• ISSN 1008-505X
  • CN 11-3996/S

翻压紫云英对双季稻产量、镉吸收及转运的影响

朱启东, 鲁艳红, 廖育林, 高雅洁, 谢雪, 孙玉桃, 曹卫东, 聂军

朱启东, 鲁艳红, 廖育林, 高雅洁, 谢雪, 孙玉桃, 曹卫东, 聂军. 翻压紫云英对双季稻产量、镉吸收及转运的影响[J]. 植物营养与肥料学报, 2021, 27(11): 1949-1958. DOI: 10.11674/zwyf.2021222
引用本文: 朱启东, 鲁艳红, 廖育林, 高雅洁, 谢雪, 孙玉桃, 曹卫东, 聂军. 翻压紫云英对双季稻产量、镉吸收及转运的影响[J]. 植物营养与肥料学报, 2021, 27(11): 1949-1958. DOI: 10.11674/zwyf.2021222
ZHU Qi-dong, LU Yan-hong, LIAO Yu-lin, GAO Ya-jie, XIE Xue, SUN Yu-tao, CAO Wei-dong, NIE Jun. Effects of milk vetch (Astragalus sinicus) on yield, cadmium absorption and translocation of double-cropping rice[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(11): 1949-1958. DOI: 10.11674/zwyf.2021222
Citation: ZHU Qi-dong, LU Yan-hong, LIAO Yu-lin, GAO Ya-jie, XIE Xue, SUN Yu-tao, CAO Wei-dong, NIE Jun. Effects of milk vetch (Astragalus sinicus) on yield, cadmium absorption and translocation of double-cropping rice[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(11): 1949-1958. DOI: 10.11674/zwyf.2021222

翻压紫云英对双季稻产量、镉吸收及转运的影响

基金项目: 国家重点研发计划项目(2021YFD1700200);现代农业产业技术体系建设专项资金(CARS-22-G-11);国家自然科学基金联合基金项目(U19A2046);湖南省农业科技创新资金项目(2020CX69, 2020CX68)。
详细信息
    作者简介:

    朱启东 E-mail: zqd3726@126.com

    通讯作者:

    聂军 E-mail: niejun197@163.com

Effects of milk vetch (Astragalus sinicus) on yield, cadmium absorption and translocation of double-cropping rice

  • 摘要:
    目的 

    探讨紫云英在水稻生产中的增产降镉(Cd)效应以及降Cd的生理机制。

    方法 

    5年田间微区定位试验设4个处理:不施任何肥料(CK)、翻压紫云英(GM)、单施化肥(F)和紫云英翻压配施化肥(F+GM),翻压紫云英的处理冬闲田种植紫云英,作为绿肥在早稻插秧前翻压还田。在双季稻分蘖期、灌浆期和成熟期采集水稻植株样品,分为根、茎叶、籽粒3个部分,测定其Cd含量。

    结果 

    1)与CK相比,F+GM与F处理5年水稻产量显著增加,GM处理从2017年起增产显著;与F处理相比,F+GM处理5年水稻均增产,其中2016与2020年显著增产。2)翻压紫云英对水稻同一部位在不同时期的降Cd效应不同。早稻GM处理根Cd含量在分蘖期、灌浆期和成熟期均显著低于CK,晚稻则无显著差异;早稻的GM处理茎叶Cd含量在灌浆期显著低于CK,晚稻的无显著差异;早稻的GM处理籽粒Cd含量在灌浆期和成熟期均显著低于CK(分别降低85.7%和57.6%),晚稻的无显著差异。早稻的F+GM处理根Cd含量在分蘖期、灌浆期和成熟期均显著低于F处理,晚稻的则无显著差异;早稻的F+GM处理茎叶Cd含量在分蘖期显著低于F处理,晚稻的无显著差异。3)翻压紫云英下水稻不同时期Cd转运有差异。早稻分蘖期F+GM处理的根–茎叶Cd转运系数显著高于CK与F处理,成熟期GM处理的茎叶–籽粒Cd转运系数显著低于CK,降幅为52.2%;晚稻则无显著差异。4)F+GM和GM处理根与籽粒Cd累积量均较低,其根部累积量显著低于F处理;GM处理早稻籽粒Cd累积量显著低于F处理;而F+GM晚稻茎叶Cd累积量则显著高于CK。F+GM与GM处理籽粒Cd分配比例低于CK与F处理,F+GM处理的茎叶Cd分配比例高于F处理,GM处理的茎叶Cd分配比例高于CK。5)早稻各处理的土壤总Cd含量差异不显著,晚稻则表现为GM处理显著低于CK。早稻的GM与F+GM处理土壤有效Cd含量显著低于CK,晚稻的则无显著差异。

    结论 

    翻压紫云英可增加水稻产量,同时具有较好的降Cd效应。翻压紫云英的降Cd生理机制为:一是可降低土壤有效Cd含量,从而降低水稻Cd含量;二是可降低茎叶–籽粒间的Cd转运系数,减弱向籽粒的转运能力,降低水稻籽粒中Cd的累积,进而生产出Cd含量低于国家安全限量的稻米。

    Abstract:
    Objectives 

    We assessed the effects of milk vetch on rice yield, mitigation of cadmium (Cd) toxicity in rice, and the physiological mechanism underlying Cd mitigation.

    Methods 

    A 5-year field micro-compartment experiment was conducted. The experimental treatments were fertilizer–free (CK), milk vetch (GM), chemical fertilizer (F), and milk vetch with chemical fertilizer (F+GM). The milk vetch was returned to the field as winter planting green manure. Rice plant material was sampled at tillering, filling and maturity stage of double-cropping rice. Cd content in root, stem and leaf, and grain were analyzed. The pH, total Cd and available Cd content in 0–20 cm soil layer were analyzed after rice harvest.

    Results 

    1) Compared with CK, the rice yield of F+GM and F treatment increased significantly, GM treatment increased significantly from 2017. Compared with F, the rice yield of F+GM treatment increased, especially in 2016 and 2020. 2) The Cd reduction effects of returning milk vetch on the same part of rice at different stages were different. The Cd content of early rice root of GM treatment was significantly lower than CK in tillering, filling and maturity stage, but there was no significant difference in late rice. The Cd content in stem and leaf of early rice GM treatment was significantly lower than CK at grain filling stage, but there was no significant difference in late rice. The content of Cd in grain of early rice, GM treatment was significantly lower than that of CK at grain filling and maturity stage (decreased by 85.7% and 57.6% respectively), and there was no significant difference in late rice. The Cd content of root in early rice, F+GM treatment was significantly lower than F at tillering, filling and maturity stage, but there was no significant difference in late rice. The Cd content in stem and leaf of early rice F+GM treatment was significantly lower than that of F at tillering stage, but there was no significant difference in late rice. 3) There were differences in Cd transport in rice at different stages under the return milk vetch. In early rice, the root-stem leaf Cd transport coefficient of F+GM treatment was significantly higher than F and CK at tillering stage. The stem and leaf-grain Cd transport coefficient of GM treatment was significantly lower than CK at maturity, with a decrease of 52.2%. There was no significant difference in late rice. 4) The accumulation of Cd in the roots of F+GM and GM treatments was significantly lower than that of F; the Cd accumulation of early rice grains in GM treatment was significantly lower than that of F; and the Cd accumulation of stems and leaves of F+GM late rice was significantly higher than that of CK. The distribution ratio of Cd in the grains of F+GM and GM is lower than that of CK and F, the distribution ratio of Cd in stems and leaves of F+GM is higher than that of F, and the distribution ratio of Cd in stems and leaves of GM is higher than that of CK. 5) There was no significant difference in soil total Cd content among early rice, while GM treatment was significantly lower than CK in late rice. Compared with CK, the soil available Cd of early rice of GM and F+GM was decreased significantly, and no significant difference in late rice.

