptake and the utilization efficiency of residual 15N fertilizers of succeeding maize处理
Treatment生物量 (kg/hm2)
Biomass吸氮量 (kg/hm2)
N absorption15N吸收量 (kg/hm2)
15N absorption15N利用率 (%)
15N utilization efficiency籽粒
Grain茎秆
Stem总计
Total籽粒
Grain茎秆
Stem总计
Total籽粒
Grain茎秆
Stem总计
Total籽粒
Grain茎秆
Stem总计
TotalCK 9761 c 6706 b 16467 b 127.1 b 40.2 b 180.4 b 普通尿素 Common urea 9806 bc 9075 a 18881 ab 126.7 b 72.5 a 199.2 ab 4.22 b 2.48 a 6.70 b 1.9 a 1.10 a 2.98 a 普通尿素 + Nr
Common urea + Nitrapyrin10093 ab 9195 a 19288 a 130.1 ab 61.4 ab 191.5 ab 4.96 ab 2.47 a 7.43 ab 2.2 a 1.10 a 3.30 a 控失尿素
Loss controlled urea10425 a 9797 a 20222 a 150.2 a 70.0 a 220.2 a 5.50 a 2.45 a 7.95 a 2.4 a 1.09 a 3.53 a 聚能网尿素
Energy maintaining net urea10758 a 6939 ab 17697 ab 150.1 a 57.3 ab 207.5 a 5.84 a 2.31 a 8.16 a 2.4 a 1.03 a 3.62 a 腐植酸尿素
Humic acid urea10492 a 7340 ab 17832 ab 143.2 a 56.4 ab 199.7 ab 5.90 a 2.00 a 7.90 a 2.4 a 0.89 a 3.51 a 注(Note):同列数据后不同字母表示处理间差异显著 (P < 0.05) Values followed by different lowercase letters indicate significant difference among treatments (P < 0.05). 2.5 后茬玉米收获后土壤剖面硝态氮的运移
由图3可知,玉米收获后,相较于小麦收获后的土壤剖面0—200 cm土层硝态氮含量明显降低。普通尿素处理0—120 cm土层硝态氮含量随土层加深而逐渐升高,在100—120 cm土层达到最高峰,为16.6 mg/kg,且在40—120 cm土层累积的硝态氮远高于其它4个尿素处理,其它4个尿素处理土壤硝态氮大多残留在0—20 cm表层,随土层逐渐加深,于160—200 cm土层略有回升。
3. 讨论
3.1 华北小麦、玉米的氮肥利用率与氮肥残效
本研究选择以辛集为代表的华北平原冬小麦–夏玉米轮作体系为研究对象,设置田间15N微区试验,以4种新型尿素为供试材料,探讨其对作物氮素吸收利用的影响,追踪氮肥的去向及后效。结果表明,新型尿素处理对提高小麦产量有着显著的效果,其中控失尿素处理的冬小麦产量最高,达8123 kg/hm2,较普通尿素处理小麦平均增产821 kg/hm2;控失尿素处理的15N当季吸收利用效果最佳,15N当季利用率较普通尿素提高了35.4%。聚能网尿素处理的冬小麦产量为8049 kg/hm2,较普通尿素处理小麦平均增产747 kg/hm2;15N当季利用率提高了17.4%。腐植酸尿素处理冬小麦产量为8083 kg/hm2,较普通尿素处理小麦平均增产781 kg/hm2;15N当季利用率提高了27.3%。控失尿素、聚能网尿素、腐植酸尿素对产量的影响有所不同,原因如下:1) 施用控失尿素有利于提高小麦千粒重,控失尿素前期养分释放较缓慢,后期养分供应充足有利于灌浆期粒重增加[29]。本试验结果显示施用控失尿素提高了小麦的籽粒产量 (表2)。2) 在普通尿素中添加聚能网,可使土壤中养分得到活化,并在根系部位富集,加强作物吸收和利用氮素,从而获得高产;施用聚能网尿素与普通尿素相比增产5.85%~20.90%[14];宋志平[30]指出,追施聚能网尿素相较于同时期追施等量的普通尿素,有增加玉米的穗粒数及提高玉米产量的效果:聚能网尿素平均增产466.5~522.0 kg/hm2,增产率为5.3%~5.9%,产量差异均达显著水平。3) 刘红恩等研究发现,腐植酸尿素既可以显著提高潮土冬小麦有效穗数、千粒质量等产量构成要素,显著提高籽粒产量,也能提高其各部位氮素质量分数,更好地促进冬小麦对氮素的累积,从而提高了氮肥表观利用效率[31],这是由于腐植酸具有多个官能团且活性较高,能吸附更多的铵离子以供作物吸收利用[32],且使氮转化速率和氮素气态损失降低所致[33]。
在本研究中,普通尿素0—40 cm土层的氮肥残留比例较小,在60—100 cm氮肥残留呈现累积,峰值出现在80—100 cm处,而4种新型尿素处理氮肥主要残留在0—40 cm土层,在0—20 cm土壤硝态氮和氮肥残留均高于普通尿素处理 (图2)。养分在表层积聚,不但可被当季作物利用,还有利于后茬玉米的吸收利用,因而相应地减少了肥料的淋失和对深层土壤及地下水的污染[34]。在新型尿素中,控失尿素处理较普通尿素处理的增产幅度最高,氮肥利用率也最高,且土壤硝态氮在0—40 cm土层中残留比例较大,因而控失尿素的当季肥效和后效最好。胡斌等[35]研究指出,玉米施用控释尿素后显著提高了0—20 cm土层的硝态氮含量,硝态氮含量在20 cm以下土层逐渐降低,这是因为控释氮肥能减缓肥料向硝态氮转化的速度,进而降低其淋溶损失所致。尿素中添加腐植酸对土壤中肥料氮在0—90 cm土层总残留量的影响并不显著[36],添加硝化抑制剂后能够降低60 cm土体以下硝酸盐在土壤中的积累[37],硝化抑制剂能有效抑制土壤铵态氮向硝态氮的转化[38-40],延缓土壤氮素矿化速率,减少氮素淋溶。
3.2 新型尿素的减肥增效潜力
