Effects of new fertilizers on the yield and soil biological activity of three major food crops: A global meta-analysis
-
摘要:目的
随着近年来农业发展方式从资源消耗型向绿色生态型的转变,发展绿色新型肥料成为一大热门。已有研究大多关注新型肥料对三大粮食作物 (小麦、玉米和水稻) 产量、氮吸收和氮利用效率的影响,但关于新型肥料对土壤生物学活性影响的系统研究相对较少。本研究旨在整合已有的研究结果,定量分析新型肥料对三大作物产量和土壤生物学活性的影响,进而为加快新型肥料的研发与推广提供科学依据。
方法本研究数据来源于“中国知网 (CNKI) ”及“Web of Science”数据库,以“小麦”、“玉米”、“水稻”、“产量”、“微生物量”、“酶活性”、“新型肥料”为主要关键词检索相关的田间试验文献,共筛选出文献29篇,包含32个独立试验,共545组数据。以施用传统化学肥料为对照组,施用新型肥料为试验组,采用Meta分析的方法,整合分析施用新型肥料对作物产量、土壤微生物量及酶活性的影响。
结果与施用传统化学肥料相比,施用新型肥料显著提高三大作物产量、地上部吸氮量和氮肥利用效率,分别提高8.4%、9.9%和36.8%。施用新型肥料显著增加土壤微生物量氮 (14.6%),但对土壤微生物量碳无显著影响。施用新型肥料显著提高了土壤磷代谢酶活性 (8.6%) 和氧化相关酶活性 (5.7%),但对土壤碳代谢酶活性和氮代谢酶活性无显著影响。
结论施用新型肥料提高了三大作物产量、地上部吸氮量和氮肥利用效率,同时增加了土壤微生物量氮、土壤磷代谢酶活性和氧化相关酶活性,提高了农田生态系统土壤生物学活性。
Abstract:ObjectivesIn recent years, with the transformation of agricultural development mode from resource consumption to green ecology, the development of new fertilizers has become a hot topic. Recent available studies mostly focused on the effects of new fertilizers on the crop yield, nitrogen (N) uptake and nitrogen use efficiency (NUE), but our understanding about their effect on soil biological activity was relatively limited. This study aims to analyze the effects of new fertilizer on the yield of three major food crops (wheat, maize and rice) and soil biological activity, and also to provide a scientific basis for the wide production and application of new fertilizers.
MethodsIn this study, we obtained the data from “CNKI” and “Web of Science” databases. A total of 29 relevant papers conducted in field trials were obtained with “wheat”, “maize”, “rice”, “yield”, “microbial biomass”, “enzyme activity” and “new fertilizer” as the keywords, producing a total of 545 data groups coming from 32 independent trials. Using conventional fertilizers as the control and new fertilizers as the experimental group, Meta-analysis was used to integrate the effects of new fertilizers application on crop yield, enzyme activity and soil microbial biomass.
ResultsThe yield, aboveground N uptake and NUE of three crops were significantly increased by new fertilizers application, with an increment rate of 8.4%, 9.9% and 36.8%, respectively, compared with those of conventional fertilizers application. Similarly, the application of new fertilizers significantly increased soil microbial biomass nitrogen (14.6%), but had no significant effect on soil microbial biomass carbon. Soil phosphate metabolism-related enzymes activities (8.6%) and oxide-related enzymes activities (5.7%) were significantly increased by applying new fertilizers, but no significant difference was found for soil carbon and nitrogen cycling enzyme activities between these two treatments.
ConclusionsThe application of new fertilizers increased the yield, aboveground N uptake and NUE of three major crops, and also increased soil microbial biomass N, soil phosphate metabolism-related enzymes activity and oxide-related enzymes activity, and further improved the soil biological activity of agricultural ecosystem.
-
Keywords:
- new fertilizer /
- three major crops /
- production /
- microbial biomass /
- enzyme activity
-
我国是农业大国,同时也是全球肥料用量最大的国家,我国单位面积施肥量是全球平均水平的3倍[1-2]。2015年我国化肥用量为6023万t (实物量),粮食产量为62144万t[3]。与1984年相比,2015年化肥用量增加了4283万t,增加了246%,而粮食只增产21413万t,增加了52.6%。长期以来,我国农业生产一直处于高肥料投入、高作物产量、高环境代价的生产模式[4],肥料的施用对我国粮食生产的持续增长起到了重要作用[5],但是大幅度增加化肥施用量并没有带来相应比例的粮食增产,出现这种现象的主要原因是我国化肥利用率较低。2010年北美和欧洲三大作物的氮肥利用效率分别为52%和61%[6],而中国的水稻、小麦和玉米的氮肥利用率分别为31%、32%和30%,平均仅为31%[7]。
随着世界人口的快速增长,人类对粮食需求量逐渐加大。据预测,到2050年要增加50%~70%的粮食产量才能满足未来人类对粮食的需求[8]。在农业绿色发展背景下,如何提高肥料利用率已成为人们考虑的重要问题,其中,加快对新型肥料的研发,可以保证农业生产沿着高产高效的方向发展[9-10]。国内外学者通过田间试验和Meta分析对新型肥料的产量[11]以及环境效应[12]等方面进行了研究,涉及的粮食作物主要包括小麦[13-14]、玉米[15-16]和水稻[17]等。这些研究结果表明,新型肥料能够提高作物产量和氮肥利用效率[18],提高作物品质,减少经济投入[19],同时降低氮素损失[12]。
施用新型肥料是否能培育健康土壤,这在很大程度上与农业生态系统土壤生物学活性的改善有关。土壤微生物是陆地生态系统的重要组分,土壤微生物量能从整体上反映土壤微生物群落参与地球物质循环和转化过程的状况,而土壤酶是土壤微生物分泌的产物,两者是反映土壤健康的重要生物学指标[20-21]。有田间试验研究表明,施用新型肥料能提高土壤酶活性,但是不同新型肥料类型对土壤酶活性的影响不同[22]。同时,施用新型肥料对土壤微生物量碳氮的影响也不同[23]。然而,基于整合分析研究新型肥料对三大粮食作物土壤微生物量和土壤酶活性影响的研究目前鲜有报道。