    Conclusions 

    Returning milk vetch to soil proved to be effective in increasing rice yield and decreasing Cd content in rice. The two reasons for the positive effects of the milk vetch were: (1) the decreased availability of soil Cd reduced Cd absorption by rice; and (2) the reduced transport coefficient of Cd from stems and leaves to grains at maturing stage made the rice Cd content lower than the safety limit recommended by the National standard.

  • 近年来随着城镇化和工业的快速发展,工业“三废”排放量逐渐增大,同时为满足我国巨大的粮食数量需求,农业生产也在迅速发展,生产过程中产生的废弃物也在快速增加,内外因素作用下,我国农业生态环境中的重金属含量逐步增加。重金属元素经过作物吸收富集,通过食物链进入人体[1],对我国粮食安全和居民健康形成严重的威胁[2],以重金属Cd的危害最为严重,现已成为农田重金属污染的主要来源之一[3-4]。在这样的形势下,必须尽早抑制Cd污染在我国农业生产中的威胁,以保证我国粮食质量安全。

    紫云英属于豆科绿肥,是一种较为优质的有机肥源,紫云英的种植利用对我国农业生产有着重要作用,其有利于培肥土壤[5]、改善土壤质量[6-7]、增加产量[8]。同时,紫云英的利用有效提高稻田土壤有机质含量[9],而有机质会对土壤Cd离子产生一定的吸附效果[10],有机质含量较高的土壤对Cd离子的吸附更强。此外,紫云英还田可改善土壤的pH[11],进而改变土壤Cd离子的活性。

    当前对于紫云英还田对后季作物Cd累积的影响效果仍不是很明确。吴浩杰等[12]认为在Cd污染地区翻压紫云英,可使稻谷、稻草及整株水稻Cd含量分别下降23.8%、50.2%和40.8%。紫云英还田有效降低水稻对Cd的吸收[13],缓解Cd污染对水稻造成的负面影响。而范晶晶等[14]则认为紫云英还田后,水稻根对Cd的吸收量增加4.22%。值得注意的是,前人的研究重点是关注Cd在水稻植株中的累积,对于在紫云英的利用下Cd进入水稻植株体内的转运与分配方面关注相对较少。而水稻各部分对Cd的积累能力存在很大差异[15-16]。为进一步明确紫云英还田对水稻Cd吸收的影响以及对水稻植株体内Cd转运与分配的影响,本研究采用田间微区试验,研究在轻度Cd污染稻田土壤上,连续5年翻压紫云英对水稻产量及其不同部位Cd含量与稻田土壤Cd含量的影响,探讨连续5年紫云英还田对水稻籽粒产量及水稻Cd吸收与转运的影响。为指导处于轻度Cd污染双季稻区域如何进行农业安全生产提供有力理论依据,对于保证我国粮食安全、改善农业生态环境具有十分重要的意义。

    本试验开始于2016年,试验地点位于湖南省农业科学院土壤肥料研究所试验基地,该地位于季风气候区,年降水量在1400 mm左右,降水主要集中在春、夏两季,平均气温为16.8℃。供试土壤为第四纪红土发育而成的红黄泥,其基础理化性状:pH 6.26,有机质31.5 g/kg、全氮1.86 g/kg、全磷0.74 g/kg、全钾12.5 g/kg,水解性氮213 mg/kg、有效磷31.3 mg/kg、速效钾111 mg/kg;总Cd含量0.351 mg/kg、有效Cd含量0.125 mg/kg。试验所用早稻为常规稻‘湘早籼32号’,晚稻为杂交稻‘深优9586’。

    本试验为田间微区试验,小区面积为1.34 m×1.69 m=2.25 m2,随机区组设计,3次重复,4个处理:1) CK,不施用任何肥料;2) GM,原田翻压紫云英,紫云英播种量为37.5 kg/hm2;3) F,施用化肥,化肥施用量为早稻N 150 kg/hm2、P2O5 75 kg/hm2、K2O 90 kg/hm2,晚稻为N 180 kg/hm2、P2O5 45 kg/hm2、K2O 120 kg/hm2;4) F+GM,施用化肥且翻压紫云英,化肥用量同F处理,紫云英播种量同GM处理。氮、磷和钾肥分别用尿素、钙镁磷肥和氯化钾,氮肥分两次分别在每年早、晚稻移栽前(70%)和分蘖期(30%)施用,磷肥全部在每年早、晚稻移栽前基施,钾肥分两次分别在每年早、晚稻移栽前(50%)和分蘖期(50%)施用,基肥于水稻移栽前1天施入,立即用铁齿耙耖入表土下5 cm的深度,追肥为移栽后10~15天。紫云英于每年早稻移栽前7天鲜草翻压入田。移栽密度早、晚稻均为20 cm×20 cm。其他田间管理措施与当地常规管理一致。

    试验开展前采集0—20 cm土层土样,用于测定分析土壤的基本理化性质。从2016至2020年,每年早、晚稻成熟后将水稻收割,每个小区单打单晒,进行测产。在2020年双季稻的3个生育时期(分蘖期、灌浆期和成熟期)采集水稻植株样,每个小区采集具有代表性的3蔸植株样,分成根、茎叶、籽粒3部位后置于烘箱中105℃杀青30 min,70℃烘干至恒重,粉碎,测定其Cd含量。双季稻成熟收割后使用竹子做的土钻采集土壤样品,每个小区采用五点取样法取土5钻,各小区单独混匀后置于阴凉处晾干,磨碎先过0.90 mm筛,用于测定土壤pH和有效Cd含量,再过0.15 mm筛,用于测定全Cd含量,分析测定方法参考《土壤农化分析(第三版)》[17]

    Cd的转运系数(Cd transport coefficient)(A-B)=B器官中Cd含量/A器官中Cd含量[18]

    数据处理用Microsoft Excel 2010,统计分析用SPSS 20,作图则用Origin 9软件。

    图1可看出,与CK相比,F和F+GM处理可显著增加双季稻产量,GM处理也从2017年起增产达到显著水平。与F处理相比,F+GM处理双季稻各年产量均有增加,2016和2020年增产达到了显著水平;与GM处理相比,F和F+GM处理5年水稻增产均达到显著水平(P < 0.05)。

    图  1  2016—2020年双季稻产量年际变化
    [注(Note):CK—无肥对照 No fertilizer control; F—单施化肥 Only applying chemical fertilizer; GM—翻压紫云英 Planting and returning milk vetch; F+GM—化肥配合紫云英翻压 Chemical fertilizer plus milk vetch returning. 折线上不同小写字母表示同一年处理间产量差异显著 (Duncan, P < 0.05) Different small letters above the lines indicate significant difference among treatments in the same year (Duncan, P < 0.05).]
    Figure  1.  Annual variation of double-cropping rice yield from 2016 to 2020