本研究表明,小麦收获后的土壤氮库均呈现盈余状态,普通尿素 + Nr处理盈余量最高,腐植酸尿素处理盈余量最低。添加硝化抑制剂后土壤残留肥料氮较高,有利于氮素被土壤固持。小麦收获后的氮肥总去向,控失尿素、腐植酸尿素处理表现为损失 < 土壤残留 < 作物吸收;普通尿素 + Nr、聚能网尿素处理表现为损失 < 作物吸收 < 土壤残留。说明控失尿素、腐植酸尿素有促进植物氮素吸收的作用,聚能网尿素、普通尿素 + Nr则增加土壤氮素残留从而阻控淋溶。由于小麦季气温低、降水少,土壤中残留的氮肥可供后茬玉米吸收利用,后茬玉米15N利用率表现为籽粒 > 秸秆。
施用新型尿素意味着成本较施用普通尿素高,因此考虑减氮,本试验中氮素用量较农民传统降低10%。本研究数据显示,控失尿素较普通尿素表现出显著增产,这与杜成喜等[41]的研究结果相近——对当地市场肥料价格进行调查得出,施用控失尿素比施用普通复合肥的成本低。与农民传统施肥相比,等氮量的控失尿素和减氮20%的控失尿素分别节本增效1388.7、1096.2元/hm2,说明施用控失尿素节肥、增效明显,值得推广应用。
4. 结论
新型尿素显著促进作物对氮素的吸收利用,减少氮素损失,进而获得高产。4种新型尿素相比,控失尿素处理较普通尿素处理小麦平均增产821 kg/hm2,其氮素当季利用率为43.6%,氮土壤残留率为40.8%,损失率低至15.6%。腐植酸尿素氮当季利用率仅次于控失尿素,为41.1%;而损失率最高,为19.8%;土壤残留率仅为39.1%。聚能网尿素氮当季利用率为37.8%,有利于氮素固持在土壤中,其残留率、损失率分别为46.1%、16.1%。普通尿素 + Nr处理的氮素当季利用率偏低而土壤残留率最高,分别为34.2%、47.4%;损失率为18.4%。玉米季消耗了部分土壤残留氮且存在氮素淋溶。
综上,控失尿素增产增效最为突出,同时减少氮素损失,提高氮肥利用率,可作为当地作物高效生产的氮肥种类推广应用。
-
表 1 试验地土壤基本理化性状
Table 1 Basic physical and chemical properties of the soil in the field experiment
土层深度
Soil depth
(cm)pH
(H2O∶soil=1∶1)全氮
Total N
(g/kg)速效钾
Available K
(mg/kg)有效磷
Olsen-P
(mg/kg)有机质
Organic matter
(g/kg)硝态氮
NO3–-N
(mg/kg)土壤机械组成 (粘/粉/砂)
Soil mechanical composition
(clay/silt/sand) (%)容重
Bulk density
(g/cm3)0—20 8.3 1.5 115.7 32.5 21.3 18.3 5.27/60.88/33.84 1.3 20—40 8.5 0.8 111.4 24.7 12.4 25.1 3.48/56.98/39.54 1.4 40—60 8.4 1.7 103.1 8.6 8.3 8.0 6.09/61.69/32.22 1.5 60—80 8.6 0.5 46.1 5.9 2.7 8.9 4.11/57.52/38.37 1.4 80—100 8.4 0.4 63.6 16.8 3.1 4.2 4.07/64.09/31.84 1.4 表 2 冬小麦生物量及对标记15N肥料的利用率
Table 2 Winter wheat biomass, nitrogen uptake and the utilization of labeled 15N fertilizer
处理
Treatment生物量 (kg/hm2)
Biomass吸氮量 (kg/hm2)
N absorption15N吸收量 (kg/hm2)
15N absorption15N利用率 (%)
15N utilization efficiency籽粒
Grain秸秆
Straw总计
Total籽粒
Grain秸秆
Straw总计
Total籽粒
Grain秸秆
Straw总计
Total籽粒
Grain秸秆
Straw总计
TotalCK 5632 c 5884 a 11516 b 101.4 c 17.0 c 118.4 c 普通尿素 Common urea 7302 b 6017 a 13319 ab 140.2 b 28.7 b 168.9 b 59.9 c 12.6 c 72.5 c 26.6 c 5.6 c 32.2 c 普通尿素 + Nr
Common urea + Nitrapyrin7656 ab 6105 a 13761 ab 153.9 b 30.0 b 184.9 b 63.3 bc 13.8 bc 77.1 bc 28.1 bc 6.1 bc 34.2 bc 控失尿素
Loss controlled urea8123 a 6379 a 14502 a 171.4 a 37.0 a 208.4 a 77.8 a 20.2 a 98.0 a 34.6 a 9.0 a 43.6 a 聚能网尿素
Energy maintaining net urea8049 a 6317 a 14366 a 173.9 a 33.2 a 207.0 a 69.8 ab 15.3 ab 85.1 ab 31.0 ab 6.8 ab 37.8 ab 腐植酸尿素
Humic acid urea8083 a 6276 a 14297 a 178.9 a 33.7 a 212.6 a 76.2 a 16.2 ab 92.4 a 33.9 a 7.2 ab 41.1 a 注(Note):同列数字后不同字母表示处理间差异显著 (P < 0.05) Different lowercase letters in a column indicate significant difference among treatments (P < 0.05). 表 3 冬小麦季15N肥料主要去向及比例
Table 3 Amount and rate in the main fate of 15N fertilizers in winter wheat season
处理
Treatment施氮量 (N, kg/hm2)
N application rate作物吸收
Crop absorption0—200 cm土壤残留
Soil residue in 0–200 cm layer15N肥料的损失
