• ISSN 1008-505X
  • CN 11-3996/S

常规尿素掺混控释尿素一次施用对旱作春玉米产量及氮素利用的影响

张杰, 徐芳蕾, 薄其飞, 唐安, 高嘉瑞, 王永亮, 李世清, 岳善超

张杰, 徐芳蕾, 薄其飞, 唐安, 高嘉瑞, 王永亮, 李世清, 岳善超. 常规尿素掺混控释尿素一次施用对旱作春玉米产量及氮素利用的影响[J]. 植物营养与肥料学报, 2021, 27(6): 969-979. DOI: 10.11674/zwyf.2021045
引用本文: 张杰, 徐芳蕾, 薄其飞, 唐安, 高嘉瑞, 王永亮, 李世清, 岳善超. 常规尿素掺混控释尿素一次施用对旱作春玉米产量及氮素利用的影响[J]. 植物营养与肥料学报, 2021, 27(6): 969-979. DOI: 10.11674/zwyf.2021045
ZHANG Jie, XU Fang-lei, BO Qi-fei, TANG An, GAO Jia-rui, WANG Yong-liang, LI Shi-qing, YUE Shan-chao. Effects of one-time application of controlled-release urea combinated with solid granular urea on grain yield and nitrogen utilization of spring maize in dryland[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 969-979. DOI: 10.11674/zwyf.2021045
Citation: ZHANG Jie, XU Fang-lei, BO Qi-fei, TANG An, GAO Jia-rui, WANG Yong-liang, LI Shi-qing, YUE Shan-chao. Effects of one-time application of controlled-release urea combinated with solid granular urea on grain yield and nitrogen utilization of spring maize in dryland[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 969-979. DOI: 10.11674/zwyf.2021045

常规尿素掺混控释尿素一次施用对旱作春玉米产量及氮素利用的影响

基金项目: 国家重点研发计划 (2017YFD0201801,2017YFD0201807)
详细信息
    作者简介:

    张杰E-mail:zhangjie668@163.com

    通讯作者:

    李世清E-mail:sqli@ms.iswc.ac.cn

    岳善超 E-mail:yueshanchao@nwafu.edu.cn

Effects of one-time application of controlled-release urea combinated with solid granular urea on grain yield and nitrogen utilization of spring maize in dryland

  • 摘要:
    目的 

    通过田间试验研究施氮量和施肥方式对旱作春玉米产量、经济效益、干物质累积量、氮素累积利用和土壤无机氮残留的影响,为春玉米高产及高效施肥提供理论支撑。

    方法 

    本研究采用裂区试验,以施肥方式为主处理,包括常规尿素一次施肥 (OF)、常规尿素分次施肥 (TF) 和常规尿素掺混控释尿素一次施肥 (MF);施氮量为副处理,设0、60、120、180、240、300 kg/hm2 6个施氮水平(N0、N60、N120、N180、N240、N300)。在玉米十叶期 (V10)、吐丝期 (R1)、灌浆期 (R3)、成熟期 (R6) 分别采集植株样品,测定植株生物量,并按器官分类测定不同部位的氮含量。

    结果 

    1) 3种施肥方式下,随着施氮量的增加产量逐渐增加,当施氮量达到240 kg/hm2后,产量不再显著增加。MF施氮处理的平均产量较OF和TF处理分别显著提高了5.0%和4.2%,经济效益分别提高了7.9%和25.7%。2) 增施氮肥显著增加了干物质累积量,当施氮量达到240 kg/hm2后,收获期干物质累积量不再显著增加。N240处理吐丝期和收获期的干物质累积量MF较OF分别增加了19.5%和12.5%。3) 增施氮肥显著增加了花前、花后和氮素总累积量。MF方式的N240处理氮素总累积量较OF和TF方式分别显著增加了32.7%、20.9%。4) 增施氮肥显著增加了收获期茎、叶、籽粒氮含量以及茎氮、叶氮转移量。相同施氮量下,收获期茎、叶、籽粒氮含量和茎、叶氮向籽粒的转移量都表现为MF>TF>OF,且MF方式显著高于OF方式。5) 相比OF和TF方式,MF方式显著提高了氮肥农学效率、偏生产力和表观回收率,显著降低了无机氮残留和氮表观损失。

    结论 

    常规尿素掺混控释尿素一次施肥方式在施氮量为240 kg/hm2时,显著提高了春玉米的产量、经济效益、氮素累积量和肥料利用率,降低了土壤无机氮残留,为当地高产和高效施肥的最佳方式。

    Abstract:
    Objectives 

    A two-year on-farm experiment was conducted to evaluate the effects of nitrogen (N) application rate and fertilization method on spring maize yield, economic income, dry matter accumulation, N accumulation and utilization, and soil inorganic N residues in dryland.

    Methods 

    The experiment had a split-plot design with three fertilization methods (solid granular urea one-time fertilization (OF), solid granular urea basal and top-dress fertilization (TF), and one-time application of a mixture of controlled-release urea and solid granular urea (MF)) as the main factors and six different N application rates of 0, 60, 120, 180, 240, 300 kg/hm2 (expressed as N0, N60, N120, N180, N240, N300, respectively) as the sub-factors. For the assessment of biomass and total N contents, maize samples were collected at stage of 10 expanded leaves (V10), silking stage (R1), milking ripening stage (R3) and harvest stage (R6).

    Results 

    1) Yield did not increase when N application rate reached 240 kg/hm2 in the three fertilization methods. Yield under MF method was 5.0% and 4.2% higher than those under OF and TF methods, respectively. Economic income under MF method was 7.9% and 25.7% higher than those under OF and TF methods, respectively. 2) Dry matter accumulation increased significantly with increase of N application rate in the three fertilization methods. Dry matter accumulation at silking and harvest stages under MF method were significantly higher (19.5% and 12.5% at 240 kg/hm2, respectively) than those under OF method. 3) Periodical N accumulation at silking and harvest stages increased significantly with N application rate. Total N accumulation due to application of MF method at 240 kg/hm2 rate (N240) was 32.7% and 20.9% higher than those of OF and TF methods, respectively. 4) N content of stem, leaf and grain at harvest stage and N translocation amount from stem and leave to grain increased significantly with N application rate. Average stem, leaf and grain N contents, and N translocation amount were higher in MF method than those in TF and OF methods. 5) MF method significantly increased the partial factor productivity, agronomic efficiency and apparent recovery rate of N and decreased soil mineral N content at harvest stage and apparent N loss, compared with those of OF and TF methods.

    Conclusions 

    MF method significantly increased yield, economic income, nitrogen accumulation and utilization, but reduced soil Nmin at harvest when N application rate was 240 kg/hm2.