    表1可知,早稻植株Cd含量随着水稻生育期推移而增加,植株各部位Cd含量的高低顺序为根>茎叶>籽粒。3个生育期,CK处理植株Cd含量均处于最高;单施化肥(F处理)对分蘖期茎叶和根部的Cd含量无显著影响,但显著降低了灌浆期籽粒、茎叶和根部的Cd含量,显著降低了成熟期根部和籽粒中的Cd含量。GM与CK相比,GM早稻根部Cd含量在分蘖期、灌浆期和成熟期均显著低于CK (P < 0.05);茎叶Cd含量只在灌浆期显著低于CK;GM处理灌浆期和成熟期籽粒Cd含量均显著低于CK (P < 0.05),降幅分别达到了85.7%和57.6%。GM与F处理相比,除了成熟期茎叶Cd含量高于F处理之外,GM植株Cd含量均低于F处理,分蘖期根Cd含量GM显著低于F处理,且GM处理灌浆期和成熟期籽粒Cd含量分别比F处理降低20.0%和33.3%。F+GM与CK相比,F+GM处理Cd含量均低于CK,除了成熟期的茎叶Cd含量外,其余均达到显著差异水平(P < 0.05),F+GM处理的灌浆期和成熟期籽粒Cd含量分别比CK降低92.9%、48.5%。F+GM与F处理相比,F+GM处理的植株Cd含量均低于F,其中根部Cd含量的差异均达到显著水平(P < 0.05),F+GM处理的灌浆期和成熟期籽粒Cd含量低于F,降幅分别为60.0%、19.0%。

    表  1  不同处理早稻植株Cd含量(mg/kg)
    Table  1.  Cd content in early rice with different treatments
    部位 Part处理 Treatment分蘖期 Tillering灌浆期 Filling成熟期 Maturity
    籽粒 GrainCK0.28±0.03 a0.33±0.05 a
    GM0.04±0.02 b0.14±0.05 b
    F0.05±0.02 b0.21±0.05 b
    F+GM0.02±0.01 b0.17±0.06 b
    茎叶 Stem and leafCK0.07±0.01 a0.82±0.22 a1.48±0.14 a
    GM0.05±0.01 ab0.08±0.01 b1.35±0.50 a
    F0.07±0.01 a0.12±0.06 b1.24±0.18 a
    F+GM0.04±0.01 b0.05±0.03 b0.93±0.21 a
    根 RootCK0.56±0.07 a2.54±0.32 a8.71±0.12 a
    GM0.28±0.03 b0.50±0.01 b5.49±0.04 b
    F0.56±0.04 a0.54±0.03 b5.63±0.38 b
    F+GM0.20±0.03 b0.12±0.02 c3.91±0.19 c
    注(Note):CK—无肥对照 No fertilizer control; F—单施化肥 Only applying chemical fertilizer; GM—翻压紫云英 Planting and returning milk vetch; F+GM—化肥配合紫云英翻压 Chemical fertilizer plus milk vetch returning. 同列数据后不同字母表示同一部位处理间差异达 0.05 显著水平 (Duncan, P < 0.05) Values followed by different letters in the same column indicate significant difference among treatments in the same part at 0.05 level (Duncan, P < 0.05) .
    下载: 导出CSV 
    | 显示表格

    CK与F处理早稻成熟期籽粒Cd含量均高于0.2 mg/kg的国家限量标准(GB 2762—2017《食品安全国家标准食品中污染物限量》),存在安全风险,而GM与F+GM处理低于该限量,食用安全。

    表2表明,晚稻植株Cd含量也是根>茎叶>籽粒,植株Cd含量随着晚稻生育期推移而增加。F处理的晚稻植株Cd含量在3个时期均是最高,但是成熟期籽粒Cd含量与对照差异不显著。

    表  2  不同处理晚稻植株Cd含量(mg/kg)
    Table  2.  Cd content in late rice with different treatments
    部位 Part处理 Treatment分蘖期 Tillering灌浆期 Filling成熟期 Maturity
    籽粒 GrainCK0.03±0.02 b0.04±0.01 a
    GM0.06±0.00 b0.06±0.01 a
    F0.14±0.07 a0.08±0.04 a
    F+GM0.07±0.01 ab0.06±0.05 a
    茎叶 Stem and leafCK0.04±0.00 b0.07±0.01 a0.28±0.02 a
    GM0.05±0.01 ab0.14±0.01 a0.43±0.04 a
    F0.09±0.02 a0.33±0.15 a0.43±0.13 a
    F+GM0.06±0.02 ab0.21±0.20 a0.40±0.16 a
    根 RootCK0.27±0.03 a0.40±0.12 b1.94±0.07 b
    GM0.28±0.00 a0.62±0.03 ab1.96±0.40 b
    F0.52±0.22 a2.12±0.50 a2.68±0.23 a
    F+GM0.36±0.05 a1.80±1.19 ab2.32±0.16 ab
    注(Note):CK—无肥对照 No fertilizer control; F—单施化肥 Only applying chemical fertilizer; GM—翻压紫云英 Planting and returning milk vetch; F+GM—化肥配合紫云英翻压 Chemical fertilizer plus milk vetch returning. 同列数据后不同字母表示同一部位处理间差异达 0.05 显著水平 (Duncan, P < 0.05) Values followed by different letters in the same column indicate significant difference among treatments in the same part at 0.05 level (Duncan, P < 0.05) .
    下载: 导出CSV 
    | 显示表格

    GM处理植株Cd含量与CK没有显著差异,茎叶Cd含量与F处理无显著差异,灌浆期籽粒和成熟期根部Cd含量显著低于F处理 (P < 0.05)。F+GM与F处理相比,3个时期各部位Cd含量均无显著差异。

    植株A部位向B部位转运能力的强弱可以用A–B转运系数来表征,转运系数小则表示两部位间的转运能力较弱[19]。由表3可知,与CK相比,GM处理显著降低早稻成熟期茎叶–籽粒的转运系数,降幅为52.2% (P < 0.05);GM处理早稻成熟期茎叶–籽粒转运系数比F处理下降了35.3%。F+GM处理灌浆期和成熟期的茎叶–籽粒转运系数分别比CK下降35.1%和26.1%;F+GM处理灌浆期茎叶–籽粒间转运系数比F处理下降46.7%。

    表  3  不同处理早、晚稻Cd转运系数
    Table  3.  Cd transport coefficient of early and late rice under different treatments
    类型
    Type
    处理
    Treatment
    分蘖期 Tillering灌浆期 Filling成熟期 Maturity
    根–茎叶
    Root–Stem and leaf
    根–茎叶
    Root–Stem and leaf
    茎叶–籽粒
    Stem and leaf–Grain
    根–茎叶
    Root–Stem and leaf
    茎叶–籽粒
    Stem and leaf–Grain
    早稻
    Early rice
    CK0.13±0.03 b0.34±0.12 a0.37±0.09 a0.17±0.02 a0.23±0.05 a
    GM0.17±0.00 ab0.17±0.02 a0.41±0.15 a0.25±0.09 a0.11±0.01 b
    F0.12±0.01 b0.22±0.09 a0.45±0.05 a0.22±0.03 a0.17±0.02 ab
    F+GM0.19±0.04 a0.46±0.23 a0.24±0.10 a0.24±0.07 a0.17±0.03 ab
    晚稻
    Late rice
    CK0.16±0.02 a0.18±0.05 ab0.48±0.18 a0.14±0.01 a0.15±0.06 a
    GM0.19±0.04 a0.23±0.02 a0.42±0.04 a0.22±0.02 a0.13±0.03 a
    F0.25±0.20 a0.16±0.08 ab0.44±0.03 a0.16±0.04 a0.18±0.03 a
    F+GM0.17±0.07 a0.10±0.03 b0.78±0.52 a0.17±0.06 a0.12±0.07 a
    注(Note):CK—无肥对照 No fertilizer control; F—单施化肥 Only applying chemical fertilizer; GM—翻压紫云英 Planting and returning milk vetch; F+GM—化肥配合紫云英翻压 Chemical fertilizer plus milk vetch returning. 同列数据后不同字母表示同一水稻类型处理间差异达 0.05 显著水平 (Duncan, P < 0.05) Values followed by different letters in the same column indicate significant difference among treatments in the same rice type at 0.05 level (Duncan, P < 0.05) .
    下载: 导出CSV 
    | 显示表格