Loss of 15N fertilizer(kg/hm2) (%) (kg/hm2) (%) (kg/hm2) (%) 普通尿素 Common urea 225 72.5 c 32.2 c 83.5 c 37.1 c 69.0 a 30.7 a 普通尿素 + Nr
Common urea + Nitrapyrin225 77.1 bc 34.2 bc 106.8 a 47.4 a 41.1 b 18.4 b 控失尿素
Loss controlled urea225 98.0 a 43.6 a 91.9 b 40.8 b 35.1 c 15.6 c 聚能网尿素
Energy maintaining net urea225 85.1 ab 37.8 ab 103.7 a 46.1 a 36.2 c 16.1 c 腐植酸尿素
Humic acid urea225 92.4 a 41.1 a 88.1 bc 39.1 bc 44.5 b 19.8 b 注(Note):同列数据后不同字母表示处理间差异显著 (P < 0.05) Values followed by different lowercase letters in a column indicate significant difference among treatments (P < 0.05). 表 4 小麦收获后0—200 cm土体氮库平衡 (N kg/hm2)
Table 4 The balance of soil nitrogen pool at harvest of wheat within 0–200 cm soil depth
处理
Treatment氮肥投入
N input作物吸收土壤氮
N absorption by
crop from soil土壤中残留
肥料氮
Residual
fertilizer N in soil种子氮[28]
Seed N秸秆还田氮[28]
N return from
straw干湿沉降氮 +
灌溉氮
N from dry and
wet deposition+irrigation土壤氮库盈余
Soil N surplus普通尿素
Common urea225 96.4 a 83.5 a 3.6 15.6 58.2 64.5 ab 普通尿素 + Nr
Common urea + Nitrapyrin225 107.8 a 106.8 a 3.6 15.6 58.2 76.4 a 控失尿素
Loss controlled urea225 110.4 a 91.9 a 3.6 15.6 58.2 58.9 ab 聚能网尿素
Energy
maintaining net urea225 121.9 a 103.7 a 3.6 15.6 58.2 59.2 ab 腐植酸尿素
Humic acid urea225 120.2 a 88.1 a 3.6 15.6 58.2 45.3 b 注(Note):同列数据后不同字母表示处理间差异显著 (P < 0.05) Values followed by different lowercase letters in a column indicate significant difference among treatments (P < 0.05). 表 5 后茬玉米生物量、吸氮量及对残留15N肥料的利用率
Table 5 Biomass, nitrogen uptake and the utilization efficiency of residual 15N fertilizers of succeeding maize
处理
Treatment生物量 (kg/hm2)
Biomass吸氮量 (kg/hm2)
N absorption15N吸收量 (kg/hm2)
15N absorption15N利用率 (%)
15N utilization efficiency籽粒
Grain茎秆
Stem总计
Total籽粒
Grain茎秆
Stem总计
Total籽粒
Grain茎秆
Stem总计
Total籽粒
Grain茎秆
Stem总计
TotalCK 9761 c 6706 b 16467 b 127.1 b 40.2 b 180.4 b 普通尿素 Common urea 9806 bc 9075 a 18881 ab 126.7 b 72.5 a 199.2 ab 4.22 b 2.48 a 6.70 b 1.9 a 1.10 a 2.98 a 普通尿素 + Nr
Common urea + Nitrapyrin10093 ab 9195 a 19288 a 130.1 ab 61.4 ab 191.5 ab 4.96 ab 2.47 a 7.43 ab 2.2 a 1.10 a 3.30 a 控失尿素
Loss controlled urea10425 a 9797 a 20222 a 150.2 a 70.0 a 220.2 a 5.50 a 2.45 a 7.95 a 2.4 a 1.09 a 3.53 a 聚能网尿素
Energy maintaining net urea10758 a 6939 ab 17697 ab 150.1 a 57.3 ab 207.5 a 5.84 a 2.31 a 8.16 a 2.4 a 1.03 a 3.62 a 腐植酸尿素
Humic acid urea10492 a 7340 ab 17832 ab 143.2 a 56.4 ab 199.7 ab 5.90 a 2.00 a 7.90 a 2.4 a 0.89 a 3.51 a 注(Note):同列数据后不同字母表示处理间差异显著 (P < 0.05) Values followed by different lowercase letters indicate significant difference among treatments (P < 0.05). -
[1] Zhi Q, Li S L, Zhang X, et al. Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: Field 15N tracer studies[J]. Soil & Tillage Research, 2020, 197: 1–9.