  • 玉米是我国主要的粮食作物,对我国粮食安全至关重要[1]。现阶段玉米生产目标已由产量转向优质、绿色、高效等多目标,增加产量与提高生产效率同等重要[2]

    合理的施氮量是保证玉米高产的必要条件。受“施氮越多产量越高”的错误观念影响,氮肥过量施用的现象普遍存在,这不仅对产量提高没有帮助,还会导致氮素利用效率下降,造成氮素的大量损失和浪费并引起一系列的环境问题[3-4]。巨晓棠等[5]研究表明,当氮肥投入量低于经济最佳施氮量时,玉米增产效果得不到发挥,产量较低;而当氮肥投入量超过经济最佳施氮量时,玉米产量不再随施氮量增加而增加,反而会导致氮肥利用率下降。因此,探索既能满足玉米在整个生育期对养分的需求,又不造成环境污染的施氮量至关重要。

    在保证施氮量适宜的条件下,合理的施肥方式也可以提高玉米的产量。“一炮轰”施肥方式虽然提高了劳动效率,但并没有显著提高玉米产量,严重时还会出现前期烧苗后期脱肥早衰的现象[6]。与“一炮轰”施肥方式相比,氮肥分次施用能够更好的协调养分供应与作物吸收之间的矛盾,利于作物高产,但在覆膜条件下后期追肥困难,费时费工且会对玉米植株造成伤害[7]。随着技术的发展,控释氮肥的研制与运用成为解决上述问题的新途径。将控释肥技术融入到一次施肥中,不仅避免了一次性施肥技术的不足,也能够使作物获得与尿素分次施肥相当的产量[8-10]。尽管控释肥实现了一次施肥技术,但其前期养分释放缓慢且成本较高,阻碍了其大面积推广[11-12]。为了解决这一矛盾,将控释氮肥与普通尿素按适宜比例进行掺混施用,不仅保证了前期养分供给,也减少了成本投入[13]

    有关山西省尿素掺混控释肥对春玉米生长影响的研究鲜有报道,且省内玉米产量占粮食总产量的比例逐年增加,截至到2019年已占粮食总产量的68.9%,因此在山西省探索合理的施肥方式和施氮量势在必行。本研究通过2年田间试验比较了常规尿素一次施肥、常规尿素分次施肥和常规尿素掺混控释尿素一次施肥3种施肥技术下,不同施氮量对玉米产量、干物质累积量、氮素累积利用及土壤无机氮残留的影响,进一步明确该区域的最佳施肥方式及最佳施氮量,为当地玉米增产增收提供理论依据和技术支撑。

    田间试验于2019和2020年在山西省朔州市应县 (39°34′9″N、113°6′11″E) 试验基地进行。该区位于山西省北部,属北温带半湿润大陆性气候,年均气温7℃左右,年均降水量360 mm。试验地土壤为轻度硫酸盐盐化土,土壤(0—20 cm)化学性状:有机质10.84 g/kg、矿质氮7.30 mg/kg、全氮0.56 g/kg、速效磷8.36 mg/kg、速效钾70.0 mg/kg、pH 8.3。2019和2020年月均气温和降雨情况见图1,两年春玉米生育期总降水量分别为264.2和325.9 mm。

    图  1  2019和2020年试验地降水量和气温
    Figure  1.  Precipitation and air temperature in the experimental site in 2019 and 2020

    本研究采用裂区试验,主处理为3个施肥方式:常规尿素一次施肥 (OF)、常规尿素分次施肥 (TF) 和常规尿素掺混控释尿素一次施肥 (MF);副处理为6个氮肥用量:设0、60、120、180、240、300 kg/hm2 (表示为N0、N60、N120、N180、N240、N300)。OF和MF方式为玉米播种前所有氮肥一次性基施,TF方式为两次施肥,总施氮量的40%在播前基施,60%在十叶期 (V10) 采用穴施方法追施。控释尿素为树脂包膜尿素 (N 44%) 释放期为70 天,产自安徽茂施新型肥料有限公司,常规尿素与控释尿素的掺混比例为2∶1。各处理磷、钾肥施用量相同,磷肥为过磷酸钙 (P2O5 12%),施用量为 P2O5 90 kg/hm2;钾肥为硫酸钾 (K2O 51%),施用量为K2O 45 kg/hm2,均于播前以基肥的方式施入。

    试验地生育期内覆膜无灌水,选用‘先玉335’为供试品种,种植密度为60000株/hm2,50 cm等行距种植,株距33.3 cm。小区面积为30 m2,设3次重复,随机区组排列。2019年5月11日播种,10月6日收获;2020年4月28日播种,10月4日收获。在玉米十叶期 (V10)、吐丝期 (R1)、灌浆期 (R3) 和成熟期 (R6) 每个小区采集3株长势相同的玉米,按器官分类,在105℃下杀青1 h后在75℃下烘干至恒重,称取干重后粉碎样品,测定各器官全氮含量。收获时每小区测产8 m2,调查株数、穗数,测定穗行数、行粒数、百粒重、含水量等,并计算籽粒产量 (按含水量15.5%折算)。土壤样品在播前和收获后每个小区按照每层20 cm采集0—100 cm土样,用1 mol/L KCl溶液浸提,通过流动分析仪测定土壤无机氮含量。所用数据为两年试验结果的平均值。

    经济效益 (元/hm2) = 产量 × 单价 - 成本 (肥料、种子、地膜、人工、机械)

    氮素累积量 (kg/hm2) = 干物质质量 × 氮素含量

    花后氮素累积量 (kg/hm2) = 成熟期氮素累积量 - 吐丝期氮素累积量

    氮素转移量 (kg/hm2) = 吐丝期营养体氮素累积量 - 成熟期营养体氮素累积量

    农学效率 (kg/kg) = (施氮区籽粒产量 - 不施氮区籽粒产量) /施氮量

    偏生产力 (kg/kg) = 施氮籽粒产量/施氮量

    表观回收率 (%) = (施氮区氮素累积量 - 不施氮区氮素累积量) /施氮量×100

    氮表观损失 (kg/hm2) = 施氮量 + 播前土壤无机氮 + 净矿化量 - 作物吸收 - 收获土壤残留

    采用Microsoft Excel 2013软件对数据进行统计,采用SPSS 18.0进行方差齐性检验、方差分析及相关性分析,采用Sigmaplot 12.0作图。

    表1可知,施氮量和施肥方式显著影响籽粒产量、百粒重、穗粒数和经济效益,二者对百粒重和经济效益有显著正交互作用。OF、TF、MF 3种施肥方式下施氮处理的产量和经济效益均在一定氮肥用量范围内随着施氮量的增加而显著增加,当施氮量达到240 kg/hm2后,3种施肥方式的产量不再显著增加,其N240处理的产量较其N0处理分别提高了94.0%、103.0%、111.9%;当OF、TF、MF 3种施肥方式的施氮量分别达到240、180、240 kg/hm2后,经济效益不再显著增加,在这3个施氮水平下较N0处理经济效益分别提高了260.7%、198.5%、307.3%。百粒重和穗粒数随施氮量的变化趋势与产量一致。

    表  1  氮肥用量和施肥方式对春玉米产量及经济效益的影响
    Table  1.  Effects of N application rate and fertilization method on yield and economic income of spring maize
    施肥方式
    Fertilization method
    氮肥用量处理
    N application rate
    产量
    Grain yield
    (t/hm2)
    百粒重
    100-grain weight
    (g)
    穗粒数
    Kernels
    (No./ear)
    穗数
    Spikes
    (×103/hm2)
    经济效益
    Economic income
    (yuan/hm2)
    OFN0 6.7 e29.1 e456 e63.8 b4978 e
    N60 9.4 d30.6 d543 d65.8 ab10693 d
    N12011.0 c33.0 c581 c67.7 ab14035 c
    N18011.9 b34.4 b590 c71.5 a15816 b
    N24013.0 a35.7 ab617 b70.8 a17954 a
    N30013.5 a36.5 a631 a68.1 ab18648 a
    TFN0 6.7 f29.1 d456 d63.8 b4978 d
    N60 9.2 e31.4 c542 c68.5 a8529 c
    N12011.1 d33.4 b584 b71.0 a11179 b
    N18012.4 c34.8 a597 b69.8 a14861 a
    N24013.6 a35.3 a639 a71.0 a16206 a
    N30013.0 b34.7 a604 b72.7 a14707 a
    MFN0 6.7 d29.1 d456 e63.8 c4978 e
    N60 10.3 c33.3 c564 d67.7 b12769 d
    N12011.8 b34.3 b588 cd71.9 a15702 c
    N18012.8 b36.1 a617 bc70.4 ab17566 b
    N24014.2 a36.7 a659 a70.2 ab20277 a
    N30013.0 ab35.9 a630 b68.5 b17286 bc
    变异来源 Source of variations
    施肥方式 Fertilization method (F) ******ns**
    氮肥用量 N application rate (N) **********
    F × Nns**nsns**
    注(Note):OF—尿素一次施用 All the common urea applied as basal fertilizer; TF—常规尿素分次施肥 40% common urea applied as basal fertilizer and 60% top dressed at V10 stage; MF—常规尿素掺混控释尿素一次施肥 All common urea and controlled-release urea applied as basal fertilizer; 同列数据后不同小写字母表示相同施肥方式下处理间差异显著 (P < 0.05) Values followed by different lowercase letters in the same column indicate significant difference among treatments for the same fertilization method (P < 0.05); ns—差异不显著 No significant difference; **—P < 0.01.
    下载: 导出CSV 
    | 显示表格