    GM处理的晚稻灌浆期和成熟期的茎叶–籽粒Cd转运系数分别比CK降低12.5%和13.3%,分别比F处理4.5%和27.8%。F+GM处理期茎叶–籽粒Cd转运系数比CK下降20.0%,比F处理下降33.3%。

    表4可知,各处理早稻成熟期根部与籽粒的Cd累积量和分配比例的差异明显,尤其是根系Cd累积量差异多达显著水平(P < 0.05)。GM处理早稻根部Cd累积量低于CK,其根部、籽粒Cd分配比例均低于CK,而茎叶分配比例则高于CK;GM处理早稻根、籽粒Cd累积量及分配比例均低于F处理,而茎叶Cd分配比例则高于F处理。F+GM处理根部Cd累积量低于CK,其根部与籽粒Cd分配比例也低于CK,茎叶Cd分配比例则高于CK;F+GM处理根部Cd累积量低于F,其根部与籽粒Cd分配比例均低于F,茎叶分配比例则高于F。早稻根、籽粒Cd积累量与分配比例最低的分别是F+GM和GM处理,而茎叶Cd分配比例则是F+GM、GM处理较高。

    表  4  不同处理早、晚稻成熟期植株各部位Cd累积量与分配比例
    Table  4.  The accumulation and distribution ratio of Cd in each part of the early and late rice at maturity stage under different treatments
    类型
    Type
    处理
    Treatment
    根部 Root茎叶 Stem and leaf籽粒 Grain
    累积量
    Accumulation
    (×10−3 mg/hole)
    分配比例
    Distribution ratio
    (%)
    累积量
    Accumulation
    (×10−3 mg/hole)
    分配比例
    Distribution
    ratio (%)
    累积量
    Accumulation
    (×10−3 mg/hole)
    分配比例
    Distribution ratio
    (%)
    早稻
    Early rice
    CK8.3±0.5 b36.611.0±0.7 a48.33.4±0.4 ab15.0
    GM6.4±0.5 c30.913.6±4.9 a58.52.5±0.9 b10.7
    F10.7±0.5 a33.416.6±2.4 a51.15.1±1.1 a15.0
    F+GM6.4±0.4 c29.512.6±2.5 a56.13.3±1.0 ab14.4
    晚稻
    Later rice
    CK1.9±0.1 d36.42.7±0.3 b53.00.5±0.1 b10.6
    GM3.0±0.4 c30.75.9±1.0 b60.50.9±0.6 ab8.7
    F6.7±0.5 a25.318.2±5.8 a63.93.1±1.2 a10.9
    F+GM5.2±0.2 b24.914.7±3.2 a67.71.8±1.3 ab7.4
    注(Note):CK—无肥对照 No fertilizer control; F—单施化肥 Only applying chemical fertilizer; GM—翻压紫云英 Planting and returning milk vetch; F+GM—化肥配合紫云英翻压 Chemical fertilizer plus milk vetch returning. 同列数据后不同字母表示同一水稻类型处理间差异达 0.05 显著水平 (Duncan, P < 0.05) Values followed by different letters in the same column indicate significant difference among treatments in the same rice type at 0.05 level (Duncan, P < 0.05).
    下载: 导出CSV 
    | 显示表格

    GM处理的晚稻成熟期根部Cd累积量低于F处理,F+GM处理根部Cd累积量也低于F。GM处理根部与籽粒Cd分配比例低于CK,而茎叶Cd分配比例则高于CK。F+GM处理根部与籽粒Cd分配比例低于F,其茎叶Cd分配比例则高于F。晚稻F+GM处理根部与籽粒Cd分配比例最低,而茎叶Cd分配比例则是最高。

    表5显示,GM与F+GM处理早稻成熟期土壤pH显著低于F与CK (P < 0.05),各处理的早稻土壤总Cd含量差异不显著,GM与F+GM处理的早稻土壤有效Cd显著低于CK (P < 0.05)。

    表  5  不同处理土壤pH、总Cd及有效Cd含量
    Table  5.  Soil pH, total Cd and available Cd content in different treatments
    类型
    Type
    处理
    Treatment
    pH总 Cd (mg/kg)
    Total Cd
    有效 Cd (mg/kg)
    Available Cd
    早稻 Early riceCK6.23±0.05 a0.30±0.01 a0.21±0.01 a
    GM5.93±0.01 b0.25±0.02 a0.16±0.01 b
    F6.18±0.13 a0.25±0.02 a0.16±0.01 b
    F+GM5.92±0.15 b0.25±0.03 a0.17±0.02 b
    晚稻 Late riceCK6.26±0.05 a0.30±0.00 a0.20±0.02 a
    GM6.17±0.10 ab0.23±0.03 b0.17±0.01 a
    F6.05±0.10 ab0.28±0.02 ab0.20±0.03 a
    F+GM6.01±0.10 b0.25±0.04 ab0.19±0.00 a
    注(Note):CK—无肥对照 No fertilizer control; F—单施化肥 Only applying chemical fertilizer; GM—翻压紫云英 Planting and returning milk vetch; F+GM—化肥配合紫云英翻压 Chemical fertilizer plus milk vetch returning. 同列数据后不同字母表示同一水稻类型不同处理间差异达 0.05 显著水平 (Duncan, P < 0.05) Values followed by different letters in the same column indicate significant difference among treatments in samerice type at 0.05 level (Duncan, P < 0.05).
    下载: 导出CSV 
    | 显示表格

    与F相比,GM晚稻成熟期土壤pH高于F,GM处理晚稻土壤总Cd含量显著低于CK;GM与F+GM处理晚稻土壤有效Cd含量均较低,但与其他处理无显著差异。

    施肥为水稻提供了生长发育所需的养分,水稻获得增产。紫云英作为绿肥,翻压还田对水稻的增产作用已得到广泛验证[20-23],与常规化肥相比,翻压紫云英配施化肥更有利于水稻产量形成与稳定[24-25]。此外,前人通过长期定位试验研究发现,翻压紫云英的增产效应随翻压年限的增加也有所增强[23,26-27]。本研究结果表明,与CK相比,F+GM与GM处理的水稻产量显著增加;与F相比,F+GM处理的水稻产量增加;所有处理中产量最高的是F+GM处理。当不施用化肥时,翻压紫云英使水稻增产;施用化肥时,紫云英的利用也可使水稻增产。随着种植年限增加,CK处理的产量逐渐下降,GM处理的产量则无显著下降趋势,说明紫云英有利于水稻产量的稳定与增加。