[2] 巨晓棠, 张福锁. 关于氮肥利用率的思考[J]. 生态环境学报, 2003, 12(2): 192–197. Ju X T, Zhang F S. Thinking about nitrogen recovery rate[J]. Ecology and Environmental Sciences, 2003, 12(2): 192–197. DOI: 10.3969/j.issn.1674-5906.2003.02.018 Ju X T, Zhang F S. Thinking about nitrogen recovery rate[J]. Ecology and Environmental Sciences, 2003, 12(2): 192–197. DOI: 10.3969/j.issn.1674-5906.2003.02.018
[3] 巨晓棠, 谷保静, 蔡祖聪. 关于减少农业氨排放以缓解灰霾危害的建议[J]. 科技导报, 2017, 35(13): 11–12. Ju X T, Gu B J, Cai Z C. Suggestions on reducing agricultural ammonia emissions to alleviate haze hazards[J]. Science & Technology Review, 2017, 35(13): 11–12. Ju X T, Gu B J, Cai Z C. Suggestions on reducing agricultural ammonia emissions to alleviate haze hazards[J]. Science & Technology Review, 2017, 35(13): 11–12.
[4] 刘永哲. 稻麦轮作下缓释肥氮素迁移扩散特征及高效施用模式研究[D]. 南京: 南京农业大学硕士学位论文, 2016. Liu Y Z. Study on the characteristics of nitrogen migration and diffusion and efficient application mode of slow release fertilizer under rice-wheat rotation[D]. Nanjing: MS Thesis of Nanjing Agricultural University, 2016.
[5] 翁玲云, 杨晓卡, 吕敏娟, 等. 长期不同施氮量下冬小麦–夏玉米复种系统土壤硝态氮累积和淋洗特征[J]. 应用生态学报, 2018, 29(8): 2551–2558. Weng L Y, Yang X K, Lü M J, et al. Accumulation and leaching characteristics of soil nitrate nitrogen in a winter wheat-summer maize multiple cropping system under long-term different nitrogen application amount[J]. Chinese Journal of Applied Ecology, 2018, 29(8): 2551–2558. Weng L Y, Yang X K, Lu M J, et al. Accumulation and leaching characteristics of soil nitrate nitrogen in a winter wheat-summer maize multiple cropping system under long-term different nitrogen application amount[J]. Chinese Journal of Applied Ecology, 2018, 29(8): 2551–2558.
[6] 巨晓棠, 刘学军, 张福锁. 冬小麦/夏玉米轮作中NO3–-N在土壤剖面的累积及移动[J]. 土壤学报, 2003, (4): 538–546. Ju X T, Liu X J, Zhang F S. Accumulation and movement of NO3–-N in soil profile in winter wheat/summer maize rotation[J]. Acta Pedologica Sinica, 2003, (4): 538–546. DOI: 10.3321/j.issn:0564-3929.2003.04.008 Ju X T, Liu X J, Zhang F S. Accumulation and movement of NO3--N in soil profile in winter wheat/summer maize rotation[J]. Acta Pedologica Sinica, 2003, (4): 538–546. DOI: 10.3321/j.issn:0564-3929.2003.04.008
[7] Li W, Cheng X, Xia P, et al. Application of controlled-release urea enhances grain yield and nitrogen use efficiency in irrigated rice in the Yangtze River Basin, China[J]. Frontiers in Plant Science, 2018, 9: 999. DOI: 10.3389/fpls.2018.00999
[8] Zhang W S, Liang Z Y, He X M, et al. The effects of controlled release urea on maize productivity and reactive nitrogen losses: A meta-analysis[J]. Environmental Pollution, 2019, 246(3): 559–565.
[9] Ge J, Wu R, Shi X, et al. Biodegradable polyurethane materials from bark and starch. II. Coating material for controlled-release fertilizer[J]. Journal of Applied Polymer Science, 2010, 86(12): 2948–2952.