本研究搜集整理了国内外学者发表的文献资料,运用整合分析的方法,分析了全球尺度上施用新型肥料对三大作物 (小麦、玉米和水稻) 产量和土壤生物学活性的影响,进一步明确了氮肥施用量、土壤pH、作物类型和新型肥料类型等因素的影响,旨在为加快新型肥料的研发和推广提供依据。
1. 材料与方法
1.1 数据来源
本研究在“中国知网”及“Web of Science”数据库进行文献搜集,以“小麦”、“玉米”、“水稻”、“产量”、“微生物量”、“酶活性”为主要关键词检索2019年12月31日之前发表的田间试验文献。为实现本研究的目的及Meta分析对数据的要求,基于以下7个标准对检索文献进行筛选:1) 研究区域为全球范围内;2) 同一文献中有不同的独立试验,则把每个试验都作为一个独立研究;3) 同一文献中必须同时包括新型肥料处理和传统化学肥料处理;4) 文献中有明确的试验处理重复数以及试验处理的产量、土壤微生物量和土壤酶活性;5) 一篇文献中包含不同采样日期或者不同土壤深度的结果,使用最新采样时间点或者土壤表层的数据;6) 为便于满足数据的统计分析,将作物种类确定为小麦、玉米和水稻;7) 数据搜集过程中,如果数据以柱状图和折线图的形式展示,则采用图形数字化软件GetData Graph Digitizer进行数字化转换后再提取。基于以上标准筛选,共筛选出29篇文献,32个独立试验,获得545组数据。
1.2 数据分类
经筛选获得的数据,主要涉及中国、印度、日本等国家,考虑到施用新型肥料对三大作物产量和土壤生物学活性的影响可能受其他相关因素的调控,根据文献中的相关试验信息进行归纳分组,整理得到以下影响因素:作物类型、氮肥施用量、新型肥料类型、土壤酸碱度(表1)。本研究中提到的新型肥料包括缓/控释肥、脲酶抑制剂、硝化抑制剂和双抑制剂4种;氮肥施用量以投入纯氮量计算。
表 1 试验相关数据分类Table 1. Classification of experiment data影响因素 Influence factor 分组 Classification 作物类型 Crop type 小麦、玉米、水稻 Wheat,Maize,Rice 土壤酸碱度 Soil pH pH < 6、6 ≤ pH < 7、7 ≤ pH < 8、pH ≥ 8 氮肥施用量 N rate (kg/hm2) < 150、150~200、 ≥ 200 控释肥类型 Controlled release fertilizer type CRF、UI、NI、DI 注(Note):CRF—缓/控释肥 Controlled release fertilizer; UI—脲酶抑制剂 Urease inhibitor; NI—硝化抑制剂 Nitrification inhibitor; DI—双抑制剂 Double inhibitor. 1.3 整合分析
在整合分析中,使用响应比 (RR) 作为一种度量标准,来比较不同响应变量 (作物产量、地上部吸氮量、氮肥利用效率、土壤微生物量和土壤酶活性) 在传统化学肥料和新型肥料处理间的效应大小[24]。RR以新型肥料 (Xt) 与传统化学肥料 (Xc) 处理的相关指标平均值比值的自然对数计算:
RR=ln(Xt/Xc)=ln(Xt)−ln(Xc) (1) 式中:RR是响应比;Xt为施用新型肥料处理的相关指标的平均值;Xc是施用传统化学肥料处理的相关指标的平均值。
本研究在提取和分析数据的过程中,对酶活性单位进行了统一,使用酶活性的响应比作为响应变量,由此可以消除不同酶分析方法的差异。同时,用平均土壤胞外酶活性 (EEAs) 表示碳代谢 (C-acq)、氮代谢 (N-acq)、磷代谢 (P-acq) 和氧化分解 (OX) 相关酶活性[25],土壤胞外酶活性 (EEAs) 计算公式如下:
C−acq=(AG+BG+CBH+BX+XY+INV)/6 (2) N−acq=(NAG+LAP+UREA+BAA)/4 (3) P−acq=(DEs+ALP+ACP)/3 (4) OX=(PEO+DHH+CAT+PhOx)/4 (5) 其中,AG、BG、CBH、BX、XY、INV分别代表α-1,4-葡萄糖苷酶、β-1,4-葡萄糖苷酶、β-D-纤维二糖苷酶、β-1,4-木糖苷酶、木聚糖酶和转化酶的活性;NAG、LAP、UREA和BAA分别代表β-1,4-N-乙酰氨基葡萄糖苷酶、亮氨酸氨基肽酶、脲酶和蛋白酶的活性;DEs、ALP和ACP分别代表二酯酶、碱性磷酸酶和酸性磷酸酶的活性;PEO、DHH、CAT和PhOx分别代表过氧化物酶、脱氢酶、过氧化氢酶和酚氧化酶的活性。
1.4 统计分析
本研究使用 Microsoft Excel 2013记录文献数据,并通过SPSS 26软件进行数据分析,使用Sigmaplot 14软件进行作图。
2. 结果与分析
2.1 新型肥料和传统化学肥料对作物产量的影响
总体上,相比于传统化学肥料,施用新型肥料增加了8.4%的作物产量 (图1)。不同施氮量对作物产量有显著影响,当施氮量 < 150 kg/hm2时,增产幅度最高 (11.5%);当施氮量 ≥ 200 kg/hm2和在150~200 kg/hm2时,增产幅度分别为9.7%和5.6%。在所有土壤酸碱度范围内,新型肥料对作物产量均有显著正效应,当pH ≥ 8时增产幅度最高 (12%)。在所有的作物类型中,玉米的增产幅度最高 (11.3%),其次是小麦 (7.3%) 和水稻 (7.0%)。4种新型肥料类型均能显著增加作物产量,其中脲酶抑制剂对产量的增幅影响最大 (11.1%),其次是硝化抑制剂 (10.2%)、双抑制剂 (9.0%) 和缓/控释肥 (7.7%)。
图 1 新型肥料和传统化学肥料对作物产量响应比的影响[注(Note):图中黑色圆点与误差线分别代表响应比和 95% 置信区间,若误差线不经过零线,则说明施用新型肥料和传统化学肥料之间差异显著;括号中的数字表示样本量。P < 0.05或P < 0.01表示分组内部的响应比之间具有显著性差异。The black circle and the error line represent the response ratio and the 95% confidence interval, respectively. If the error line does not go through the zero line, the difference between new fertilizers application and conventional fertilizers application is significant. The digitals inside brackets are the sample sizes. P < 0.05 or P < 0.01 indicate that there is a significant difference between the response ratios within the group.]Figure 1. The effects of new fertilizers and traditional chemical fertilizers on crop yields response ratio (RR)2.2 新型肥料和传统化学肥料对作物地上部吸氮量的影响
总体上,施用新型肥料的作物地上部吸氮量比施用传统化学肥料高9.9%。氮肥施用量、土壤酸碱度、作物类型和新型肥料类型对作物地上部吸氮量均呈现显著正效应。从氮肥施用量来看,施用氮肥越多地上部吸氮量对新型肥料添加的响应越低 (图2)。地上部吸氮量对新型肥料添加的响应程度随着pH的增加逐渐降低。不同作物类型对新型肥料的响应中,水稻的增幅最高 (10.5%),其次是玉米 (10.2%) 和小麦 (8.2%)。相比于传统化学肥料,缓/控释肥、硝化抑制剂和脲酶抑制剂对作物地上部吸氮量的增幅分别为8.8%、12.2%和12.3%,而双抑制剂对地上部吸氮量没有显著影响 (图2)。
图 2 新型肥料和传统化学肥料对地上部吸氮量响应比的影响[注(Note):图中黑色圆点与误差线分别代表响应比和 95% 置信区间,若误差线不经过零线,则说明施用新型肥料和传统化学肥料之间差异显著;括号中的数字表示样本量。P < 0.05或P < 0.01表示分组内部的响应比之间具有显著性差异。The black circle and the error line represent the response ratio and the 95% confidence interval, respectively. If the error line does not go through the zero line, the difference between new fertilizers application and conventional fertilizers application is significant. The digitals inside brackets are the sample sizes. P < 0.05 or P < 0.01 indicate that there is a significant difference between the response ratios within the group.]Figure 2. The effects of new fertilizers and traditional chemical fertilizers on crop nitrogen uptake response ratio (RR)2.3 新型肥料和传统化学肥料对作物氮肥利用效率的影响