    根系是植物吸收Cd的关键部位[28],水稻不同器官Cd含量差异极大,通常表现为根系>茎叶>籽粒[29],水稻根部Cd含量是籽粒的20~40倍、穗轴的10~18倍、叶片的4~13倍[30],本研究得出类似的结果。本研究中F+GM处理的早、晚稻根部Cd含量低于F处理,GM处理的早稻根部Cd含量低于CK;F+GM处理的早、晚稻茎叶Cd含量低于F处理;GM处理的早稻茎叶Cd含量低于CK。F+GM处理的籽粒Cd含量低于F处理,GM处理的籽粒Cd含量低于F处理。范美蓉等[31]的研究结果表明,紫云英还田有效提高了水稻产量的同时,使稻草Cd含量降低39.1%,使稻谷Cd含量降低43.5%。说明翻压紫云英具有降低水稻Cd含量的作用。F的早稻Cd含量低于CK,但F早稻的Cd累积量高于CK,说明化肥的施用增加水稻的Cd累积[32],但其Cd含量却有所下降,这可能是由于化肥的施用促进水稻生长发育,使其生物产量较高,产生了一定的稀释效应[12]。如F处理的籽粒产量较高,其籽粒Cd累积量也较高,而F处理的籽粒Cd含量却低于CK,而晚稻无此现象可能与水稻的品种有关[18,33]。此外,F+GM与GM的水稻Cd累积量低于CK或F,说明紫云英翻压还田降低水稻对Cd的吸收积累。

    施用普通化肥后水稻产量固然得到保证与增加,但其存在一定的Cd污染风险。而单施紫云英的水稻产量虽然低于单施化肥处理,但紫云英的翻压降低了水稻中的Cd含量。紫云英与化肥配施水稻产量高于单施化肥,同时其对水稻也具备较好的降Cd效应。

    水稻吸收的Cd主要是土壤中活性较高的交换态Cd[34],土壤有效Cd含量较高会促进水稻Cd吸收[35],说明通过控制土壤有效Cd含量可以限制水稻对Cd的吸收。刘昭兵等[36]的研究表明,水稻茎叶与籽粒的Cd含量下降是土壤有效Cd含量降低导致的。本研究的结果表明,GM与F+GM处理早稻土壤有效Cd含量显著低于CK,GM与F+GM处理晚稻土壤有效Cd含量低于CK但不显著。说明翻压紫云英后,水稻Cd含量与累积量下降,与稻田土壤有效Cd含量降低有关,紫云英的利用使土壤有效Cd含量下降,土壤中Cd的有效性降低,水稻对Cd的吸收受到影响,水稻根的Cd含量下降,致使茎叶与籽粒的Cd含量下降。此外,本研究还发现紫云英的利用降低了当季水稻(早稻)土壤pH,前人在此方面进行了很多研究,目前尚无较为明确且统一的结论,如:王阳等[37]研究认为紫云英还田提升土壤pH;有研究则认为,紫云英的种植利用会导致早稻收获期土壤pH的降低[38]。相关研究表明,土壤pH与有效Cd含量存在负相关关系[39]。薛毅等[40]的研究则认为施用有机肥,土壤有效Cd下降,同时土壤pH也降低0.1~0.4个单位;本研究中的紫云英作为天然有机肥,改善土壤的效果与薛毅等[40]的研究结果相似,可能与土壤类型有关,其具体机理尚未明确,有待进一步深入研究。

    Cd进入水稻植株后,大部分集中累积在根与茎叶等部位,仅少量的Cd进入到籽粒[41]。不同部位的Cd累积量主要是受部位间Cd转运速率的影响,根部吸收与根部向地上部的转运是影响水稻茎叶、籽粒Cd累积的主要因素[42]。因为当水稻根部对Cd吸收较快,而根向地上部的转运较慢,根部Cd累积量会较高;反之,地上部如籽粒的Cd累积量则较高[43-44]。本研究结果表明,F+GM和GM处理各部位的Cd累积量均低于F,说明与单施化肥相比,紫云英的利用均降低了水稻的Cd累积,这与秸秆等有机物料还田的结果[45]相似。通过早稻Cd累积量的数据(表4),F+GM与GM处理的根部、籽粒Cd累积量低于CK,而其茎叶的Cd累积量则高于CK,表明紫云英的利用对水稻Cd的分布产生一定的影响。此外,从各部位的Cd分配比例来看,各处理的籽粒Cd分配比例较低,其中CK与F两个处理的籽粒Cd分配比例一致,而F+GM与GM处理的籽粒Cd分配比例低于CK与F,F+GM与GM处理籽粒Cd分配比例降低的这部分则是转移到了茎叶中,印证了紫云英的还田影响水稻Cd的分布与分配。同时F+GM和GM处理茎叶–籽粒的Cd转运系数低于CK与F,表明紫云英的利用降低了水稻茎叶–籽粒的Cd转运系数,减弱茎叶–籽粒的Cd转运能力,茎叶–籽粒的Cd转运量减少,导致茎叶的Cd累积量上升,分配占比增多,而籽粒的Cd累积量下降,分配占比减少。

    翻压紫云英增加水稻产量,同时具有较好的降Cd效应。紫云英的翻压对水稻的降Cd生理机制为:一是降低了土壤有效Cd含量,从而降低水稻Cd含量;二是降低茎叶–籽粒的Cd转运系数,减弱Cd向籽粒的转运能力,降低水稻籽粒Cd累积与分配,生产出Cd含量低于国家安全限量的稻米。

  • 图  1   2016—2020年双季稻产量年际变化

    [注(Note):CK—无肥对照 No fertilizer control; F—单施化肥 Only applying chemical fertilizer; GM—翻压紫云英 Planting and returning milk vetch; F+GM—化肥配合紫云英翻压 Chemical fertilizer plus milk vetch returning. 折线上不同小写字母表示同一年处理间产量差异显著 (Duncan, P < 0.05) Different small letters above the lines indicate significant difference among treatments in the same year (Duncan, P < 0.05).]

    Figure  1.   Annual variation of double-cropping rice yield from 2016 to 2020

    表  1   不同处理早稻植株Cd含量(mg/kg)

    Table  1   Cd content in early rice with different treatments

    部位 Part处理 Treatment分蘖期 Tillering灌浆期 Filling成熟期 Maturity
    籽粒 GrainCK0.28±0.03 a0.33±0.05 a
    GM0.04±0.02 b0.14±0.05 b
    F0.05±0.02 b0.21±0.05 b
    F+GM0.02±0.01 b0.17±0.06 b
    茎叶 Stem and leafCK0.07±0.01 a0.82±0.22 a1.48±0.14 a
    GM0.05±0.01 ab0.08±0.01 b1.35±0.50 a
    F0.07±0.01 a0.12±0.06 b1.24±0.18 a
    F+GM0.04±0.01 b0.05±0.03 b0.93±0.21 a
    根 RootCK0.56±0.07 a2.54±0.32 a8.71±0.12 a
    GM0.28±0.03 b0.50±0.01 b5.49±0.04 b
    F0.56±0.04 a0.54±0.03 b5.63±0.38 b
    F+GM0.20±0.03 b0.12±0.02 c3.91±0.19 c
    注(Note):CK—无肥对照 No fertilizer control; F—单施化肥 Only applying chemical fertilizer; GM—翻压紫云英 Planting and returning milk vetch; F+GM—化肥配合紫云英翻压 Chemical fertilizer plus milk vetch returning. 同列数据后不同字母表示同一部位处理间差异达 0.05 显著水平 (Duncan, P < 0.05) Values followed by different letters in the same column indicate significant difference among treatments in the same part at 0.05 level (Duncan, P < 0.05) .
    下载: 导出CSV

    表  2   不同处理晚稻植株Cd含量(mg/kg)