[10] 张艳菲, 王晨阳, 李世莹, 等. 控失尿素养分释放特性研究[J]. 磷肥与复肥, 2017, 32(3): 11–12. Zhang Y F, Wang C Y, Li S Y, et al. Study on nutrient release characteristics of loss controlled urea[J]. Phosphate & Compound Fertilizer, 2017, 32(3): 11–12. DOI: 10.3969/j.issn.1007-6220.2017.03.005 Zhang Y F, Wang C Y, Li S Y, et al. Study on nutrient release characteristics of loss controlled urea[J]. Phosphate and Complex Fertilizers, 2017, 32(3): 11–12. DOI: 10.3969/j.issn.1007-6220.2017.03.005
[11] 姚单君, 张爱华, 杨爽, 等. 控失尿素对水稻养分吸收利用及产量的影响[J]. 西南农业学报, 2019, 32(11): 2600–2606. Yao D J, Zhang A H, Yang S, et al. Effects of loss controlled urea on nutrient absorption, utilization and yield of rice[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(11): 2600–2606. Yao S J, Zhang A H, Yang S, et al. Effects of loss controlled urea on nutrient absorption, utilization and yield of rice[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(11): 2600–2606.
[12] Liu R, Kang Y, Pei L, et al. Use of a new controlled loss-fertilizer to reduce nitrogen losses during winter wheat cultivation in the Danjiangkou Reservoir area of China[J]. Communications in Soil Science and Plant Analysis, 2016, 47(9): 1137–1147. DOI: 10.1080/00103624.2016.1166245
[13] 张艺磊. 新型尿素在冬小麦-夏玉米轮作体系中的氮素去向研究[D]. 河北保定: 河北农业大学硕士学位论文, 2018. Zhang Y L. Nitrogen fate of new urea in winter wheat-summer maize rotation system[D]. Baoding, Hebei: MS Thesis of Hebei Agricultural University, 2018.
[14] 吴兴洪, 张爱华, 张钦, 等. 聚能网尿素对玉米产量及养分积累、利用的影响[J]. 江苏农业科学, 2019, 47(8): 75–78. Wu X H, Zhang A H, Zhang Q, et al. Effects of urea in poly energy grid on maize yield, nutrient accumulation and utilization[J]. Jiangsu Agricultural Science, 2019, 47(8): 75–78. Wu X H, Zhang A H, Zhang Q, et al. Effects of urea in poly energy grid on maize yield, nutrient accumulation and utilization[J]. Jiangsu Agricultural Science, 2019, 47(8): 75–78.
[15] Iimura Y, Fujimoto M, Tamura K, et al. Black humic acid dynamics during natural reforestation of Japanese pampas grass (Miscanthus sinensis)[J]. Soil Biology and Biochemistry, 2013, 57: 60–67. DOI: 10.1016/j.soilbio.2012.07.011
[16] 庄振东, 李絮花. 腐植酸氮肥对玉米产量、氮肥利用及氮肥损失的影响[J]. 植物营养与肥料学报, 2016, 22(5): 1232–1239. Zhuang Z D, Li X H. Effects of humic acid nitrogen fertilizer on maize yield, nitrogen utilization and nitrogen loss[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(5): 1232–1239. DOI: 10.11674/zwyf.15512 Zhuang Z D, Li X H. Effects of humic acid nitrogen fertilizer on maize yield, nitrogen utilization and nitrogen loss[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(5): 1232–1239. DOI: 10.11674/zwyf.15512
[17] 李军, 袁亮, 赵秉强, 等. 腐植酸尿素对玉米生长及肥料氮利用的影响[J]. 植物营养与肥料学报, 2017, 23(2): 524–530. Li J, Yuan L, Zhao B Q, et al. Effects of humic acid urea on maize growth and utilization of nitrogen from fertilizer[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 524–530. DOI: 10.11674/zwyf.16156 Li J, Yuan L, Zhao B Q, et al. Effects of humic acid urea on maize growth and utilization of nitrogen from fertilizer[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 524–530. DOI: 10.11674/zwyf.16156
[18] Canellas L P, Olivares F L, Aguiar N O, et al. Humic and fulvic acids as biostimulants in horticulture[J]. Scientia Horticulturae, 2015, 196: 15–27. DOI: 10.1016/j.scienta.2015.09.013
[19] 马洪波, 孙若晨, 吴建燕, 等. 控失尿素和含锌锰尿素对小麦产量和肥料利用率的影响[J]. 中国农学通报, 2018, 34(13): 8–13. Ma H B, Sun R C, Wu J Y, et al. Effects of loss controlled urea and zinc-manganese urea on wheat yield and utilization rate of fertilizer[J]. Chinese Agricultural Science Bulletin, 2018, 34(13): 8–13. DOI: 10.11924/j.issn.1000-6850.casb17030199 Ma H B, Sun R C, Wu J Y, et al. Effects of loss controlled urea and zinc-manganese urea on wheat yield and utilization rate of fertilizer[J]. Beijing: Chinese Agricultural Science Bulletin, 2018, 34(13): 8–13. DOI: 10.11924/j.issn.1000-6850.casb17030199
[20] 孙克刚, 张梦, 李玉顺. 腐植酸尿素对冬小麦增产效果及氮肥利用率的影响[J]. 腐植酸, 2016, (3): 18–21. Sun K G, Zhang M, Li Y S. Effects of humic acid urea on yield increasing and nitrogen fertilizer utilization efficiency of winter wheat[J]. Humic Acid, 2016, (3): 18–21. DOI: 10.3969/j.issn.1671-9212.2016.03.006 Sun K G, Zhang M, Li Y S. Effects of humic acid urea on yield increasing and nitrogen fertilizer utilization efficiency of winter wheat[J]. Humic Acid, 2016, (3): 18–21. DOI: 10.3969/j.issn.1671-9212.2016.03.006