    OF、TF和MF施肥方式的5个施氮处理的平均产量分别为10.9、11.0、11.5 t/hm2,以MF方式最高,且分别显著高于OF和TF方式5.0%和4.2%。在N60和N240处理下,MF方式产量显著高于OF和TF方式,3种施肥方式的其他施氮量处理的产量差异不显著。将OF、TF和MF施肥方式的产量与施氮量通过二次函数曲线拟合,得出最高产量对应的施氮量分别为311.9、272.2、235.6 kg/hm2,对应产量分别为13.4、13.3、13.7 t/hm2。OF、TF和MF 3种施肥方式下所有施氮量的平均经济效益分别为13687、11743、14763 元/hm2,MF方式分别显著高于OF和TF方式7.9%和25.7%。同一施氮量下,MF方式的经济效益均最高,将OF、TF和MF 3种施肥方式的经济效益与施氮量通过二次函数曲线拟合,得出最高经济效益对应的施氮量分别为297.5、268.8、225.3 kg/hm2,对应的经济效益分别为18473、15464、19157 元/hm2

    图2可知,施氮水平对各生育期的干物质累积量影响极显著 (P < 0.01),施肥方式对V10和R3的干物质积累量没有显著影响,对R1和R6的干物质积累量影响达到显著和极显著水平。OF施肥方式下,R6的干物质最大累积量出现在N300处理,而TF和MF施肥方式出现在N240处理。OF、TF、MF施肥方式下施氮处理干物质的平均累积量在R1分别为7.3、7.5、7.8 t/hm2,在R6分别为17.5、18.0、18.4 t/hm2,均表现为MF > TF > OF,且MF施肥方式显著高于OF方式。当施氮量为240 kg/hm2时,MF施肥方式在R1和R6的干物质累积量较OF施肥方式分别增加了19.5%和12.5%。

    图  2  不同生育期春玉米干物质累积变化趋势
    [注(Note):OF—尿素一次施用All the common urea applied as basal fertilizer;TF—常规尿素分次施肥40% common urea applied as basal fertilizer and 60% top dressed at V10 stage;MF—常规尿素掺混控释尿素一次施肥All common urea and controlled-release urea applied as basal fertilizer;变异来源Source of variations;PT—播前Before seeding;ns—差异不显著No significant difference;*—P < 0.05;**—P < 0.01.]
    Figure  2.  Dry matter accumulation curves of spring maize at different growth stages

    图3可知,3种施肥方式下,花前、花后和氮素总累积量不同氮肥用量处理间差异均达到极显著水平 (P < 0.01)。

    图  3  春玉米花前、花后氮素累积量
    [注(Note):OF—尿素一次施用All the common urea applied as basal fertilizer;TF—常规尿素分次施肥40% common urea applied as basal fertilizer and 60% top dressed at V10 stage;MF—常规尿素掺混控释尿素一次施肥All common urea and controlled-release urea applied as basal fertilizer;柱上不同小写字母表示相同施肥方式处理间差异显著 (P < 0.05) Different lowercase letters above the bars indicate significant difference among treatments under the same fertilization method (P < 0.05);ns—差异不显著No significant difference;*—P < 0.05;**—P < 0.01.]
    Figure  3.  N accumulation of spring maize before and after silking

    增施氮肥显著增加了花前和花后的氮素累积量。当施氮量为240 kg/hm2时,OF、TF、MF 3种施肥方式的花前和花后氮素累积量均较高,施氮处理花前氮素累积量均值分别为85.2、96.4、106.2 kg/hm2,花后分别为52.8、49.2、53.0 kg/hm2,氮素总累积量均值分别为137.9、145.7、159.2 kg/hm2。MF方式花前氮素积累量和氮素总累积量平均值显著高于OF和TF方式。MF方式在施氮量为180、240、300 kg/hm2时花前氮素累积量分别显著高于OF和TF方式,在施氮量为60、180、240 kg/hm2时氮素总累积量分别显著高于OF和TF方式。当施氮量为240 kg/hm2时,MF方式花前和氮素总累积量较OF和TF方式增加最多,花前氮素累积量分别增加了42.1%和16.4%,氮素总累积量分别增加了32.7%和20.9%。

    表2可知,施氮量和施肥方式以及二者互作均极显著影响收获期茎、叶、籽粒氮含量以及茎氮、叶氮转移量。

    表  2  氮肥用量和施肥方式对春玉米收获期氮含量和氮素转运的影响
    Table  2.  Effects of N application rate and fertilization method on N concentration at harvest and N translocation of spring maize
    施肥方式
    Fertilization method
    氮肥用量处理
    N application rate
    收获期氮含量 (g/kg)
    N concentration at harvest
    氮素转移量 (kg/hm2)
    N translocation amount
    茎 Stem叶 Leaf籽粒 Grain茎 Stem叶 Leaf
    OFN0 2.3 cd6.2 d8.7 c8.4 d20.2 c
    N60 2.2 d8.3 c9.0 c14.4 c22.7 c
    N1202.3 cd8.6 bc10.5 b17.2 b26.5 bc
    N1802.5 c9.3 b11.6 a18.4 ab30.3 b
    N2402.8 b9.2 b11.8 a19.8 ab37.8 a
    N3003.3 a10.4 a11.8 a20.3 a37.6 a
    TFN0 2.3 b6.2 e8.7 e8.4 e20.2 e
    N60 2.4 b8.3 d10.2 d15.6 d25.3 d
    N1203.1 a9.2 c10.9 c19.6 cd32.1 c
    N1803.0 a10.5 b11.3 b21.0 bc38.3 b
    N2403.4 a11.2 a11.8 a26.4 a42.8 a
    N3003.3 a11.0 ab11.6 ab24.7 ab37.0 b
    MFN0 2.3 c6.2 d8.7 d8.4 e20.2 d
    N60 2.5 c8.0 c10.6 c17.9 d30.0 c
    N1203.0 b9.1 c10.6 c22.0 c35.3 c
    N1803.3 b11.3 ab12.1 b25.7 b42.6 b
    N2403.2 b12.4 a14.1 a37.6 a51.1 a
    N3003.8 a11.0 b12.8 b26.4 b48.3 ab
    变异来源 Source of variations
    施肥方式 Fertilization method (F) **********
    氮肥用量 N application rate (N) **********
    F × N*********
    注(Note):OF—尿素一次施用 All the common urea applied as basal fertilizer; TF—常规尿素分次施肥 40% common urea applied as basal fertilizer and 60% top dressed at V10 stage; MF—常规尿素掺混控释尿素一次施肥 All common urea and controlled-release urea applied as basal fertilizer; 同列数据后不同小写字母表示相同施肥方式同处理间差异显著 (P < 0.05) Values followed by different lowercase letters in the same column indicate significant difference among treatments for the same fertilization method (P < 0.05); ns—差异不显著 No significant difference; *—P < 0.05; **—P < 0.01.
    下载: 导出CSV 
    | 显示表格