    Table  2   Cd content in late rice with different treatments

    部位 Part处理 Treatment分蘖期 Tillering灌浆期 Filling成熟期 Maturity
    籽粒 GrainCK0.03±0.02 b0.04±0.01 a
    GM0.06±0.00 b0.06±0.01 a
    F0.14±0.07 a0.08±0.04 a
    F+GM0.07±0.01 ab0.06±0.05 a
    茎叶 Stem and leafCK0.04±0.00 b0.07±0.01 a0.28±0.02 a
    GM0.05±0.01 ab0.14±0.01 a0.43±0.04 a
    F0.09±0.02 a0.33±0.15 a0.43±0.13 a
    F+GM0.06±0.02 ab0.21±0.20 a0.40±0.16 a
    根 RootCK0.27±0.03 a0.40±0.12 b1.94±0.07 b
    GM0.28±0.00 a0.62±0.03 ab1.96±0.40 b
    F0.52±0.22 a2.12±0.50 a2.68±0.23 a
    F+GM0.36±0.05 a1.80±1.19 ab2.32±0.16 ab
    注(Note):CK—无肥对照 No fertilizer control; F—单施化肥 Only applying chemical fertilizer; GM—翻压紫云英 Planting and returning milk vetch; F+GM—化肥配合紫云英翻压 Chemical fertilizer plus milk vetch returning. 同列数据后不同字母表示同一部位处理间差异达 0.05 显著水平 (Duncan, P < 0.05) Values followed by different letters in the same column indicate significant difference among treatments in the same part at 0.05 level (Duncan, P < 0.05) .
    下载: 导出CSV

    表  3   不同处理早、晚稻Cd转运系数

    Table  3   Cd transport coefficient of early and late rice under different treatments

    类型
    Type
    处理
    Treatment
    分蘖期 Tillering灌浆期 Filling成熟期 Maturity
    根–茎叶
    Root–Stem and leaf
    根–茎叶
    Root–Stem and leaf
    茎叶–籽粒
    Stem and leaf–Grain
    根–茎叶
    Root–Stem and leaf
    茎叶–籽粒
    Stem and leaf–Grain
    早稻
    Early rice
    CK0.13±0.03 b0.34±0.12 a0.37±0.09 a0.17±0.02 a0.23±0.05 a
    GM0.17±0.00 ab0.17±0.02 a0.41±0.15 a0.25±0.09 a0.11±0.01 b
    F0.12±0.01 b0.22±0.09 a0.45±0.05 a0.22±0.03 a0.17±0.02 ab
    F+GM0.19±0.04 a0.46±0.23 a0.24±0.10 a0.24±0.07 a0.17±0.03 ab
    晚稻
    Late rice
    CK0.16±0.02 a0.18±0.05 ab0.48±0.18 a0.14±0.01 a0.15±0.06 a
    GM0.19±0.04 a0.23±0.02 a0.42±0.04 a0.22±0.02 a0.13±0.03 a
    F0.25±0.20 a0.16±0.08 ab0.44±0.03 a0.16±0.04 a0.18±0.03 a
    F+GM0.17±0.07 a0.10±0.03 b0.78±0.52 a0.17±0.06 a0.12±0.07 a
    注(Note):CK—无肥对照 No fertilizer control; F—单施化肥 Only applying chemical fertilizer; GM—翻压紫云英 Planting and returning milk vetch; F+GM—化肥配合紫云英翻压 Chemical fertilizer plus milk vetch returning. 同列数据后不同字母表示同一水稻类型处理间差异达 0.05 显著水平 (Duncan, P < 0.05) Values followed by different letters in the same column indicate significant difference among treatments in the same rice type at 0.05 level (Duncan, P < 0.05) .
    下载: 导出CSV

    表  4   不同处理早、晚稻成熟期植株各部位Cd累积量与分配比例

    Table  4   The accumulation and distribution ratio of Cd in each part of the early and late rice at maturity stage under different treatments

    类型
    Type
    处理
    Treatment
    根部 Root茎叶 Stem and leaf籽粒 Grain
    累积量
    Accumulation
    (×10−3 mg/hole)
    分配比例
    Distribution ratio
    (%)
    累积量
    Accumulation
    (×10−3 mg/hole)
    分配比例
    Distribution
    ratio (%)
    累积量
    Accumulation
    (×10−3 mg/hole)
    分配比例
    Distribution ratio
    (%)
    早稻
    Early rice
    CK8.3±0.5 b36.611.0±0.7 a48.33.4±0.4 ab15.0
    GM6.4±0.5 c30.913.6±4.9 a58.52.5±0.9 b10.7
    F10.7±0.5 a33.416.6±2.4 a51.15.1±1.1 a15.0
    F+GM6.4±0.4 c29.512.6±2.5 a56.13.3±1.0 ab14.4
    晚稻
    Later rice
    CK1.9±0.1 d36.42.7±0.3 b53.00.5±0.1 b10.6
    GM3.0±0.4 c30.75.9±1.0 b60.50.9±0.6 ab8.7
    F6.7±0.5 a25.318.2±5.8 a63.93.1±1.2 a10.9
    F+GM5.2±0.2 b24.914.7±3.2 a67.71.8±1.3 ab7.4
    注(Note):CK—无肥对照 No fertilizer control; F—单施化肥 Only applying chemical fertilizer; GM—翻压紫云英 Planting and returning milk vetch; F+GM—化肥配合紫云英翻压 Chemical fertilizer plus milk vetch returning. 同列数据后不同字母表示同一水稻类型处理间差异达 0.05 显著水平 (Duncan, P < 0.05) Values followed by different letters in the same column indicate significant difference among treatments in the same rice type at 0.05 level (Duncan, P < 0.05).
    下载: 导出CSV

    表  5   不同处理土壤pH、总Cd及有效Cd含量

    Table  5   Soil pH, total Cd and available Cd content in different treatments

    类型
    Type
    处理
    Treatment
    pH总 Cd (mg/kg)
    Total Cd
    有效 Cd (mg/kg)
    Available Cd
    早稻 Early riceCK6.23±0.05 a0.30±0.01 a0.21±0.01 a
    GM5.93±0.01 b0.25±0.02 a0.16±0.01 b
    F6.18±0.13 a0.25±0.02 a0.16±0.01 b
    F+GM5.92±0.15 b0.25±0.03 a0.17±0.02 b
    晚稻 Late riceCK6.26±0.05 a0.30±0.00 a0.20±0.02 a
    GM6.17±0.10 ab0.23±0.03 b0.17±0.01 a
    F6.05±0.10 ab0.28±0.02 ab0.20±0.03 a
    F+GM6.01±0.10 b0.25±0.04 ab0.19±0.00 a
    注(Note):CK—无肥对照 No fertilizer control; F—单施化肥 Only applying chemical fertilizer; GM—翻压紫云英 Planting and returning milk vetch; F+GM—化肥配合紫云英翻压 Chemical fertilizer plus milk vetch returning. 同列数据后不同字母表示同一水稻类型不同处理间差异达 0.05 显著水平 (Duncan, P < 0.05) Values followed by different letters in the same column indicate significant difference among treatments in samerice type at 0.05 level (Duncan, P < 0.05).
    下载: 导出CSV
  • [1]

    Sponza D, Karaoglu N. Environmental geochemistry and pollution studies of Aliaga metal industry district[J]. Environment International, 2002, 27: 541–555. DOI: 10.1016/S0160-4120(01)00108-8

    [2]

    Davis R D. Cadmium—a complex environmental problem. Part II. Cadmium in sludges used as fertilizer[J]. Experientia, 1984, 40(2): 117–126. DOI: 10.1007/BF01963574

    [3]

    Yu H, Wang J, Fang W, et al. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice[J]. Science of the Total Environment, 2006, 370(2–3): 302–309. DOI: 10.1016/j.scitotenv.2006.06.013

    [4] 胡培松. 土壤有毒重金属镉毒害及镉低积累型水稻筛选与改良[J]. 中国稻米, 2004, (2): 10–12. Hu P S. The toxicity of soil toxic heavy metal cadmium and the screening and improvement of low cadmium accumulation rice[J]. China Rice, 2004, (2): 10–12. DOI: 10.3969/j.issn.1006-8082.2004.02.003

    Hu P S. The toxicity of soil toxic heavy metal cadmium and the screening and improvement of low cadmium accumulation rice [J]. China Rice, 2004, (2): 10-12. DOI: 10.3969/j.issn.1006-8082.2004.02.003

    [5] 高菊生, 黄晶, 杨志长, 等. 绿肥稻草联合还田显著提高土壤有机质含量稳定氮素供应[J]. 植物营养与肥料学报, 2020, 26(3): 472–480. Gao J S, Huang J, Yang Z C, et al. Improving organic matter content and nitrogen supply stability of double cropping rice field through co-incorporation of green manure and rice straw[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 472–480.