总体上,施用新型肥料的氮肥利用效率比施用传统化学肥料高36.8%;氮肥施用量、土壤酸碱度、作物类型和新型肥料类型对作物氮肥利用率的影响均呈现显著正效应 (图3)。作物氮肥利用率随着新型肥料添加量的增加而增加。当土壤在7 ≤ pH < 8时,氮肥利用率对施用新型肥料的响应最大,达到45.2%;而当土壤pH < 6时响应最小,为17.5%。施用缓/控释肥对作物氮肥利用率的影响最大 (44.1%),其次是双抑制剂 (23.8%)、硝化抑制剂 (19.4%) 和脲酶抑制剂 (17.2%)。
图 3 新型肥料和传统化学肥料对氮肥利用效率响应比的影响[注(Note):图中黑色圆点与误差线分别代表响应比和 95% 置信区间,若误差线不经过零线,则说明施用新型肥料和传统化学肥料之间差异显著;括号中的数字表示样本量。P < 0.05或P < 0.01表示分组内部的响应比之间具有显著性差异。The black circle and the error line represent the response ratio and the 95% confidence interval, respectively. If the error line does not go through the zero line, the difference between new fertilizers application and conventional fertilizers application is significant. The digitals inside brackets are the sample sizes. P < 0.05 or P < 0.01 indicate that there is a significant difference between the response ratios within the group.]Figure 3. The effects of new fertilizers and traditional chemical fertilizers on nitrogen use efficiency response ratio (RR)2.4 新型肥料和传统化学肥料对土壤微生物量的影响
总体上,施用新型肥料对土壤微生物量碳的影响不显著,但显著增加了土壤微生物量氮 (14.6%)。氮肥施用量、土壤酸碱度、作物类型和新型肥料种类对土壤微生物量碳均没有显著影响 (图4)。当氮肥施用量 < 200 kg/hm2时,施用新型肥料显著增加了土壤微生物量氮,而在 ≥ 200 kg/hm2时对土壤微生物量氮无显著影响 (图4)。当土壤pH在6~7时,施用新型肥料显著增加土壤微生物量氮 (27.1%),而在其他pH范围内对微生物量氮的影响不显著。施用新型肥料显著增加了水稻土壤微生物量氮 (8.2%),但对小麦和玉米土壤微生物量氮无显著影响 (图4)。此外,施用缓/控释肥显著增加了土壤微生物量氮 (22.5%),而其他新型肥料类型对微生物量氮无显著影响 (图4)。
图 4 新型肥料和传统化学肥料对土壤微生物量碳和微生物量氮响应比的影响[注(Note):图中黑色圆点与误差线分别代表响应比和 95% 置信区间,若误差线不经过零线,则说明施用新型肥料和传统化学肥料之间差异显著;括号中的数字表示样本量。P < 0.05或P < 0.01表示分组内部的响应比之间具有显著性差异。The black circle and the error line represent the response ratio and the 95% confidence interval, respectively. If the error line does not go through the zero line, the difference between new fertilizers application and conventional fertilizers application is significant. The digitals inside brackets are the sample sizes. P < 0.05 or P < 0.01 indicate that there is a significant difference between the response ratios within the group. 缺少误差线项目因数据量不足未进行作图分析 Missing error line items were not graph-analyzed due to insufficient data quantity.]Figure 4. The effects of new fertilizers and traditional chemical fertilizers on soil microbial biomass carbon and microbial biomass nitrogen response ratio (RR)2.5 新型肥料和传统化学肥料对土壤酶活性的影响
总体上,施用新型肥料对土壤碳氮代谢酶活性无显著影响。当施氮量 < 150 kg/hm2时,施用新型肥料显著提高土壤碳代谢酶活性 (21.4%),而在其他施氮量范围内对土壤碳代谢酶活性无显著影响。当施氮量在150~200 kg/hm2时,施用新型肥料显著提高土壤氮代谢酶活性 (14.1%),在其他施氮量范围内对土壤氮代谢酶活性无显著影响 (图5)。当土壤pH在6~7时,施用新型肥料分别显著提高土壤碳、氮代谢酶活性24.2%和13.7% (图5)。施用新型肥料显著提高水稻土壤碳代谢酶活性 (15.9%) 和氮代谢酶活性 (7.2%),但对玉米和小麦土壤碳氮代谢酶活性无显著影响 (图5)。施用缓/控释肥显著提高土壤碳氮代谢酶活性 (8.0%和12.7%);脲酶抑制剂显著降低了氮代谢相关酶活性 (3.1%),而在其他情况下效果均不显著。相比之下,施用新型肥料显著增加了土壤磷代谢酶活性 (8.6%) 和氧化相关酶活性 (5.7%)。当氮肥施用量在150~200 kg/hm2时,施用新型肥料显著提高土壤磷代谢酶活性 (11.9%)。土壤pH在7~8时,施用新型肥料显著提高土壤磷代谢酶活性 (24.1%) 和氧化相关酶活性 (16.4%)。同时,施用新型肥料显著提高小麦土壤磷代谢酶活性和氧化相关酶活性 (29.9%和15.9%),但对玉米和水稻土壤磷代谢活性和氧化相关酶活性无显著影响 (图5)。
图 5 新型肥料和传统化学肥料对土壤碳代谢、氮代谢、磷代谢酶活性和氧化相关酶活性响应比的影响[注(Note):图中黑色圆点与误差线分别代表响应比和95%置信区间,若误差线不经过零线,则说明施用新型肥料和传统化学肥料之间差异显著;括号中的数字表示样本量。P < 0.05或P < 0.01表示分组内部的响应比之间具有显著性差异。The black circle and the error line represent the response ratio and the 95% confidence interval, respectively. If the error line does not go through the zero line, the difference between new fertilizers application and conventional fertilizers application is significant. The digitals inside brackets are the sample sizes. P < 0.05 or P < 0.01 indicate that there is a significant difference between the response ratios within the group. 缺少误差线项目因数据量不足未进行作图分析 Missing error line items were not graph-analyzed due to insufficient data quantity.]Figure 5. The effects of new fertilizers and traditional chemical fertilizers on the soil enzymes including C-acq, N-acq, P-acq and OX response ratio (RR)3. 讨论
3.1 新型肥料的增产效应