    增施氮肥显著增加了茎、叶、籽粒氮含量以及茎氮、叶氮转移量。在OF施肥方式下,当施氮量达到300 kg/hm2时,茎、叶、籽粒氮含量以及茎氮、叶氮转移量均较高,较N0处理分别增加了42.0%、68.0%、36.9%、143.3%、86.0%。在TF和MF施肥方式下,当施氮量达到240 kg/hm2时,茎、叶、籽粒氮含量以及茎氮、叶氮转移量均较高,在TF施肥方式下较N0处理分别增加了44.9%、82.0%、36.4%、215.5%、111.5%,在MF施肥方式下较N0处理分别增加了40.0%、100.7%、62.8%、350.3%、152.8%。3种施肥方式下,收获期茎、叶、籽粒氮含量的均值和茎氮、叶氮转移量的均值都表现为MF > TF > OF,且MF方式显著高于OF方式,茎氮含量在施氮量为120 kg/hm2 时增加最多,增加了32.3%;叶氮、籽粒氮含量及茎氮转移在施氮量为240 kg/hm2时增加最多,分别增加了34.5%、18.9%、89.9%;叶氮转移在施氮量为180 kg/hm2时增加最多,增加了40.6%。

    表3可知,施氮量和施肥方式以及二者互作极显著影响氮肥农学效率、偏生产力和表观回收率。OF、TF、MF施肥方式下,氮肥农学效率、偏生产力和表观回收率均随施氮量的增加显著降低,农学效率分别从45.3、51.6、61.6 kg/kg降低至22.7、21.3、21.2 kg/kg;偏生产力分别从156.1、162.5、172.5 kg/kg降低至44.9、43.4、43.4 kg/kg;表观回收率分别从49.3%、70.7%、87.0%降低至38.0%、36.1%、39.6%。3种施肥方式下,农学效率、偏生产力和表观回收率的均值均表现为MF > TF > OF,且MF施肥方式显著大于OF和TF施肥方式。与OF施肥方式相比,当施氮量为240 kg/hm2时MF施肥方式的农学效率、偏生产力、表观回收率分别增加了18.8%、9.2%、55.1%;与TF施肥方式相比,当施氮量为240 kg/hm2时MF施肥方式的农学效率、偏生产力、表观回收率分别增加了9.1%、4.6%、33.2%。

    表  3  氮肥用量和施肥方式对春玉米氮肥利用效率的影响
    Table  3.  Effects of N application rate and fertilization method on nitrogen use efficiency of spring maize
    施肥方式
    Fertilization method
    氮肥用量处理
    N application rate
    农学效率 (kg/kg)
    Agronomic efficiency
    偏生产力 (kg/kg)
    Aartial factor productivity
    表观回收率 (%)
    Apparent recovery rate of N
    OFN0
    N60 45.3 a156.1 a49.3 a
    N12036.3 b91.7 b50.9 a
    N18029.4 c66.3 c47.3 a
    N24026.6 cd54.3 d43.7 ab
    N30022.7 d44.9 e38.0 b
    TFN0
    N60 51.6 a162.5 a70.7 a
    N12036.8 b92.3 b59.1 b
    N18034.5 bc71.5 c53.8 b
    N24028.9 c56.6 d50.9 b
    N30021.3 d43.4 e36.1 c
    MFN0
    N60 61.6 a172.5 a87.0 a
    N12043.2 b98.6 b63.1 c
    N18034.4 c71.3 c62.5 c
    N24031.5 c59.3 d67.8 b
    N30021.2 d43.4 e39.6 d
    变异来源 Source of variations
    施肥方式 Fertilization method (F) ******
    氮肥用量 N application rate (N) ******
    F × N******
    注(Note):OF—尿素一次施用 All the common urea applied as basal fertilizer; TF—常规尿素分次施肥 40% common urea applied as basal fertilizer and 60% top dressed at V10 stage; MF—常规尿素掺混控释尿素一次施肥 All common urea and controlled-release urea applied as basal fertilizer; 同列数据后不同小写字母表示相同施肥方式不同处理间差异显著 (P < 0.05) Values followed by different lowercase letters in the same column indicate significant difference among treatments for the same fertilization method (P < 0.05); ns—差异不显著 No significant difference; *—P < 0.05; **—P < 0.01.
    下载: 导出CSV 
    | 显示表格

    表4可知,施氮量和施肥方式显著影响土壤无机氮残留和氮表观损失,二者交互对其影响不显著。氮输入方面以施氮量为主,占总氮输入量的37.8%~72.2%。氮输出方面,随着施氮量的增加,土壤无机氮残留和氮表观损失显著增加。3种施肥方式下,MF方式无机氮残留的均值显著低于TF方式,当施氮量为240、300 kg/hm2时显著降低;MF方式表观损失的均值显著低于OF方式,当施氮量为240 kg/hm2时显著降低,在其它施氮量下3种施肥方式无机氮残留和表观损失差异不显著。

    表  4  氮肥用量和施肥方式对2019—2020年土壤氮平衡的影响 (kg/hm2)
    Table  4.  Effects of N application rate and fertilization method on soil nitrogen balance during 2019–2020
    施肥方式
    Fertilization
    method
    氮肥用量处理
    N application
    rate
    氮输入量 N input氮输出量 N output两年氮表观损失
    Apparent N loss in
    two years
    两年施氮量
    N application rate
    in two years
    2019年播前土壤
    无机氮
    Nmin before sowing
    in 2019
    氮素矿化量
    Apparent N
    mineralization
    两年作物吸收
    N removed by grain
    and straw
    2020年收获期
    无机氮残留
    Nmin at harvest
    in 2020
    OFN0 054.7122.8144.433.1 e
    N60 12075.0122.8203.648.0 d66.2 d
    N12024078.8122.8266.654.5 d120.5 d
    N18036088.8122.8314.566.1 c191.0 c
    N24048092.5122.8354.278.9 b262.3 b
    N300600108.0 122.8372.5126.9 a331.3 a
    TFN0 054.7122.8144.433.1 d
    N60 12075.0122.8229.350.1 cd38.4 e
    N12024078.8122.8286.361.4 c93.9 d
    N18036088.8122.8338.273.7 bc159.8 c
    N24048092.5122.8388.790.2 b216.4 b
    N300600108.0 122.8361.0147.5 a322.4 a
    MFN0 054.7122.8144.433.1 d
    N60 12075.0122.8248.841.7 cd27.3 d
    N12024078.8122.8295.850.8 c95.0 c
    N18036088.8122.8369.565.9 b136.3 bc
    N24048092.5122.8469.868.0 b157.5 b
    N300600108.0 122.8381.8129.6 a319.4 a
    变异来源 Source of variations
    施肥方式 Fertilization method (F) ****
    氮肥用量 N application rate (N) ****
    F × Nnsns
    注(Note):OF—尿素一次施用 All the common urea applied as basal fertilizer; TF—常规尿素分次施肥 40% common urea applied as basal fertilizer and 60% top dressed at V10 stage; MF—常规尿素掺混控释尿素一次施肥 All common urea and controlled-release urea applied as basal fertilizer; 同列数据后不同小写字母表示相同施肥方式处理间差异显著 (P < 0.05) Values followed by different lowercase letters in the same column indicate significant difference among treatments for the same fertilization method (P < 0.05); ns—差异不显著 No significant difference; *—P < 0.05; **—P < 0.01.
    下载: 导出CSV 
    | 显示表格