[21] Bhogal A, Rochford A D, Sylvesterbradley R. Net changes in soil and crop nitrogen in relation, to the performance of winter wheat given wide-ranging, annual nitrogen applications at Ropsley, UK[J]. Journal of Agricultural Science, 2000, 135(2): 139–149. DOI: 10.1017/S0021859699008035
[22] 董娴娴, 刘新宇, 任翠莲, 等. 潮褐土冬小麦-夏玉米轮作体系氮肥后效及去向研究[J]. 中国农业科学, 2012, 45(11): 2209–2216. Dong X X, Liu X Y, Ren C L, et al. Study on the aftereffects and fate of nitrogen fertilizer in the winter wheat-summer maize rotation system in meadow cinnamon soil[J]. Scientia Agricultura Sinica, 2012, 45(11): 2209–2216. DOI: 10.3864/j.issn.0578-1752.2012.11.009 Dong X X, Liu X Y, Ren C L, et al. Study on the aftereffects and fate of nitrogen fertilizer in the winter wheat-summer maize rotation system in meadow cinnamon soil[J]. Scientia Agricultura Sinica, 2012, 45(11): 2209–2216. DOI: 10.3864/j.issn.0578-1752.2012.11.009
[23] 徐明杰, 张琳, 汪新颖, 等. 不同管理方式对夏玉米氮素吸收、分配及去向的影响[J]. 植物营养与肥料学报, 2015, 21(1): 36–45. Xu M J, Zhang L, Wang X Y, et al. Effects of different management methods on nitrogen absorption, distribution and fate of summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 36–45. DOI: 10.11674/zwyf.2015.0104 Xu M J, Zhang L, Wang X Y, et al. Effects of different management methods on nitrogen absorption, distribution and fate of summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 36–45. DOI: 10.11674/zwyf.2015.0104
[24] 董娴娴, 刘辰琛, 张丽娟, 等. 耕层水氮调控对土壤深层累积NO3–-N运移及后效的影响[J]. 中国农业科学, 2011, 44(12): 2476–2483. Dong X X, Liu C C, Zhang L J, et al. Effects of water and nitrogen regulation of cultivated layer on the movement of accumulated NO3–-N in deep soil and its aftereffects[J]. Scientia Agricultura Sinica, 2011, 44(12): 2476–2483. DOI: 10.3864/j.issn.0578-1752.2011.12.009 Dong X X, Liu C C, Zhang L J, et al. Effects of water and nitrogen regulation of cultivated layer on the movement of accumulated NO3--N in deep soil and its aftereffects[J]. Scientia Agricultura Sinica, 2011, 44(12): 2476–2483. DOI: 10.3864/j.issn.0578-1752.2011.12.009
[25] 彭亚静, 汪新颖, 张丽娟, 等. 根层调控对小麦-玉米种植体系氮素利用及土壤硝态氮残留的影响[J]. 中国农业科学, 2015, 48(11): 2187–2198. Peng Y J, Wang X Y, Zhang L J, et al. Effects of root layer regulation on nitrogen utilization and soil nitrate nitrogen residue in wheat-maize planting system[J]. Scientia Agricultura Sinica, 2015, 48(11): 2187–2198. DOI: 10.3864/j.issn.0578-1752.2015.11.010 Peng Y J, Wang X Y, Zhang L J, et al. Effects of root layer regulation on nitrogen utilization and soil nitrate nitrogen residue in wheat-maize planting system[J]. Scientia Agricultura Sinica, 2015, 48(11): 2187–2198. DOI: 10.3864/j.issn.0578-1752.2015.11.010
[26] 周顺利, 张福锁, 王兴仁. 土壤硝态氮时空变异与土壤氮素表观盈亏研究Ⅰ. 冬小麦[J]. 生态学报, 2001, 21(11): 1782–1789. Zhou S L, Zhang F S, Wang X R. Spatial temporal variation of soil nitrate nitrogen and apparent nitrogen budget in soil Ⅰ. Winter wheat[J]. Acta Ecologica Sinica, 2001, 21(11): 1782–1789. DOI: 10.3321/j.issn:1000-0933.2001.11.006 Zhou S L, Zhang F S, Wang X R. Spatial temporal variation of soil nitrate nitrogen and apparent nitrogen profit or loss in soil Ⅰ. Winter wheat[J]. Acta Ecologica Sinica, 2001, 21(11): 1782–1789. DOI: 10.3321/j.issn:1000-0933.2001.11.006
[27] 李玮, 乔玉强, 陈欢, 等. 玉米秸秆还田配施氮肥对冬小麦土壤氮素表观盈亏及产量的影响[J]. 植物营养与肥料学报, 2015, 21(3): 561–570. Li W, Qiao Y Q, Chen H, et al. Effects of returning corn straw and applying nitrogen fertilizer on apparent soil nitrogen surplus amount and yield of winter wheat soil[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(3): 561–570. DOI: 10.11674/zwyf.2015.0302 Li W, Qiao Y Q, Chen H, et al. Effects of returning corn straw and applying nitrogen fertilizer on apparent nitrogen profit or loss and yield of winter wheat soil[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(3): 561–570. DOI: 10.11674/zwyf.2015.0302
[28] 刘建涛. 秸秆还田条件下氮肥的高效调控与施用技术研究[D]. 河北保定: 河北农业大学硕士学位论文, 2014. Liu J T. Study on the efficient regulation and application of nitrogen fertilizer under the condition of returning straw to the field[D]. Baoding, Hebei: MS Thesis of Hebei Agricultural University, 2014.