施用新型肥料可以提高作物产量和肥料利用率,达到增产增效的目的[25]。本研究结果表明,与施用传统化学肥料相比,施用新型肥料能够提高三大作物产量 (8.4%),同时提高了地上部吸氮量 (9.9%) 和氮肥利用率 (36.8%)。陈琨等[26]研究表明,在等量氮素的投入下,新型肥料处理比普通尿素处理的产量增加3.61%~11.36%,同时提高氮素利用率10个百分点以上。周雯雯等[27]研究表明,新型肥料能够提高双季稻产量6.20% ~26.05%。原因可能是传统化学肥料无法满足作物整个生育期生长的需要,而新型肥料在作物生育期内氮素损失较少,而且能满足作物后期的氮素供应,从而提高作物产量、氮素吸收和氮肥利用率[28-31]。然而在不同的施氮水平下,新型肥料对作物的增产效应有所差异。在本研究中,当施氮量 < 150 kg/hm2时三大作物增产幅度最高 (11.5%),其次是在施氮量 ≥ 200 kg/hm2 (9.7%) 和150~200 kg/hm2 (5.6%) 水平,这与苑俊丽等[32]整合分析的结果一致。就作物类型而言,玉米的增产效应最好 (11.3%),其次是小麦 (7.3%) 和水稻 (7.0%)。这可能是由于玉米对氮的吸收可以与新型肥料养分的缓慢释放同步:新型肥料一般在2~3个月内释放氮素,这与玉米在整个生长季节对氮素的需求相匹配[33-34]。此外,当玉米生长早期对氮需求低时,新型肥料可以最大限度地降低土壤氮的有效性,减少土壤氮损失,从而实现作物的增产[35]。本研究发现不同土壤pH对作物增产效果无显著差异,与Feng等[36]的结果不一致,Feng等[36]研究表明,在碱性土壤上施用新型肥料的增产效果最好。原因可能是两个研究中作物类型不同,本研究关注的作物包括水稻、玉米和小麦3种作物,而Feng等[36]关注的是旱地作物 (玉米、小麦和大麦)。本研究中不同类型新型肥料均能显著提高作物产量,这与很多整合分析的研究[11, 37-38]结果一致,研究表明新型肥料 (缓释肥、脲酶抑制剂、硝化抑制剂) 对水稻均有着显著的增产效应[11, 37],Abalos等[38]研究发现脲酶抑制剂和硝化抑制剂不仅能显著提高谷类作物产量,还能提高牧草作物的产量。总之,相比于传统化学肥料,施用新型肥料能够显著提高作物产量。
3.2 新型肥料的土壤生物学活性效应
土壤质量和肥力很大程度上依赖于土壤中微生物量[39],其中,微生物量碳和微生物量氮是参与土壤碳氮循环的重要评价指标[40]。土壤微生物量、酶活性与施肥管理有关,有研究发现施用氮肥降低了微生物量碳[41]和氮循环酶的活性[42]。本研究中施用脲酶抑制剂对微生物量碳氮的影响不显著 (图4),这与张文学等[43]的研究结果一致,原因可能是脲酶抑制剂占据了脲酶水解尿素的活性位置,降低脲酶活性,但是这种作用对土壤微生物量影响较小。施用双抑制剂和缓/控释肥能显著提高微生物量氮 (图4),这与李东坡等[44]和王静等[45]的研究结果一致,李东坡等[44]的研究表明,施用缓/控释氮肥能增加土壤微生物量氮;王静等[45]研究表明,尿素配施硝化抑制剂、配施双抑制剂会显著提升微生物量氮。这可能是因为新型肥料施用后会减少土壤中氮的损失,提高土壤可利用性氮的含量,大量氮素被土壤微生物固持到体内,因此增加了土壤微生物量氮。
土壤酶能够推动土壤中生物化学反应的进行,与土壤质量和土壤肥力有密切的关系,是反映生态系统功能的重要指标[46]。本研究中,施用脲酶抑制剂显著降低了氮代谢相关酶活性 (图5),这与卢维宏等[47]、姚云柯等[48]的结果一致。卢维宏等[47]的研究表明,施用脲酶抑制剂能够降低土壤中脲酶活性;姚云柯等[48]的研究表明,与普通复合肥处理相比,施用脲酶抑制剂能降低脲酶活性 (66.19%)。本研究中施用缓/控释肥显著提高土壤碳氮代谢酶活性,这与金容等[49]的研究结果一致;金容等[49]研究结果表明,与施用普通尿素相比,施用控释肥能够显著提高土壤氮代谢酶活性,原因可能是控释肥能够改善土壤理化性状,为土壤微生物营造良好的生存环境,使得微生物同化更多的氮,从而增加微生物量氮,进而增加脲酶活性[50]。另外,施用新型肥料总体上提高了土壤磷代谢酶活性和氧化相关酶活性 (图5),与刘飞等[51]、井大炜等[52]的研究结果类似。刘飞等[51]和井大炜等[52]的研究表明,与普通肥料相比,施用缓/控释肥能提高土壤中磷酸酶活性。这可能是因为磷酸酶活性与土壤中有效磷含量呈正相关关系,土壤有效磷含量的增加提高了磷酸酶活性[53-54]。
4. 结论
1) 与施用传统化学肥料相比,施用新型肥料后显著提高三大作物 (小麦、玉米、水稻) 的产量 (8.4%),脲酶抑制剂对产量增幅影响最大 (11.1%),其次为硝化抑制剂 (10.2%)、双抑制剂 (9.0%) 和缓/控释肥 (7.7%)。
2) 与施用传统化学肥料相比,施用新型肥料显著提高了作物地上部吸氮量 (9.9%),缓/控释肥、硝化抑制剂和脲酶抑制剂对作物地上部吸氮量的增幅分别为8.8%、12.2%和12.3%。
3) 与施用传统化学肥料相比,施用新型肥料能够显著提高三大作物对氮肥的利用效率,增幅达到36.8%。施用缓/控释肥对作物氮肥利用率的影响最大 (44.1%),双抑制剂、硝化抑制剂和脲酶抑制剂的增产效果分别为23.8%、19.4% 和17.2%。
4) 与施用传统化学肥料相比,施用新型肥料能够显著提高土壤微生物量氮 (14.6%)、土壤磷代谢活性 (8.6%) 和氧化相关酶活性 (5.7%)。其中施用缓控释肥能显著提高土壤微生物氮含量 (22.5%)、碳代谢酶活性 (8%) 和氮代谢酶活性 (12.7%),而施用脲酶抑制剂显著降低了土壤氮代谢相关酶活性 (3.1%)。
-
图 1 新型肥料和传统化学肥料对作物产量响应比的影响
[注(Note):图中黑色圆点与误差线分别代表响应比和 95% 置信区间,若误差线不经过零线,则说明施用新型肥料和传统化学肥料之间差异显著;括号中的数字表示样本量。P < 0.05或P < 0.01表示分组内部的响应比之间具有显著性差异。The black circle and the error line represent the response ratio and the 95% confidence interval, respectively. If the error line does not go through the zero line, the difference between new fertilizers application and conventional fertilizers application is significant. The digitals inside brackets are the sample sizes. P < 0.05 or P < 0.01 indicate that there is a significant difference between the response ratios within the group.]
Figure 1. The effects of new fertilizers and traditional chemical fertilizers on crop yields response ratio (RR)
图 2 新型肥料和传统化学肥料对地上部吸氮量响应比的影响
[注(Note):图中黑色圆点与误差线分别代表响应比和 95% 置信区间,若误差线不经过零线,则说明施用新型肥料和传统化学肥料之间差异显著;括号中的数字表示样本量。P < 0.05或P < 0.01表示分组内部的响应比之间具有显著性差异。The black circle and the error line represent the response ratio and the 95% confidence interval, respectively. If the error line does not go through the zero line, the difference between new fertilizers application and conventional fertilizers application is significant. The digitals inside brackets are the sample sizes. P < 0.05 or P < 0.01 indicate that there is a significant difference between the response ratios within the group.]
Figure 2. The effects of new fertilizers and traditional chemical fertilizers on crop nitrogen uptake response ratio (RR)
图 3 新型肥料和传统化学肥料对氮肥利用效率响应比的影响
[注(Note):图中黑色圆点与误差线分别代表响应比和 95% 置信区间,若误差线不经过零线,则说明施用新型肥料和传统化学肥料之间差异显著;括号中的数字表示样本量。P < 0.05或P < 0.01表示分组内部的响应比之间具有显著性差异。The black circle and the error line represent the response ratio and the 95% confidence interval, respectively. If the error line does not go through the zero line, the difference between new fertilizers application and conventional fertilizers application is significant. The digitals inside brackets are the sample sizes. P < 0.05 or P < 0.01 indicate that there is a significant difference between the response ratios within the group.]