    合理的施氮量和施肥方式是保证春玉米产量和氮素累积量提高的前提。罗上轲等[14]研究表明,随着施氮量的增加,春玉米产量和氮素累积量呈先增加后降低的趋势,当施氮量为240 kg/hm2时产量和氮素累积量达到最大值。Liu等[15]研究表明,黄土旱塬区覆膜玉米施氮量在0~240 kg/hm2时,产量和氮素累积量随施氮量的增加而显著提高。本研究中,产量和氮素累积量随施氮量的增加而显著增加,当施氮量达到240 kg/hm2后不再显著增加。合理的施肥方式可以促进产量、经济效益和氮素累积量的提高。本研究中产量、经济效益和氮素累积量在MF施肥方式下均显著提高,较OF施肥方式分别提高了5.0%、7.9%和32.7%,较TF施肥方式分别提高了4.2%、25.7%和20.9%。这与Guo等[16]普通尿素掺混控释尿素一次施用可以提高产量、经济效益和氮素累积量的结果一致。

    干物质作为光合作用产物的最高形式,其累积量与产量密切相关。干物质累积量的增加直接或间接促进籽粒干重的形成,为作物增产奠定基础[17-18]。Shi等[19]和张磊等[20]研究表明,随着施氮量的增加,干物质累积量呈先增加后降低的趋势,当施氮量达到210 kg/hm2时,干物质累积量开始下降。本研究中增施氮肥对干物质累积趋势的影响与上述研究结果一致,而最佳施氮量有所不同,在吐丝期和收获期,当施氮量为240 kg/hm2时干物质累积量较大。造成该差异的原因可能是土壤基础肥力、降雨以及气温不同。除了合适的施氮量外,适宜的施肥方式也会促进干物质的累积。本研究中,MF施肥方式相比OF方式显著增加了吐丝期和收获期的干物质累积量,这可能是因为控释尿素缓慢释放的特性保证了后期充足的养分[21],使干物质累积量显著增加。这与王寅等[21]和Zheng等[22]在东北、华北地区关于普通尿素和控释尿素掺混施用能够显著提高春玉米地上部干物质累积量的结果一致。

    施氮量和施肥方式不仅影响玉米的干物质累积,也影响各器官的氮含量和氮吸收转移。本试验中,MF施肥方式在吐丝期显著增加了干物质累积量、茎氮和叶氮含量,使花前氮素累积量显著增加,从而促进茎和叶的氮素转移。这一研究结果与王晓琪等[23]普通尿素和缓释氮肥掺混施用可以提高营养器官的氮素转移量结果一致。籽粒氮含量取决于吐丝后氮累积和吐丝前营养器官再转移[24],本研究中MF施肥方式的茎氮、叶氮含量在吐丝期显著提高,从而增加了氮素向籽粒中转移的潜力,使得收获期籽粒氮含量显著增加,为作物增产奠定基础。这与佟玉欣等[25]尿素掺混缓释尿素可以提高植株和籽粒氮含量进而提高产量的结果一致。作物对氮素的吸收、转移是植株利用氮素的主要形式[26]。前人研究表明,玉米营养器官氮素转移量随着施氮量的增加呈先增加后减小的变化趋势[27-28]。本研究表明,茎氮、叶氮转移量在施氮量小于240 kg/hm2时随施氮量的增加而增加,当施氮量继续增加时茎氮、叶氮转移量呈下降趋势,过量施氮并没有进一步提高氮素的转移量。随着施氮量的增加,土壤无机氮残留和表观损失显著增加而农学效率、偏生产力和表观回收率显著降低 (表3表4),这与侯云鹏等[29]、高洪军等[30]研究结果一致。因此,玉米种植中施氮量在保证高产的同时应尽量减小无机氮残留和损失。

    常规尿素掺混控释尿素一次施肥相比常规尿素一次施肥和分次施肥显著增加了春玉米产量、经济效益、氮素累积量和肥料利用率,减少了无机氮残留和表观损失。采用常规尿素掺混控释尿素一次施肥方式,实现最大产量、经济效益和氮素累积量的施氮量为240 kg/hm2,且残留在土壤中的氮素较少。

  • 图  1   2019和2020年试验地降水量和气温

    Figure  1.   Precipitation and air temperature in the experimental site in 2019 and 2020

    图  2   不同生育期春玉米干物质累积变化趋势

    [注(Note):OF—尿素一次施用All the common urea applied as basal fertilizer;TF—常规尿素分次施肥40% common urea applied as basal fertilizer and 60% top dressed at V10 stage;MF—常规尿素掺混控释尿素一次施肥All common urea and controlled-release urea applied as basal fertilizer;变异来源Source of variations;PT—播前Before seeding;ns—差异不显著No significant difference;*—P < 0.05;**—P < 0.01.]

    Figure  2.   Dry matter accumulation curves of spring maize at different growth stages

    图  3   春玉米花前、花后氮素累积量

    [注(Note):OF—尿素一次施用All the common urea applied as basal fertilizer;TF—常规尿素分次施肥40% common urea applied as basal fertilizer and 60% top dressed at V10 stage;MF—常规尿素掺混控释尿素一次施肥All common urea and controlled-release urea applied as basal fertilizer;柱上不同小写字母表示相同施肥方式处理间差异显著 (P < 0.05) Different lowercase letters above the bars indicate significant difference among treatments under the same fertilization method (P < 0.05);ns—差异不显著No significant difference;*—P < 0.05;**—P < 0.01.]

    Figure  3.   N accumulation of spring maize before and after silking

    表  1   氮肥用量和施肥方式对春玉米产量及经济效益的影响

    Table  1   Effects of N application rate and fertilization method on yield and economic income of spring maize

    施肥方式
    Fertilization method
    氮肥用量处理
    N application rate
    产量
    Grain yield
    (t/hm2)
    百粒重
    100-grain weight
    (g)
    穗粒数
    Kernels
    (No./ear)
    穗数
    Spikes
    (×103/hm2)
    经济效益
    Economic income
    (yuan/hm2)
    OFN0 6.7 e29.1 e456 e63.8 b4978 e
    N60 9.4 d30.6 d543 d65.8 ab10693 d
    N12011.0 c33.0 c581 c67.7 ab14035 c
    N18011.9 b34.4 b590 c71.5 a15816 b
    N24013.0 a35.7 ab617 b70.8 a17954 a
    N30013.5 a36.5 a631 a68.1 ab18648 a
    TFN0 6.7 f29.1 d456 d63.8 b4978 d
    N60 9.2 e31.4 c542 c68.5 a8529 c
    N12011.1 d33.4 b584 b71.0 a11179 b
    N18012.4 c34.8 a597 b69.8 a14861 a
    N24013.6 a35.3 a639 a71.0 a16206 a
    N30013.0 b34.7 a604 b72.7 a14707 a
    MFN0 6.7 d29.1 d456 e63.8 c4978 e
    N60 10.3 c33.3 c564 d67.7 b12769 d
    N12011.8 b34.3 b588 cd71.9 a15702 c
    N18012.8 b36.1 a617 bc70.4 ab17566 b
    N24014.2 a36.7 a659 a70.2 ab20277 a
    N30013.0 ab35.9 a630 b68.5 b17286 bc
    变异来源 Source of variations
    施肥方式 Fertilization method (F) ******ns**
    氮肥用量 N application rate (N) **********
    F × Nns**nsns**
    注(Note):OF—尿素一次施用 All the common urea applied as basal fertilizer; TF—常规尿素分次施肥 40% common urea applied as basal fertilizer and 60% top dressed at V10 stage; MF—常规尿素掺混控释尿素一次施肥 All common urea and controlled-release urea applied as basal fertilizer; 同列数据后不同小写字母表示相同施肥方式下处理间差异显著 (P < 0.05) Values followed by different lowercase letters in the same column indicate significant difference among treatments for the same fertilization method (P < 0.05); ns—差异不显著 No significant difference; **—P < 0.01.
    下载: 导出CSV