    Gao J S, Huang J, Yang Z C, et al. Improving organic matter content and nitrogen supply stability of double cropping rice field through co-incorporation of green manure and rice straw[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 472-480.

    [6] 杨曾平, 徐明岗, 聂军, 等. 长期冬种绿肥对双季稻种植下红壤性水稻土质量的影响及其评价[J]. 水土保持学报, 2011, 25(3): 92–97,102. Yang Z P, Xu M G, Nie J, et al. Effect of long-term winter planting-green manure on reddish paddy soil quality and comprehensive evaluation under double-rice cropping system[J]. Journal of Soil and Water Conservation, 2011, 25(3): 92–97,102.

    Yang Z P, Xu M G, Nie J, et al. Effect of long-term winter planting-green manure on reddish paddy soil quality and comprehensive evaluation under double-rice cropping system[J]. Journal of Soil and Water Conservation, 2011, 25(3): 92-97, 102.

    [7] 聂鑫, 鲁艳红, 廖育林, 等. 化肥减施下紫云英不同翻压量对水稳性团聚体及双季稻产量的影响[J]. 华北农学报, 2020, 35(6): 155–164. Nie X, Lu Y H, Liao Y L, et al. Effects of the incorporation of various amounts of Chinese milk vetch and reducing chemical fertilizer on water-stable aggregates and yield in double cropping rice system[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(6): 155–164. DOI: 10.7668/hbnxb.20191136

    Nie X, Lu Y H, Liao Y L, et al. Effects of the incorporation of various amounts of Chinese milk vetch and reducing chemical fertilizer on water-stable aggregates and yield in double cropping rice system[J]. Acta Agericulturae Boreall-Sinica, 2020, 35(6): 155-164. DOI: 10.7668/hbnxb.20191136

    [8] 周兴, 廖育林, 鲁艳红, 等. 减量施肥下紫云英与稻草协同利用对双季稻产量和经济效益的影响[J]. 湖南农业大学学报(自然科学版), 2017, 43(5): 469–474. Zhou X, Liao Y L, Lu Y H, et al. Effects of Chinese milk vetch and rice straw synergistic dispatching on grain yield and economic benefit of double cropping rice system under fertilizer reduction[J]. Journal of Hunan Agricultural University (Natural Science Edition), 2017, 43(5): 469–474.

    Zhou X, Liao Y L, Lu Y H, et al. Effects of Chinese milk vetch and rice straw synergistic dispatching on grain yield and economic benefit of double cropping rice system under fertilizer reduction[J]. Journal of Hunan Agricultural University (Natural Science Edition), 2017, 43(5): 469-474.

    [9] 周兴, 谢坚, 廖育林, 等. 基于紫云英利用的化肥施用方式对水稻产量和土壤碳氮含量的影响[J]. 湖南农业大学学报(自然科学版), 2013, 39(2): 188–193. Zhou X, Xie J, Liao Y L, et al. Effects of fertilizer management on rice yield, soil organic carbon and total nitrogen based on utilizing the milk vetch[J]. Journal of Hunan Agricultural University (Natural Science Edition), 2013, 39(2): 188–193.

    Zhou X, Xie J, Liao Y L, et al. Effects of fertilizer management on rice yield, soil organic carbon and total nitrogen based on utilizing the milk vetch[J]. Journal of Hunan Agricultural University (Natural Science Edition), 2013, 39(2): 188-193.

    [10]

    Bunzl K, Schmid W, Sansoni B. Kinetics of ion exchange in soil organic matter. IV. Adsorption and desorption of Pb2+, Cu2+, Cd2+, Zn2+ and Ca2+ by peat[J]. European Journal of Soil Science, 2010, 27(1): 32–41.

    [11] 陈怀满, 熊毅. 紫云英和稻草对土壤溶液pH和Eh的影响[J]. 土壤, 1984, (5): 189. Chen H M, Xiong Y. Effects of milk vetch and rice straw on pH and Eh of soil solution[J]. Soils, 1984, (5): 189.

    Chen H M, Xiong Y. Effects of milk vetch and rice straw on pH and Eh of soil solution[J]. Soil, 1984, (5): 189.

    [12] 吴浩杰, 周兴, 鲁艳红, 等. 紫云英翻压对稻田土壤镉有效性及水稻镉积累的影响[J]. 中国农学通报, 2017, 33(16): 105–111. Wu H J, Zhou X, Lu Y H, et al. Effects of Astragalus smicus on cadmium effectiveness in paddy soil and cadmium accumulation in rice plant[J]. Chinese Agricultural Science Bulletin, 2017, 33(16): 105–111. DOI: 10.11924/j.issn.1000-6850.casb17030086

    Wu H J, Zhou X, Lu Y H, et al. Effects of Astragalus smicus on cadmium effectiveness in paddy soil and cadmium accumulation in rice plant[J]. Chinese Agricultural Science Bulletin, 2017, 33(16): 105-111. DOI: 10.11924/j.issn.1000-6850.casb17030086

    [13] 吴浩杰, 周兴, 鲁艳红, 等. 绿肥作物对耕地镉污染修复机理综述[J]. 湖南农业科学, 2016, (4): 115–118. Wu H J, Zhou X, Lu Y H, et al. Review of remediation mechanism of cadmium pollution cultivated land by planting green manure[J]. Hunan Agricultural Sciences, 2016, (4): 115–118.

    Wu H J, Zhou X, Lu Y H, et al. Review of remediation mechanism of cadmium pollution cultivated land by planting green manure[J]. Hunan Agricultural Sciences, 2016, (4): 115-118.