Figure 3. The effects of new fertilizers and traditional chemical fertilizers on nitrogen use efficiency response ratio (RR)
图 4 新型肥料和传统化学肥料对土壤微生物量碳和微生物量氮响应比的影响
[注(Note):图中黑色圆点与误差线分别代表响应比和 95% 置信区间,若误差线不经过零线,则说明施用新型肥料和传统化学肥料之间差异显著;括号中的数字表示样本量。P < 0.05或P < 0.01表示分组内部的响应比之间具有显著性差异。The black circle and the error line represent the response ratio and the 95% confidence interval, respectively. If the error line does not go through the zero line, the difference between new fertilizers application and conventional fertilizers application is significant. The digitals inside brackets are the sample sizes. P < 0.05 or P < 0.01 indicate that there is a significant difference between the response ratios within the group. 缺少误差线项目因数据量不足未进行作图分析 Missing error line items were not graph-analyzed due to insufficient data quantity.]
Figure 4. The effects of new fertilizers and traditional chemical fertilizers on soil microbial biomass carbon and microbial biomass nitrogen response ratio (RR)
图 5 新型肥料和传统化学肥料对土壤碳代谢、氮代谢、磷代谢酶活性和氧化相关酶活性响应比的影响
[注(Note):图中黑色圆点与误差线分别代表响应比和95%置信区间,若误差线不经过零线,则说明施用新型肥料和传统化学肥料之间差异显著;括号中的数字表示样本量。P < 0.05或P < 0.01表示分组内部的响应比之间具有显著性差异。The black circle and the error line represent the response ratio and the 95% confidence interval, respectively. If the error line does not go through the zero line, the difference between new fertilizers application and conventional fertilizers application is significant. The digitals inside brackets are the sample sizes. P < 0.05 or P < 0.01 indicate that there is a significant difference between the response ratios within the group. 缺少误差线项目因数据量不足未进行作图分析 Missing error line items were not graph-analyzed due to insufficient data quantity.]
Figure 5. The effects of new fertilizers and traditional chemical fertilizers on the soil enzymes including C-acq, N-acq, P-acq and OX response ratio (RR)
表 1 试验相关数据分类
Table 1 Classification of experiment data
影响因素 Influence factor 分组 Classification 作物类型 Crop type 小麦、玉米、水稻 Wheat,Maize,Rice 土壤酸碱度 Soil pH pH < 6、6 ≤ pH < 7、7 ≤ pH < 8、pH ≥ 8 氮肥施用量 N rate (kg/hm2) < 150、150~200、 ≥ 200 控释肥类型 Controlled release fertilizer type CRF、UI、NI、DI 注(Note):CRF—缓/控释肥 Controlled release fertilizer; UI—脲酶抑制剂 Urease inhibitor; NI—硝化抑制剂 Nitrification inhibitor; DI—双抑制剂 Double inhibitor. -
[1] 赵秉强, 林治安, 刘增兵. 中国肥料产业未来发展道路——提高肥料利用率减少肥料用量[J]. 磷肥与复肥, 2008, 23(6): 1–4. DOI: 10.3969/j.issn.1007-6220.2008.06.001 Zhao B Q, Lin Z A, Liu Z B. Future development path of China's fertilizer industry––Improving fertilizer utilization rate and reducing fertilizer consumption[J]. Phosphate & Compound Fertilizer, 2008, 23(6): 1–4. DOI: 10.3969/j.issn.1007-6220.2008.06.001
[2] 叶昴成, 陈振华. 提高我国肥料利用率技术的现状研究进展[J]. 种子科技, 2019, 37(8): 111. DOI: 10.3969/j.issn.1005-2690.2019.08.097 Ye M C, Chen Z H. Research progress on improving fertilizer utilization rate technology in China[J]. Seed Science and Technology, 2019, 37(8): 111. DOI: 10.3969/j.issn.1005-2690.2019.08.097
[3] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2016. National Bureau of Statistics of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2016.
[4] 张军伟, 张锦华, 吴方卫. 粮食生产中化肥投入的影响因素研究—基于Durbin模型的分析[J]. 经济地理, 2018, 38(11): 174–182. Zhang J W, Zhang J H, Wu F W. The influencing factors of fertilizer input in grain production: Based on the Durbin model[J]. Economic Geography, 2018, 38(11): 174–182.
[5] 付浩然, 李婷玉, 曹寒冰, 等. 我国化肥减量增效的驱动因素探究[J]. 植物营养与肥料学报, 2020, 26(3): 561–580. Fu H R, Li T Y, Cao H B, et al. Research on the driving factors of fertilizer reduction in China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 561–580.
[6] Zhang X, Davidson E A, Mauzerall D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528: 51–59. DOI: 10.1038/nature15743
[7] Wu Y Y, Xi X C, Tang X, et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China[J]. Proceedings of the National Academy of Sciences, 2018, 115(27): 7010–7015. DOI: 10.1073/pnas.1806645115
[8] Bruinsma J. The resources outlook: By how much do land, water and crop yields need to increase by 2050[A]. Food and Agriculture Organization of the United Nations. Proceedings of the Technical Meeting of Experts on How to Feed the World in 2050[C]. Rome, Italy, 2009. 24–26.
[9] 冯尚善, 崔荣政, 王臣. 我国新型肥料产业发展现状及展望[J]. 磷肥与复肥, 2020, 35(10): 1–3. DOI: 10.3969/j.issn.1007-6220.2020.10.002 Feng S S, Cui R Z, Wang C. Development status and prospect of new fertilizer industry in China[J]. Phosphate & Fertilizer and Compound Fertilizer, 2020, 35(10): 1–3. DOI: 10.3969/j.issn.1007-6220.2020.10.002
[10] 古丽皮叶·艾乃吐拉. 我国肥料的使用现状及新型肥料的发展[J]. 农业与技术, 2016, 36(10): 14. Gulippi E. The current situation of fertilizer use in China and the development of new fertilizers[J]. Agriculture and Technology, 2016, 36(10): 14.
[11] Li T Y, Zhang W F, Yin J, et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem[J]. Global Change Biology, 2018, 24(2): 511–521. DOI: 10.1111/gcb.13918
[12] Xia L L, Shu K L, Chen D L, et al. Can knowledge–based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta–analysis[J]. Global Change Biology, 2017, 23(5): 1917–1925. DOI: 10.1111/gcb.13455
[13] Dawar K, Khan A, Sardar K, et al. Effects of the nitrification inhibitor nitrapyrin and mulch on N2O emission and fertilizer use efficiency using 15N tracing techniques[J]. Science of the Total Environment, 2021, 757: 143739. DOI: 10.1016/j.scitotenv.2020.143739
[14] Fan X L, Li F M. Fertilization with a new type of coated urea: Evaluation for nitrogen efficiency and yield in winter wheat[J]. Journal of Plant Nutrition, 2004, 27(5): 853–865. DOI: 10.1081/PLN-120030675
[15] 李香逸. 不同新型氮肥对春玉米产质量及肥料利用效率的影响[D]. 呼和浩特: 内蒙古农业大学硕士学位论文, 2018. Li X Y. Effects of different new nitrogen fertilizer on yield quality and fertilizer utilization efficiency of spring maize[D]. Hohhot: MS Thesis of Inner Mongolia Agricultural University, 2018.
[16] 郭家萌, 何灵芝, 闫东良, 等. 控释氮肥和尿素配比对不同品种夏玉米氮素累积、转移及其利用效率的影响[J]. 草业学报, 2021, 30(1): 81–95. DOI: 10.11686/cyxb2020067 Guo J M, He L Z, Yan D L, et al. Effects of controlled release nitrogen fertilizer and urea ratio on nitrogen accumulation, transfer and utilization efficiency of summer maize of different varieties[J]. Acta Prataculturae Sinica, 2021, 30(1): 81–95. DOI: 10.11686/cyxb2020067
[17] 徐桂红. 新型肥料在水稻上的应用效果初探[J]. 南方农业, 2020, 14(21): 186–187. Xu G H. Preliminary study on the application effect of new fertilizer on rice[J]. Southern Agriculture, 2020, 14(21): 186–187.