    表  2   氮肥用量和施肥方式对春玉米收获期氮含量和氮素转运的影响

    Table  2   Effects of N application rate and fertilization method on N concentration at harvest and N translocation of spring maize

    施肥方式
    Fertilization method
    氮肥用量处理
    N application rate
    收获期氮含量 (g/kg)
    N concentration at harvest
    氮素转移量 (kg/hm2)
    N translocation amount
    茎 Stem叶 Leaf籽粒 Grain茎 Stem叶 Leaf
    OFN0 2.3 cd6.2 d8.7 c8.4 d20.2 c
    N60 2.2 d8.3 c9.0 c14.4 c22.7 c
    N1202.3 cd8.6 bc10.5 b17.2 b26.5 bc
    N1802.5 c9.3 b11.6 a18.4 ab30.3 b
    N2402.8 b9.2 b11.8 a19.8 ab37.8 a
    N3003.3 a10.4 a11.8 a20.3 a37.6 a
    TFN0 2.3 b6.2 e8.7 e8.4 e20.2 e
    N60 2.4 b8.3 d10.2 d15.6 d25.3 d
    N1203.1 a9.2 c10.9 c19.6 cd32.1 c
    N1803.0 a10.5 b11.3 b21.0 bc38.3 b
    N2403.4 a11.2 a11.8 a26.4 a42.8 a
    N3003.3 a11.0 ab11.6 ab24.7 ab37.0 b
    MFN0 2.3 c6.2 d8.7 d8.4 e20.2 d
    N60 2.5 c8.0 c10.6 c17.9 d30.0 c
    N1203.0 b9.1 c10.6 c22.0 c35.3 c
    N1803.3 b11.3 ab12.1 b25.7 b42.6 b
    N2403.2 b12.4 a14.1 a37.6 a51.1 a
    N3003.8 a11.0 b12.8 b26.4 b48.3 ab
    变异来源 Source of variations
    施肥方式 Fertilization method (F) **********
    氮肥用量 N application rate (N) **********
    F × N*********
    注(Note):OF—尿素一次施用 All the common urea applied as basal fertilizer; TF—常规尿素分次施肥 40% common urea applied as basal fertilizer and 60% top dressed at V10 stage; MF—常规尿素掺混控释尿素一次施肥 All common urea and controlled-release urea applied as basal fertilizer; 同列数据后不同小写字母表示相同施肥方式同处理间差异显著 (P < 0.05) Values followed by different lowercase letters in the same column indicate significant difference among treatments for the same fertilization method (P < 0.05); ns—差异不显著 No significant difference; *—P < 0.05; **—P < 0.01.
    下载: 导出CSV

    表  3   氮肥用量和施肥方式对春玉米氮肥利用效率的影响

    Table  3   Effects of N application rate and fertilization method on nitrogen use efficiency of spring maize

    施肥方式
    Fertilization method
    氮肥用量处理
    N application rate
    农学效率 (kg/kg)
    Agronomic efficiency
    偏生产力 (kg/kg)
    Aartial factor productivity
    表观回收率 (%)
    Apparent recovery rate of N
    OFN0
    N60 45.3 a156.1 a49.3 a
    N12036.3 b91.7 b50.9 a
    N18029.4 c66.3 c47.3 a
    N24026.6 cd54.3 d43.7 ab
    N30022.7 d44.9 e38.0 b
    TFN0
    N60 51.6 a162.5 a70.7 a
    N12036.8 b92.3 b59.1 b
    N18034.5 bc71.5 c53.8 b
    N24028.9 c56.6 d50.9 b
    N30021.3 d43.4 e36.1 c
    MFN0
    N60 61.6 a172.5 a87.0 a
    N12043.2 b98.6 b63.1 c
    N18034.4 c71.3 c62.5 c
    N24031.5 c59.3 d67.8 b
    N30021.2 d43.4 e39.6 d
    变异来源 Source of variations
    施肥方式 Fertilization method (F) ******
    氮肥用量 N application rate (N) ******
    F × N******
    注(Note):OF—尿素一次施用 All the common urea applied as basal fertilizer; TF—常规尿素分次施肥 40% common urea applied as basal fertilizer and 60% top dressed at V10 stage; MF—常规尿素掺混控释尿素一次施肥 All common urea and controlled-release urea applied as basal fertilizer; 同列数据后不同小写字母表示相同施肥方式不同处理间差异显著 (P < 0.05) Values followed by different lowercase letters in the same column indicate significant difference among treatments for the same fertilization method (P < 0.05); ns—差异不显著 No significant difference; *—P < 0.05; **—P < 0.01.
    下载: 导出CSV

    表  4   氮肥用量和施肥方式对2019—2020年土壤氮平衡的影响 (kg/hm2)

    Table  4   Effects of N application rate and fertilization method on soil nitrogen balance during 2019–2020

    施肥方式
    Fertilization
    method
    氮肥用量处理
    N application
    rate
    氮输入量 N input氮输出量 N output两年氮表观损失
    Apparent N loss in
    two years
    两年施氮量
    N application rate
    in two years
    2019年播前土壤
    无机氮
    Nmin before sowing
    in 2019
    氮素矿化量
    Apparent N
    mineralization
    两年作物吸收
    N removed by grain
    and straw
    2020年收获期
    无机氮残留
    Nmin at harvest
    in 2020
    OFN0 054.7122.8144.433.1 e
    N60 12075.0122.8203.648.0 d66.2 d
    N12024078.8122.8266.654.5 d120.5 d
    N18036088.8122.8314.566.1 c191.0 c
    N24048092.5122.8354.278.9 b262.3 b
    N300600108.0 122.8372.5126.9 a331.3 a
    TFN0 054.7122.8144.433.1 d
    N60 12075.0122.8229.350.1 cd38.4 e
    N12024078.8122.8286.361.4 c93.9 d
    N18036088.8122.8338.273.7 bc159.8 c
    N24048092.5122.8388.790.2 b216.4 b
    N300600108.0 122.8361.0147.5 a322.4 a
    MFN0 054.7122.8144.433.1 d
    N60 12075.0122.8248.841.7 cd27.3 d
    N12024078.8122.8295.850.8 c95.0 c
    N18036088.8122.8369.565.9 b136.3 bc
    N24048092.5122.8469.868.0 b157.5 b
    N300600108.0 122.8381.8129.6 a319.4 a
    变异来源 Source of variations
    施肥方式 Fertilization method (F) ****
    氮肥用量 N application rate (N) ****
    F × Nnsns
    注(Note):OF—尿素一次施用 All the common urea applied as basal fertilizer; TF—常规尿素分次施肥 40% common urea applied as basal fertilizer and 60% top dressed at V10 stage; MF—常规尿素掺混控释尿素一次施肥 All common urea and controlled-release urea applied as basal fertilizer; 同列数据后不同小写字母表示相同施肥方式处理间差异显著 (P < 0.05) Values followed by different lowercase letters in the same column indicate significant difference among treatments for the same fertilization method (P < 0.05); ns—差异不显著 No significant difference; *—P < 0.05; **—P < 0.01.
    下载: 导出CSV
  • [1]

    Guo R Y, Miao W, Fan C Y, et al. Exploring optimal nitrogen management for high yielding maize in arid areas via 15N-labeled technique[J]. Geoderma, 2021, 382: 114711. DOI: 10.1016/j.geoderma.2020.114711

    [2] 李少昆, 赵久然, 董树亭, 等. 中国玉米栽培研究进展与展望[J]. 中国农业科学, 2017, 50(11): 1941–1959. DOI: 10.3864/j.issn.0578-1752.2017.11.001

    Li S K, Zhao J R, Dong S T, et al. Advances and prospects of maize cultivation in China[J]. Scientia Agricultura Sinica, 2017, 50(11): 1941–1959. DOI: 10.3864/j.issn.0578-1752.2017.11.001

    [3] 张福锁, 崔振岭, 王激清, 等. 中国土壤和植物养分管理现状与改进策略[J]. 植物学通报, 2007, 24(6): 687–694.