[29] 邢素丽, 李孝兰, 杨军芳, 等. 新型尿素对小麦产量和氮肥利用率的应用效果研究[J]. 河北农业科学, 2017, (6): 40–43. Xing S L, Li X L, Yang J F, et al. Application effect of new urea on wheat yield and utilization rate of nitrogen fertilizer[J]. Hebei Agricultural Science, 2017, (6): 40–43. Xing S L, Li X L, Yang J F, et al. Application effect of new urea on wheat yield and utilization rate of nitrogen fertilizer[J]. Hebei Agricultural Science, 2017, (6): 40–43.
[30] 宋志平. 聚能网尿素在玉米上的应用效果[J]. 河南农业, 2016, (22): 16. Song Z P. Utilization effect of urea in poly energy grid on maize[J]. Henan Agriculture, 2016, (22): 16.
[31] 刘红恩, 张胜男, 刘世亮, 等. 腐植酸尿素对冬小麦产量、养分吸收利用和土壤养分的影响[J]. 西北农业学报, 2018, 27(7): 944–952. Liu H E, Zhang S N, Liu S L, et al. Effects of humic acid urea on winter wheat yield, nutrient absorption and utilization, and soil nutrients[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(7): 944–952. DOI: 10.7606/j.issn.1004-1389.2018.07.004 Liu H E, Zhang S N, Liu S L, et al. Effects of humic acid urea on winter wheat yield, nutrient absorption and utilization, and soil nutrients[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(7): 944–952. DOI: 10.7606/j.issn.1004-1389.2018.07.004
[32] Campitelli P A, Velasco M I, Ceppi S B. Chemical and physicochemical characteristics of humic acids extracted from compost, soil and amended soil[J]. Talanta, 2006, 69(5): 1234–1239. DOI: 10.1016/j.talanta.2005.12.048
[33] Shen Y, Lin H, Gao W, et al. The effects of humic acid urea and polyaspartic acid urea on reducing nitrogen loss compared with urea[J]. Journal of the Science of Food and Agriculture, 2020, 100(12): 4425–4432. DOI: 10.1002/jsfa.10482
[34] 杨威, 梅沛沛, 井宇航, 等. 几种新型肥料对玉米产量和氮磷吸收的影响[J]. 河南科技学院学报(自然科学版), 2017, 45(5): 8–15. Yang W, Mei P P, Jing Y H, et al. Effects of several new fertilizers on maize yield and absorption of nitrogen and phosphorus[J]. Journal of Henan University of Science & Technology (Natural Science Edition), 2017, 45(5): 8–15. Yang W, Mei P P, Jing Y H, et al. Effects of several new fertilizers on maize yield and absorption of nitrogen and phosphorus[J]. Journal of Henan University of Science & Technology (Natural Science Edition), 2017, 45(5): 8–15.
[35] 胡斌, 李絮花, 闫童, 等. 控释氮肥对土体中无机氮淋溶分布及夏玉米产量的影响[J]. 水土保持学报, 2014, 28(4): 110–114. Hu B, Li X H, Yan T, et al. Effects of controlled releasing nitrogen fertilizer on leaching distribution of inorganic nitrogen in soil and summer maize yield[J]. Journal of Soil and Water Conservation, 2014, 28(4): 110–114. Hu B, Li X H, Yan T, et al. Effects of controlled releasing nitrogen fertilizer on leaching distribution of inorganic nitrogen in soil and summer maize yield[J]. Journal of Soil and Water Conservation, 2014, 28(4): 110–114.