[18] 王建国, 尹金, 郭峰, 等. 新型缓释掺混肥对花生产量和肥料利用的影响[J]. 花生学报, 2020, 49(3): 64–67, 73. Wang J G, Yin J, Guo F, et al. Effect of a new slow-release blend fertilizer on peanut yield and fertilizer utilization[J]. Journal of Peanut Science, 2020, 49(3): 64–67, 73.
[19] 庞媚, 欧小青, 包雪冰, 等. 几种新型肥料对设施甜瓜产量及品质的影响[J]. 中国果菜, 2020, 40(8): 66–69. Pang M, Ou X Q, Bao X B, et al. Effects of several new fertilizers on the yield and quality of facility musk melon[J]. China Fruit & Vegetable, 2020, 40(8): 66–69.
[20] 张俊伶, 张江周, 申建波, 等. 土壤健康与农业绿色发展: 机遇与对策[J]. 土壤学报, 2020, 57(4): 783–796. Zhang J L, Zhang J Z, Shen J B, et al. Soil health and agriculture green development: Opportunities and challenges[J]. Acta Pedologica Sinica, 2020, 57(4): 783–796.
[21] 周丽霞, 丁明懋. 土壤微生物学特性对土壤健康的指示作用[J]. 生物多样性, 2007, 15(2): 162–171. DOI: 10.3321/j.issn:1005-0094.2007.02.007 Zhou L X, Ding M M. Soil microbial characteristics as bio-indicators of soil health[J]. Biodiversity Science, 2007, 15(2): 162–171. DOI: 10.3321/j.issn:1005-0094.2007.02.007
[22] 华建峰, 蒋倩, 施春健, 等. 脲酶/硝化抑制剂对土壤脲酶活性、有效态氮及春小麦产量的影响[J]. 土壤通报, 2008, 39(1): 94–99. DOI: 10.3321/j.issn:0564-3945.2008.01.018 Hua J F, Jiang Q, Shi C J, et al. Effects of urease/nitrification inhibitors on soil urease activity, soil available N and the yield of spring wheat[J]. Chinese Journal of Soil Science, 2008, 39(1): 94–99. DOI: 10.3321/j.issn:0564-3945.2008.01.018
[23] 焦晓光, 梁文举, 陈利军, 等. 脲酶/硝化抑制剂对土壤有效态氮、微生物量氮和小麦氮吸收的影响[J]. 应用生态学报, 2004, 15(10): 1903–1906. DOI: 10.3321/j.issn:1001-9332.2004.10.039 Jiao X G, Liang W J, Chen L J, et al. Effects of urease/nitrification inhibitors on soil available N and microbial biomass N and on N uptake of wheat[J]. Chinese Journal of Applied Ecology, 2004, 15(10): 1903–1906. DOI: 10.3321/j.issn:1001-9332.2004.10.039
[24] Jian S, Li J, Chen J, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis[J]. Soil Biology and Biochemistry, 2016, 101: 32–43. DOI: 10.1016/j.soilbio.2016.07.003
[25] Luo G W, Li L, Friman V P, et al. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis[J]. Soil Biology and Biochemistry, 2018, 124: 105–115. DOI: 10.1016/j.soilbio.2018.06.002
[26] 陈琨, 秦鱼生, 喻华, 等. 控释氮肥对一季中稻产量及氮肥利用率的影响[J]. 西南农业学报, 2018, 31(3): 507–512. Chen K, Qin Y S, Yu H, et al. Effects of controlled-release nitrogen fertilizer on yield and nitrogen use efficiency of rice in one season[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(3): 507–512.
[27] 周雯雯, 贾浩然, 张月, 等. 不同类型新型肥料对双季稻产量、氮肥利用率和经济效益的影响[J]. 植物营养与肥料学报, 2020, 26(4): 657–668. DOI: 10.11674/zwyf.19269 Zhou W W, Jia H R, Zhang Y, et al. Effects of different types of new fertilizers on yield, N use efficiency and economic benefits of double cropping rice[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 657–668. DOI: 10.11674/zwyf.19269
[28] 连煜阳, 刘静, 金书秦. 农业面源污染治理探析––从新型肥料生产环节视角[J]. 中国环境管理, 2019, 11(2): 18–22. Lian Y Y, Liu J, Jin S Q. Analysis of agricultural non-point source pollution control––from the perspective of new fertilizer production link[J]. Environmental Management in China, 2019, 11(2): 18–22.
[29] 杨阳, 刘灿华, 葛树春, 等. 减量配施新型基质缓释肥对水稻产量及氮肥利用率的影响[J]. 安徽农业大学学报, 2020, 47(3): 442–447. Yang Y, Liu C H, Ge S C, et al. Effects of reducing and applying new substrates slow release fertilizer on rice yield and nitrogen efficiency[J]. Journal of Anhui Agricultural University, 2020, 47(3): 442–447.
[30] 冯守疆, 车宗贤, 赵欣楠, 等. 长效缓释小麦专用肥施用效果研究[J]. 甘肃农业科技, 2018, (11): 68–70. DOI: 10.3969/j.issn.1001-1463.2018.11.019 Feng S J, Che Z X, Zhao X N, et al. Study on the effect of long-term sustained release wheat special fertilizer application[J]. Gansu Agricultural Science and Technology, 2018, (11): 68–70. DOI: 10.3969/j.issn.1001-1463.2018.11.019
[31] 罗培宇, 霍仁杰, 郭静, 等. 几种生化抑制剂组合对棕壤玉米氮素吸收及产量的影响[J]. 沈阳农业大学学报, 2020, 51(4): 454–461. Luo P Y, Huo R J, Guo J, et al. Effects of several biochemical inhibitor combinations on nitrogen uptake and yield of maize in brown soil maize[J]. Journal of Shenyang Agricultural University, 2020, 51(4): 454–461.
[32] 苑俊丽, 梁新强, 李亮, 等. 中国水稻产量和氮素吸收量对高效氮肥响应的整合分析[J]. 中国农业科学, 2014, 47(17): 3414–3423. DOI: 10.3864/j.issn.0578-1752.2014.17.009 Yuan J L, Liang X Q, Li L, et al. Response of rice yield and nitrogen uptake to enhanced efficiency nitrogen fertilizer in China: A meta-analysis[J]. Scientia Agricultura Sinica, 2014, 47(17): 3414–3423. DOI: 10.3864/j.issn.0578-1752.2014.17.009
[33] Geng J B, Chen J Q, Sun Y B, et al. Controlled release urea improved nitrogen use efficiency and yield of wheat and corn[J]. Agronomy Journal, 2016, 108(4): 1666–1673. DOI: 10.2134/agronj2015.0468
[34] Guo J M, Wang Y H, Blaylock A D, et al. Mixture of controlled release and normal urea to optimize nitrogen management for high–yielding (> 15 Mg·ha−1) maize[J]. Field Crops Research, 2017, 204: 23–30. DOI: 10.1016/j.fcr.2016.12.021
[35] Akiyama H, Yan X Y, Yagi K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis[J]. Global Change Biology, 2010, 16(6): 1837–1846.
[36] Feng J F, Li F B, Deng A X, et al. Integrated assessment of the impact of enhanced-efficiency nitrogen fertilizer on N2O emission and crop yield[J]. Agriculture, Ecosystems & Environment, 2016, 231: 218–228.