    Zhang F S, Cui Z L, Wang J Q, et al. Current status of soil and plant nutrient management in China and improvement strategies[J]. Bulletin of Botany, 2007, 24(6): 687–694.

    [4]

    Pamela A M, Rosamond N, Ivan O M. Integration of environmental, agronomic, and economic aspects of fertilizer management[J]. Science, 1998, 280(5360): 112–115. DOI: 10.1126/science.280.5360.112

    [5] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势[J]. 植物营养与肥料学报, 2014, 20(4): 783–795. DOI: 10.11674/zwyf.2014.0401

    Ju X T, Gu B J. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(4): 783–795. DOI: 10.11674/zwyf.2014.0401

    [6] 葛均筑, 展茗, 赵明, 等. 一次性施肥对长江中游春玉米产量及养分利用效率的影响[J]. 植物营养与肥料学报, 2013, 19(5): 1073–1082. DOI: 10.11674/zwyf.2013.0506

    Ge J Z, Zhan M, Zhao M, et al. Effects of single basal fertilization on yield and nutrient use efficiencies of spring maize in the Middle Reaches of Yangtze River[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(5): 1073–1082. DOI: 10.11674/zwyf.2013.0506

    [7] 王激清, 马文奇, 江荣风, 张福锁. 我国水稻、小麦、玉米基肥和追肥用量及比例分析[J]. 土壤通报, 2008, (2): 329–333. DOI: 10.3321/j.issn:0564-3945.2008.02.024

    Wang J Q, Ma W Q, Jiang R F, Zhang F S. Analysis about amount and ratio of basal fertilizer and topdressing fertilizer on rice, wheat, maize in China[J]. Chinese Journal of Soil Science, 2008, (2): 329–333. DOI: 10.3321/j.issn:0564-3945.2008.02.024

    [8] 王文岩, 董文旭, 陈素英, 等. 连续施用控释肥对小麦/玉米农田氮素平衡与利用率的影响[J]. 农业工程学报, 2016, 32(S2): 135–141.

    Wang W Y, Dong W X, Chen S Y, et al. Effect of continuously applying controlled-release fertilizers on nitrogen balance and utilization in winter wheat-summer maize cropping system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 135–141.

    [9] 王宜伦, 白由路, 谭金芳, 等. 采用粒片状肥料实现夏玉米一次施肥的可行性研究[J]. 植物营养与肥料学报, 2016, 22(4): 1126–1132. DOI: 10.11674/zwyf.15037

    Wang Y L, Bai Y L, Tan J F, et al. Availability study of once quantitative fertilization in summer maize using fertilizer tablets[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 1126–1132. DOI: 10.11674/zwyf.15037

    [10] 谢春生, 唐拴虎, 徐培智. 一次性施用控释肥对水稻植株生长及产量的影响[J]. 植物营养与肥料学报, 2006, 12(2): 177–182. DOI: 10.3321/j.issn:1008-505X.2006.02.006

    Xie C S, Tang S H, Xu P Z. Effects of single basal application of controlled-release fertilizers on growth and yield of rice[J]. Journal of Plant Nutrition and Fertilizers, 2006, 12(2): 177–182. DOI: 10.3321/j.issn:1008-505X.2006.02.006

    [11] 钱银飞, 邵彩虹, 邱才飞, 等. 包膜缓释尿素与普通尿素配施对双季超级稻产量及氮肥利用的影响[J]. 中国土壤与肥料, 2015, (5): 27–32. DOI: 10.11838/sfsc.20150505

    Qian Y F, Shao C H, Qiu C F, et al. Effects of the different mixture rates of coated slow-release urea and prilled urea on the growth of double-cropping super rice and the utilizing rate of nitrogen[J]. Soil and Fertilizer Sciences in China, 2015, (5): 27–32. DOI: 10.11838/sfsc.20150505

    [12]

    Sadao S J, Hitoshi K. Use of polyolefin-coated fertilizers for increasing fertilizer efficiency and reducing nitrate leaching and nitrous oxide emissions[J]. Fertilizer Research, 1994, 39(2): 147–152. DOI: 10.1007/BF00750913

    [13]

    Ke J, Xing X M, Li G H, et al. Effects of different controlled-release nitrogen fertilizers on ammonia volatilisation, nitrogen use efficiency and yield of blanket-seedling machine-transplanted rice[J]. Field Crops Research, 2017, 205: 147–156. DOI: 10.1016/j.fcr.2016.12.027

    [14] 罗上轲, 刘婕, 叶开梅, 等. 覆膜方式与施氮量对春玉米产量、干物质和氮素积累与转运的影响[J]. 玉米科学, 2020, 28(4): 146–154.

    Luo S K, Liu J, Ye K M, et al. Effects of plastic film mulching mode and nitrogen application rate on spring maize yield, dry matter and nitrogen accumulation and translocation[J]. Journal of Maize Sciences, 2020, 28(4): 146–154.

    [15]

    Liu J L, Bu L D, Zhu L, et al. Optimizing plant density and plastic film mulch to increase maize productivity and water-use efficiency in semiarid areas[J]. Agronomy Journal, 2014, 106(4): 1138.

    [16]

    Guo J M, Wang Y H, Blaylock A D, et al. Mixture of controlled release and normal urea to optimize nitrogen management for high-yielding (> 15Mg ha–1) maize[J]. Field Crops Research, 2017, 204: 23–30. DOI: 10.1016/j.fcr.2016.12.021

    [17]

    Yan D C, Zhu Y, Wang S H, et al. A quantitative knowledge-based model for designing suitable growth dynamics in rice[J]. Plant Production Science, 2006, 9(2): 93–105. DOI: 10.1626/pps.9.93

    [18]

    Schmidt J, Beegle D, Zhu Q, et al. Improving in-season nitrogen recommendations for maize using an active sensor[J]. Field Crops Research, 2011, 120(1): 94–101. DOI: 10.1016/j.fcr.2010.09.005

    [19]

    Shi D Y, Li Y H, Zhang J W, et al. Increased plant density and reduced N rate lead to more grain yield and higher resource utilization in summer maize[J]. Journal of Integrative Agriculture, 2016, 15(11): 2515–2528. DOI: 10.1016/S2095-3119(16)61355-2

    [20] 张磊, 孔丽丽, 侯云鹏, 等. 施氮水平对玉米开花后干物质积累、转运及土壤无机氮含量的影响[J]. 玉米科学, 2020, 28(4): 155–164.

    Zhang L, Kong L L, Hou Y P, et al. Effects of nitrogen application on dry matter accumulation, translocation, and inorganic nitrogen content in soil after anthesis of maize[J]. Journal of Maize Sciences, 2020, 28(4): 155–164.