[36] 张水勤, 袁亮, 李伟, 等. 腐植酸尿素对玉米产量及肥料氮去向的影响[J]. 植物营养与肥料学报, 2017, 23(5): 1207–1214. Zhang S Q, Yuan L, Li W, et al. Effects of humic acid urea on maize yield and fate of nitrogen in fertilizer[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(5): 1207–1214. DOI: 10.11674/zwyf.17046 Zhang S Q, Yuan L, Li W, et al. Effects of humic acid urea on maize yield and fate of nitrogen in fertilizer[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(5): 1207–1214. DOI: 10.11674/zwyf.17046
[37] 王朝东. 硝化抑制剂DCD与不同施氮量对粮田系统氮素分布及N2O排放的影响[D]. 河北保定: 河北农业大学硕士学位论文, 2013. Wang Z D. Effects of nitrification inhibitor DCD and different nitrogen application amount on distribution of nitrogen and N2O emission in grain field system[D]. Baoding, Hebei: MS Thesis of Hebei Agricultural University, 2013.
[38] 张艺磊, 韩建, 张丽娟, 等. 新型尿素对农田土壤N2O排放、氨挥发及土壤氮素转化的影响[J]. 江苏农业科学, 2019, 47(11): 313–316. Zhang Y L, Han J, Zhang L J, et al. Effects of new urea on N2O emissions, ammonia volatilization, and soil nitrogen transformation in farmland soil[J]. Jiangsu Agricultural Sciences, 2019, 47(11): 313–316. Zhang Y L, Han J, Zhang L J, et al. Effects of new urea on N2O emissions, ammonia volatilization, and soil nitrogen transformation in farmland soil[J]. Jiangsu Agricultural Sciences, 2019, 47(11): 313–316.
[39] 周旋, 吴良欢, 戴锋. 土壤温度和含水量互作对抑制剂抑制氮素转化效果的影响[J]. 农业工程学报, 2017, 33(20): 106–115. Zhou X, Wu L H, Dai F. Effects of interaction between soil temperature and water content on inhibitory effect of inhibitors on nitrogen transformation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 106–115. DOI: 10.11975/j.issn.1002-6819.2017.20.014 Zhou X, Wu L H, Dai F. Effects of interaction between soil temperature and water content on inhibitory effect of inhibitors on nitrogen transformation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 106–115. DOI: 10.11975/j.issn.1002-6819.2017.20.014
[40] 周旋, 吴良欢, 董春华, 等. 氮肥配施生化抑制剂组合对黄泥田土壤氮素淋溶特征的影响[J]. 生态学报, 2019, 39(5): 324–334. Zhou X, Wu L H, Dong C H, et al. Effects of nitrogen fertilizer combined with biochemical inhibitors on nitrogen leaching characteristics of yellow mud soil[J]. Acta Ecologica Sinica, 2019, 39(5): 324–334. Zhou X, Wu L H, Dong C H, et al. Effects of nitrogen fertilizer combined with biochemical inhibitors on nitrogen leaching characteristics of yellow mud soil[J]. Acta Ecologica Sinica, 2019, 39(5): 324–334.
[41] 杜成喜, 司学样. 控失尿素对潮土区小麦的增产增效作用[J]. 安徽农业科学, 2016, 44(10): 122–123, 129. Du C X, Si X Y. Effect of loss controlled urea on increasing yield and efficiency of wheat in Chao soil area[J]. Journal of Anhui Agricultural Sciences, 2016, 44(10): 122–123, 129. DOI: 10.3969/j.issn.0517-6611.2016.10.041 Du C X, Si X Y. Effect of loss controlled urea on increasing yield and efficiency of wheat in Chao soil area[J]. Anhui Agricultural Sciences, 2016, 44 (10): 122–123, 129. DOI: 10.3969/j.issn.0517-6611.2016.10.041
-
期刊类型引用(5)
1. 郝淼,曲兆鸣,李兵,牛国梁,王龙林,李成亮. 基于设施番茄生产效益的最佳灌水量和控释氯化钾用量组合. 植物营养与肥料学报. 2022(05): 894-905 . 本站查看
2. 丁凤磊,张乐,余磊,王鹤鹃,张丽丽,李笑笑,宋贺,董召荣. 不同基因型玉米品种氮积累与根区土壤氮转化过程差异研究. 云南农业大学学报(自然科学). 2022(06): 1004-1013 . 百度学术
3. 冯晨,冯良山,孙占祥,郑家明,白伟,杨宁,张哲,向午燕,王淑君,蔡倩. 不同类型地膜添加对辽西褐土硝化潜势的影响. 中国土壤与肥料. 2021(04): 54-58 . 百度学术
4. 张亚飞,彭福田,肖元松,罗静静,杜安齐. 钾肥袋控缓释对桃产量、品质及土壤氯离子含量的影响. 中国农业科学. 2020(19): 4035-4044 . 百度学术
5. 郑梅迎,刘玉堂,张忠锋,程森,蔡宪杰,朱启法,薛琳,徐茜,林伟,张继光. 秸秆还田方式对植烟土壤团聚体特征及烤烟产质量的影响. 中国烟草科学. 2019(06): 11-18 . 百度学术
其他类型引用(8)