[37] Linquist B A, Liu L J, Kessel C V, et al. Enhanced efficiency nitrogen fertilizers for rice systems: Meta-analysis of yield and nitrogen uptake[J]. Field Crops Research, 2013, 154: 246–254. DOI: 10.1016/j.fcr.2013.08.014
[38] Abalos D, Jeffery S, Sanz-CobenaA, et al. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency[J]. Agriculture, Ecosystems & Environment, 2014, 189: 136–144.
[39] Karlen D L, Gardner J C, Rosek M J. A soil quality framework for evaluating the impact of CRP[J]. Journal of Production Agriculture, 1998, 11(1): 56–60. DOI: 10.2134/jpa1998.0056
[40] 孔静, 刘双, 徐林林, 等. 控释肥膜壳对土壤酶活性及微生物量碳氮磷的影响[J]. 河北科技师范学院学报, 2012, 26(3): 34–37. Kong J, Liu S, Xu L L, et al. Effects of membrane shell of controlled-release fertilizer on soil enzyme activity and microbial biomass C, N and P[J]. Journal of Hebei Normal University of Science and Technology, 2012, 26(3): 34–37.
[41] 王晓娟, 何海军, 连晓荣, 等. 整合分析不同施肥运筹下中国农田土壤微生物量的变化特征[J]. 土壤与作物, 2019, 8(2): 119–128. DOI: 10.11689/j.issn.2095-2961.2019.02.002 Wang X J, He H J, Lian X R, et al. The change characteristics of soil microbial biomass in Chinese farmland under different fertilization strategies were analyzed[J]. Soil and Crops, 2019, 8(2): 119–128. DOI: 10.11689/j.issn.2095-2961.2019.02.002
[42] Treseder K. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies[J]. Ecology Letters, 2008, 11(10): 1111–1120. DOI: 10.1111/j.1461-0248.2008.01230.x
[43] 张文学, 王萍, 孙刚, 等. 脲酶抑制剂不同用量对土壤氮素供应的影响[J]. 中国土壤与肥料, 2018, (6): 38–44, 52. DOI: 10.11838/sfsc.20180606 Zhang W X, Wang P, Sun G, et al. Effect of different dosage of urease inhibitor on nitrogen supply in soil[J]. Soil and Fertilizer Sciences in China, 2018, (6): 38–44, 52. DOI: 10.11838/sfsc.20180606
[44] 李东坡, 武志杰, 梁成华, 等. 施用缓/控释氮肥对玉米苗期土壤生物学活性的影响[J]. 生态与农村环境学报, 2006, 22(2): 21–25. DOI: 10.3969/j.issn.1673-4831.2006.02.005 LI D P, Wu Z J, Liang C H, et al. Effects of slow/controlled release nitrogen fertilizer on soil biological activity at seedling stage of maize[J]. Journal of Ecology and Rural Environment, 2006, 22(2): 21–25. DOI: 10.3969/j.issn.1673-4831.2006.02.005
[45] 王静, 王允青, 张凤芝, 等. 脲酶/硝化抑制剂对沿淮平原水稻产量、氮肥利用率及稻田氮素的影响[J]. 水土保持学报, 2019, 33(5): 211–216. Wang J, Wang Y Q, Zhang F Z, et al. Effects of urease/nitrification inhibitor on rice yield, nitrogen utilization rate and nitrogen in rice field along Huaihe river plain[J]. Journal of Soil and Water Conservation, 2019, 33(5): 211–216.
[46] 叶协锋, 杨超, 李正, 等. 绿肥对植烟土壤酶活性及土壤肥力的影响[J]. 植物营养与肥料学报, 2013, 19(2): 445–454. DOI: 10.11674/zwyf.2013.0222 Ye X F, Yang C, Li Z, et al. Effects of green manure on soil enzyme activity and soil fertility in tobacco planting soil[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(2): 445–454. DOI: 10.11674/zwyf.2013.0222
[47] 卢维宏, 张乃明, 张丽, 等. 增效肥料对设施栽培小白菜生长及土壤酶活性的影响[J]. 南方农业学报, 2019, 50(9): 2022–2028. Lu W H, Zhang N M, Zhang L, et al. Effects of synergistic fertilizer on the growth and soil enzyme activity of Chinese cabbage in facility cultivation[J]. Journal of Southern Agriculture, 2019, 50(9): 2022–2028.
[48] 姚云柯, 徐卫红, 周豪, 等. 脲酶/硝化抑制剂缓释肥对番茄养分吸收和土壤肥力的影响[J]. 西南农业学报, 2018, 31(4): 748–753. Yao Y K, Xu W H, Zhou H, et al. Effects of urease/nitrification inhibitor slow-release fertilizer on nutrient uptake and soil fertility of tomato[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(4): 748–753.
[49] 金容, 郭萍, 周芳, 等. 控释氮肥比例对玉米氮代谢关键酶活性及干物质积累的影响[J]. 四川农业大学学报, 2018, 36(6): 729–736. Jin R, Guo P, Zhou F, et al. Effects of proportion of controlled release nitrogen fertilizer on the activity of key enzymes in nitrogen metabolism and dry matter accumulation in maize[J]. Journal of Sichuan Agricultural University, 2018, 36(6): 729–736.
[50] 杨海滨, 李中林, 邓敏, 等. 不同施肥措施对重庆茶园土壤氮转化酶活性的影响[J]. 应用与环境生物学报, 2020, 26(5): 1107–1114. Yang H B, Li Z L, Deng M, et al. Effects of different fertilization measures on soil nitrogen invertase activity of tea plantation in Chongqing[J]. Chinese Journal of Applied & Environmental Biology, 2020, 26(5): 1107–1114.
[51] 刘飞, 诸葛玉平, 王会, 等. 控释肥对马铃薯生长及土壤酶活性的影响[J]. 水土保持学报, 2011, 25(2): 185–188, 202. Liu F, Zhuge Y P, Wang H, et al. Effects of controlled-release fertilizer on potato growth and soil enzyme activity[J]. Journal of Soil and Water Conservation, 2011, 25(2): 185–188, 202.
[52] 井大炜, 杨广怀, 马文丽, 等. 控释BB肥对西瓜生长期土壤酶活性的影响[J]. 中国农学通报, 2009, 25(16): 150–152. Jing D W, Yang G H, Ma W L, et al. Effect of controlled-release BB fertilizer on soil enzyme activity during watermelon growth period[J]. Chinese Agricultural Science Bulletin, 2009, 25(16): 150–152.
[53] 张迪, 邓旭, 张青, 等. 不同栽植年限、土层深度苹果梨园土壤中磷酸酶与磷素变化研究[J]. 延边大学农学学报, 2020, 42(1): 8–14. Zhang D, Deng X, Zhang Q, et al. Changes of phosphatase and phosphorus in the soil of apple and pear orchard in different planting years and depth[J]. Agricultural Journal of Yanbian University, 2020, 42(1): 8–14.
[54] 尚霄丽, 张建鹏, 李涵, 等. 不同施肥方式对桃生长及土壤养分的影响[J]. 经济林研究, 2018, 36(3): 172–175. Shang X L, Zhang J P, Li H, et al. Effects of different fertilization methods on peach growth and soil nutrients[J]. Non-wood Forest Research, 2018, 36(3): 172–175.