    [21] 王寅, 冯国忠, 张天山, 等. 控释氮肥与尿素混施对连作春玉米产量、氮素吸收和氮素平衡的影响[J]. 中国农业科学, 2016, 49(3): 518–528. DOI: 10.3864/j.issn.0578-1752.2016.03.010

    Wang Y, Feng G Z, Zhang T S, et al. Effects of mixed application of controlled-release N fertilizer and common urea on grain yield, N uptake and soil N balance in continuous spring maize production[J]. Scientia Agricultura Sinica, 2016, 49(3): 518–528. DOI: 10.3864/j.issn.0578-1752.2016.03.010

    [22]

    Zheng W K, Zhang M, Liu Z G, et al. Combining controlled-release urea and normal urea to improve the nitrogen use efficiency and yield under wheat-maize double cropping system[J]. Field Crops Research, 2016, 197: 52–62. DOI: 10.1016/j.fcr.2016.08.004

    [23] 王晓琪, 朱家辉, 陈宝成, 等. 控释尿素不同比例配施对水稻生长及土壤养分的影响[J]. 水土保持学报, 2016, 30(4): 178–182.

    Wang X Q, Zhu J H, Chen B C, et al. Effects of different proportion of controlled-release urea on rice growth and soil nutrient[J]. Journal of Soil and Water Conservation, 2016, 30(4): 178–182.

    [24]

    Ciampitti I A, Vyn T J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review[J]. Field Crops Research, 2012, 133: 48–67. DOI: 10.1016/j.fcr.2012.03.008

    [25] 佟玉欣, 李玉影, 刘双全, 等. 黑龙江春玉米籽粒产量与氮素吸收变化特征[J]. 植物营养与肥料学报, 2014, 20(5): 1094–1102. DOI: 10.11674/zwyf.2014.0505

    Tong Y X, Li Y Y, Liu S Q, et al. Variations of the grain yields and N absorption of spring maize in Heilongjiang Province[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1094–1102. DOI: 10.11674/zwyf.2014.0505

    [26]

    Zotarelli L, Scholberg J M, Dukes M D, et al. Fertilizer residence time affects nitrogen uptake efficiency and growth of sweet corn[J]. Journal of Environmental Quality, 2008, 37(3): 1271–1278. DOI: 10.2134/jeq2007.0460

    [27] 王泽林, 白炬, 李阳, 等. 氮肥施用和地膜覆盖对旱作春玉米氮素吸收及分配的影响[J]. 植物营养与肥料学报, 2019, 25(1): 74–84. DOI: 10.11674/zwyf.18038

    Wang Z L, Bai J, Li Y, et al. Effects of nitrogen application and plastic film mulching on nitrogen uptake and allocation in dry-land spring maize[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 74–84. DOI: 10.11674/zwyf.18038

    [28] 郭金金, 张富仓, 王海东, 等. 不同施氮量下缓释氮肥与尿素掺混对玉米生长与氮素吸收利用的影响[J]. 中国农业科学, 2017, 50(20): 3930–3943. DOI: 10.3864/j.issn.0578-1752.2017.20.009

    Guo J J, Zhang F C, Wang H D, et al. Effects of slow-release nitrogen fertilizer and urea blending on maize growth and nitrogen uptake under different nitrogen application rates[J]. Scientia Agricultura Sinica, 2017, 50(20): 3930–3943. DOI: 10.3864/j.issn.0578-1752.2017.20.009

    [29] 侯云鹏, 尹彩侠, 孔丽丽, 等. 氮肥对吉林春玉米产量、农学效率和氮养分平衡的影响[J]. 中国土壤与肥料, 2016, (6): 93–98. DOI: 10.11838/sfsc.20160615

    Hou Y P, Yin C X, Kong L L, et al. Effect of nitrogen fertilizer application on yield, agronomic efficiency and nitrogen balance of spring maize[J]. Soil and Fertilizer Sciences in China, 2016, (6): 93–98. DOI: 10.11838/sfsc.20160615

    [30] 高洪军, 彭畅, 窦森, 等. 秸秆还田配施氮肥对春玉米氮素利用及土壤氮素平衡的影响[J]. 玉米科学, 2020, 28(6): 134–141.

    Gao H J, Peng C, Dou S, et al. Effects of combined straw returning and nitrogen application on nitrogen utilization of spring maize and soil nitrogen balance[J]. Journal of Maize Sciences, 2020, 28(6): 134–141.

  • 期刊类型引用(13)

    1. 张宇羽,王香宁,曾雪娇,官洁,张毅,李冰,蔡艳. 控释氮肥与尿素配施对川东套作春玉米氮素吸收与利用的影响. 中国农学通报. 2025(08): 25-30 . 百度学术
    2. 卞倩倩,王雁楠,康志河,乔守晨,陈彦杞,尹雨萌,曹郭郑,赵国瑞,徐丹丹,李亚蔚,张济世,杨育峰. 不同管理措施对甘薯产量及养分利用效率的影响. 中国土壤与肥料. 2025(04): 117-126 . 百度学术
    3. 曹玉军,姚凡云,吕艳杰,魏雯雯,刘小丹,刘志铭,徐文华,梁杰,王立春,王永军. 综合农艺措施实现东北玉米生产和环境效益及土壤肥力的同步提升. 植物营养与肥料学报. 2023(01): 18-30 . 本站查看
    4. 邱悦,杨晓燕,田甜,王金刚,朱永琪,崔静,王海江. 尿素与液态脲甲醛缓释氮肥配施对棉花生长与氮素吸收利用的影响. 中国土壤与肥料. 2023(02): 129-137 . 百度学术
    5. 曹佳霖,胡茂川,贺凯,代超,贺斌. 广东省农业面源污染现状及变化的多尺度评价. 生态与农村环境学报. 2023(07): 924-933 . 百度学术
    6. 王科捷,王乐,冯朋博,卢圆明,王晓苹,柳雅倩,康建宏,梁熠. 配施控释尿素对宁南山区春玉米生产的影响. 中国农业气象. 2023(09): 769-781 . 百度学术
    7. 李昊,耿玉辉,曹国军,周丽娟,申凯宏. 硫肥配施对不同氮磷钾水平下春玉米生长及氮肥利用效率的影响. 中国土壤与肥料. 2023(06): 206-212 . 百度学术
    8. 赵红伟. 旱作玉米密植高产高效栽培技术. 现代化农业. 2023(11): 31-33 . 百度学术
    9. 程志鹏,王富贵,王钰剀,王振,梁红伟,王天昊,张悦忠,白岚方,王志刚. 寒旱区秸秆覆盖条耕玉米适宜氮肥运筹方式研究. 植物营养与肥料学报. 2023(10): 1830-1842 . 本站查看
    10. 刘春增,张琳,丁丽,张香凝,郑春风,张成兰,吕玉虎,曹卫东,张济世,张玉亭. 稻田土壤真菌群落结构与功能对化肥减量配施紫云英还田的响应. 中国土壤与肥料. 2023(09): 68-76 . 百度学术
    11. 高雪健,李广浩,陆卫平,陆大雷. 控释尿素与普通尿素配施对糯玉米产量和氮素吸收利用的影响. 植物营养与肥料学报. 2022(09): 1614-1625 . 本站查看
    12. 张济世,张琳,丁丽,刘春增,吕玉虎,郑春风,张成兰,聂良鹏,曹卫东,张玉亭. 紫云英还田与化肥减量配施对土壤氮素供应和水稻生长的影响. 植物营养与肥料学报. 2022(10): 1793-1803 . 本站查看
    13. 张济世,刘春增,吕玉虎,王守刚,曹卫东,张玉亭. 紫云英与化肥配施对水稻生长及磷素利用的影响. 河南农业科学. 2022(11): 82-90 . 百度学术

    其他类型引用(11)

图(3)  /  表(4)
计量
  • 文章访问数:  1438
  • HTML全文浏览量:  737
  • PDF下载量:  102
  • 被引次数: 24
出版历程
  • 收稿日期:  2021-01-28
  • 录用日期:  2021-04-28
  • 网络出版日期:  2021-06-03
  • 刊出日期:  2021-06-24

目录

/

返回文章
返回