-
期刊类型引用(31)
1. 黄亚妮,杨旭,林枫,陈鑫,魏素君. 减量施用腐殖酸复合肥对玉米生长性状及产量的影响. 现代农业科技. 2025(01): 8-10 . 百度学术
2. 刘文志,田先武,张亚楠,杜佳朋,刘思宇,刘月华,于文清,李鹏. 土地类芽胞杆菌NK3-4和有机肥对水稻产量及根际微生物的影响. 土壤通报. 2025(01): 238-253 . 百度学术
3. 毛家伟,杨永辉,张运红,李丙奇,韩伟锋,高翠民,刘小奇. 复合肥中添加不同比例腐殖酸对花生产量、品质及氮磷利用效率的影响. 花生学报. 2025(01): 44-51 . 百度学术
4. 翟效俊,刘新宇,李智,郭明月,张朝春,王智. 新型控释肥与有机物料配施对水稻产量及氮素利用效率的影响. 江苏农业科学. 2025(02): 44-51 . 百度学术
5. 王佳旭,张飞,张旷野,柯福来,王艳秋,卢峰,朱凯. 减氮增施DMPP对高粱氮素吸收与利用的影响. 作物杂志. 2024(01): 126-131 . 百度学术
6. 薛惠云,李倩,郭东炜,张志勇. 不同氮肥组合对花生后期生长及产量的影响. 河南科技学院学报(自然科学版). 2024(03): 19-27 . 百度学术
7. 马艳雨,蒋梦珂,胡雨彤,冯耀祖,张少民,贾宏涛. 施用不同肥料对藜麦光合生理特性的影响. 天津农业科学. 2024(05): 1-7 . 百度学术
8. 耿若鑫,黑泽文,油伦成,舒昱霖,汪洋,李升东,曲明山,石颜通,张凯烨,毕香君,田培雨,赵富林,张卫峰,陈永亮. 华北小麦施用脲铵氮肥实现轻简施肥的可行性及技术措施. 植物营养与肥料学报. 2024(06): 1103-1117 . 本站查看
9. 苗运彩,何铁虎,刘德燕,丁维新. 抑制剂和包膜尿素对河套灌区土壤养分含量和向日葵产量的影响. 中国农学通报. 2024(23): 92-98 . 百度学术
10. 苏嘉颖,汤佳玮,支玉鑫,余淋,侯建霞,熊启中,陈勇,陈骏,李慧敏,景建元,罗来超,柴如山,张卫峰. 巢湖流域不同栽培方式对水稻产量和氮肥利用率及经济效益的影响. 安徽农业大学学报. 2024(04): 677-682 . 百度学术
11. 蔡连凤,王学霞,王甲辰,曹兵,魏丹,梁丽娜. 不同施氮措施对麦玉轮作系统N_2O排放的影响. 环境科学. 2024(10): 6148-6156 . 百度学术
12. 郭翠莲,付洁,胡青,陆斌. 半焦肥施用量对油橄榄生长及土壤微生物群落的影响. 生态产业科学与磷氟工程. 2024(10): 65-72 . 百度学术
13. 康丽霞,罗维贵,侯振安,闵伟,刘涛. 硝化抑制剂影响中国农田氧化亚氮排放、主要作物产量及氮肥利用率的Meta分析. 中国农学通报. 2024(32): 107-115 . 百度学术
14. 张泽华,叶含春,王振华,李文昊,李海强,刘健. 等氮配施脲酶抑制剂对滴灌棉花生长发育和产量及品质的影响. 新疆农业科学. 2024(09): 2103-2111 . 百度学术
15. 张宝冲,任志杰,田艳艳,杨雪,叶优良,张洁,李任丰,郭景丽,赵亚南. 我国小麦和玉米施用腐植酸效果的整合分析. 植物营养与肥料学报. 2024(12): 2318-2330 . 本站查看
16. 侯朋福,薛利祥,袁文胜,曹帅,刘颖多,薛利红,杨林章. 缓控释肥深施对黏性土壤麦田氮素去向的影响. 环境科学. 2023(01): 473-481 . 百度学术
17. 董玉兵,董青君,纪力,李卫红,陈川,庄春,章安康. 硝化抑制剂对水稻秧苗生长及土壤养分变化的影响. 江苏农业科学. 2023(04): 58-64 . 百度学术
18. 丁文成,何萍,周卫. 我国新型肥料产业发展战略研究. 植物营养与肥料学报. 2023(02): 201-221 . 本站查看
19. 张孟孟,何招亮,王成雨,张海鹏,丁文金,孙孝根. 5种新型肥料土壤养分供给特征对夏玉米光合特性及产量的影响. 安徽农业大学学报. 2023(01): 22-28 . 百度学术
20. 张可,李东坡,杜艳娣,薛妍,宋玉超,张艺籍,李永华,郑野,张金明,崔永坤. 包膜与稳定性氮肥改善棕壤理化和生物学肥力并延缓酸化的效应. 植物营养与肥料学报. 2023(03): 472-482 . 本站查看
21. 王庆彬,向亚美,李芳霞,张自翔,彭春娥,孙健,史磊,孙秀丽,赵红玲,张民. 高效液相色谱-荧光检测多类型肥料中宛氏拟青霉SJ1提取物. 分析科学学报. 2023(03): 319-323 . 百度学术
22. 徐新朋,串丽敏,何萍,周卫. 基于产量反应和农学效率的小麦智能化推荐施肥方法研究. 植物营养与肥料学报. 2023(07): 1190-1201 . 本站查看
23. 金修宽,李明悦,高伟,高宝岩,高贤彪. 包膜控释氮肥与普通氮肥配施对小站稻产量的影响. 天津农业科学. 2023(S1): 123-126 . 百度学术
24. 蔡焕杰,李府阳,赵政鑫,张学桂,刘轩昂,王茂东. 施氮对中国棉田产量和水分利用效率影响的Meta分析. 农业机械学报. 2023(12): 316-326 . 百度学术
25. 胡壮壮,王路路,姜雪冰,尹毛珠,姜磊,姜瀚原,沈维良. 腐植酸钾复合肥在玉米上的肥效试验分析. 中国农学通报. 2023(36): 33-39 . 百度学术
26. 白胜军,徐灵颖,辛佳,钱成宇,权玲,张文太. 不同施肥处理下盆栽土壤通气性的变化. 云南农业大学学报(自然科学). 2023(06): 1073-1078 . 百度学术
27. 曹兵,丁紫娟,侯俊,马孝卫,王学霞,王磊,王甲辰,邹国元,倪小会,陈延华. 控释掺混肥结合增密对水稻氮肥利用效率和氨挥发的影响. 农业工程学报. 2022(13): 56-63 . 百度学术
28. 高丽超,郑文魁,郭新送,程运龙,张民. 控释肥配施玉米秸秆对麦季土壤酶活性及养分的影响. 水土保持学报. 2022(06): 356-363 . 百度学术
29. 张运红,毛家伟,刘小奇,钱凯,杨明堤,徐祺豪. 不同腐殖酸复合肥对玉米产量、品质及养分吸收利用的影响. 天津农业科学. 2022(11): 29-34 . 百度学术
30. 王建国,张佳蕾,郭峰,杨莎,高华鑫,张春艳,赵红军,李新国,万书波. 花生专用缓释复混肥分层条施促进花生根系生长、产量形成及氮素利用. 植物营养与肥料学报. 2022(12): 2274-2286 . 本站查看
31. 华一帆,秦际远,王洁,张秀,初金鹏,郑飞娜,于海涛,贺明荣,代兴龙. 播种方式与缓控释氮肥一次性基施对冬小麦干物质积累转运和产量的影响. 植物营养与肥料学报. 2022(12): 2185-2200 . 本站查看
其他类型引用(22)