    [14] 范晶晶, 许超, 王辉, 等. 3种有机物料对土壤镉有效性及水稻镉吸收转运的影响[J]. 农业环境科学学报, 2020, 39(10): 2143–2150. Fan J J, Xu C, Wang H, et al. Effects of three organic materials on the availability of cadmium in soil and cadmium accumulation and translocation in rice plants[J]. Journal of Agro-Environment Science, 2020, 39(10): 2143–2150. DOI: 10.11654/jaes.2020-0187

    Fan J J, Xu C, Wang H, et al. Effects of three organic materials on the availability of cadmium in soil and cadmium accumulation and translocation in rice plants[J]. Journal of Agro-Environment Science, 2020, 39(10): 2143-2150. DOI: 10.11654/jaes.2020-0187

    [15] 孙聪, 陈世宝, 宋文恩, 等. 不同品种水稻对土壤中镉的富集特征及敏感性分布(SSD)[J]. 中国农业科学, 2014, 47(12): 2384–2394. Sun C, Chen S B, Song W E, et al. Accumulation characteristics of cadmium by rice cultivars in soils and its species sensitivity distribution[J]. Scientia Agricultura Sinica, 2014, 47(12): 2384–2394. DOI: 10.3864/j.issn.0578-1752.2014.12.011

    Sun C, Chen S B, Song W E, et al. Accumulation characteristics of cadmium by rice cultivars in soils and its species sensitivity distribution[J]. Scientia Agricultura Sinica, 2014, 47(12): 2384-2394. DOI: 10.3864/j.issn.0578-1752.2014.12.011

    [16] 张路, 张锡洲, 李廷轩, 等. Cd胁迫对水稻亲本材料Cd吸收分配的影响[J]. 农业环境科学学报, 2014, 33(12): 2288–2295. Zhang L, Zhang X Z, Li T X, et al. Effect of cadmium stress on uptake and distribution of cadmium in different rice varieties[J]. Journal of Agro-Environment Science, 2014, 33(12): 2288–2295. DOI: 10.11654/jaes.2014.12.002

    Zhang L, Zhang X Z, Li T X, et al. Effect of cadmium stress on uptake and distribution of cadmium in different rice varieties[J]. Journal of Agro-Environment Science, 2014, 33(12): 2288-2295. DOI: 10.11654/jaes.2014.12.002

    [17] 鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2015, 375-377.

    Bao S D. Soil and agrochemical analysis (3rd edition)[M]. Beijing: China Agriculture Press, 2015, 375-377.

    [18] 蔡秋玲, 林大松, 王果, 等. 不同类型水稻镉富集与转运能力的差异分析[J]. 农业环境科学学报, 2016, 35(6): 1028–1033. Cai Q L, Lin D S, Wang G, et al. Difference in cadmium accumulation and transfer capacity among different types of rice cultivars[J]. Journal of Agro-Environment Science, 2016, 35(6): 1028–1033. DOI: 10.11654/jaes.2016.06.002

    Cai Q L, Lin D S, Wang G, et al. Difference in cadmium accumulation and transfer capacity among different types of rice cultivars[J]. Journal of Agro-Environment Science, 2016, 35(6): 1028-1033. DOI: 10.11654/jaes.2016.06.002

    [19] 李芹, 张曼, 张锡洲, 等. 水稻镉安全材料分蘖期根部镉积累分布特征[J]. 植物营养与肥料学报, 2019, 25(3): 443–452. Li Q, Zhang M, Zhang X Z, et al. Accumulation and distribution characteristics of Cd in roots of cadmium-safe rice line at tillering stage[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 443–452. DOI: 10.11674/zwyf.18102

    Li Q, Zhang M, Zhang X Z, et al. Accumulation and distribution characteristics of Cd in roots of cadmium-safe rice line at tillering stage[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 443-452. DOI: 10.11674/zwyf.18102

    [20] 黄晶, 高菊生, 刘淑军, 等. 冬种紫云英对水稻产量及其养分吸收的影响[J]. 中国土壤与肥料, 2013, (1): 88–92. Huang J, Gao J S, Liu S J, et al. Effect of Chinese milk vetch in winter on rice yield and its nutrient uptake[J]. Soil and Fertilizer Sciences in China, 2013, (1): 88–92.

    Huang J, Gao J S, Liu S J, et al. Effect of Chinese milk vetch in winter on rice yield and its nutrient uptake[J]. Soil and Fertilizer Sciences in China, 2013, (1): 88-92.

    [21] 高菊生, 徐明岗, 董春华, 等. 长期稻-稻-绿肥轮作对水稻产量及土壤肥力的影响[J]. 作物学报, 2013, 39(2): 343–349. Gao J S, Xu M G, Dong C H, et al. Effects of long-term rice-rice-green manure cropping rotation on rice yield and soil fertility[J]. Acta Agronomica Sinica, 2013, 39(2): 343–349. DOI: 10.3724/SP.J.1006.2013.00343

    Gao J S, Xu M G, Dong C H, et al. Effects of long-term rice-rice-green manure cropping rotation on rice yield and soil fertility[J]. Acta Agronomica Sinica, 2013, 39(2): 343-349. DOI: 10.3724/SP.J.1006.2013.00343

    [22] 高菊生, 曹卫东, 李冬初, 等. 长期双季稻绿肥轮作对水稻产量及稻田土壤有机质的影响[J]. 生态学报, 2011, 31(16): 4542–4548. Gao J S, Cao W D, Li D C, et al. Effects of long-term double-rice and green manure rotation on rice yield and soil organic matter in paddy field[J]. Acta Ecologica Sinica, 2011, 31(16): 4542–4548.

    Gao J S, Cao W D, Li D C, et al. Effects of long-term double-rice and green manure rotation on rice yield and soil organic matter in paddy field[J]. Acta Ecologica Sinica, 2011, 31(16): 4542-4548.

    [23] 高菊生, 曹卫东, 董春华, 等. 长期稻-稻-绿肥轮作对水稻产量的影响[J]. 中国水稻科学, 2010, 24(6): 672–676. Gao J S, Cao W D, Dong C H, et al. Effects of long-term rice-rice-green manure rotation on rice yield[J]. Chinese Journal of Rice Science, 2010, 24(6): 672–676.

    Gao J S, Cao W D, Dong C H, et al. Effects of long-term rice-rice-green manure rotation on rice yield[J]. Chinese Journal of Rice Science, 2010, 24(6): 672-676.

    [24] 廖育林, 鲁艳红, 谢坚, 等. 紫云英配施控释氮肥对早稻产量及氮素吸收利用的影响[J]. 水土保持学报, 2015, 29(3): 190–195, 201. Liao Y L, Lu Y H, Xie J, et al. Effects of combined application of controlled release nitrogen fertilizer and Chinese milk vetch on yield and nitrogen uptake of early rice[J]. Journal of Soil and Water Conservation, 2015, 29(3): 190–195, 201.

    Liao Y L, Lu Y H, Xie J, et al. Effects of combined application of controlled release nitrogen fertilizer and Chinese milk vetch on yield and nitrogen uptake of early rice[J]. Journal of Soil and Water Conservation, 2015, 29(3): 190-195, 201.

    [25] 鲁艳红, 廖育林, 聂军, 等. 紫云英与尿素或控释尿素配施对双季稻产量及氮钾利用率的影响[J]. 植物营养与肥料学报, 2017, 23(2): 360–368. Lu Y H, Liao Y L, Nie J, et al. Effect of different incorporation of Chinese milk vetch coupled with urea or controlled release urea on yield and nitrogen and potassium nutrient use efficiency in double-cropping rice system[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 360–368. DOI: 10.11674/zwyf.16381

    Lu Y H, Liao Y L, Nie J, et al. Effect of different incorporation of Chinese milk vetch coupled with urea or controlled release urea on yield and nitrogen and potassium nutrient use efficiency indouble-cropping rice system[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 360-368. DOI: 10.11674/zwyf.16381

    [26] 张成兰, 吕玉虎, 刘春增, 等. 紫云英配施减量化肥对水稻产量稳定性的影响[J]. 华北农学报, 2020, 35(3): 136–142. Zhang C L, Lü Y H, Liu C Z, et al. Effects of Chinese milk vetch coupled with application of reduced chemical fertilizer on stability of rice yield[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(3): 136–142. DOI: 10.7668/hbnxb.20190795

    Zhang C L, Lu Y H, Liu C Z, et al. Effects of Chinese milk vetch coupled with application of reduced chemical fertilizer on stability of rice yield[J]. Acta Agriculturae Boreall-Sinica, 2020, 35(3): 136-142. DOI: 10.7668/hbnxb.20190795

    [27] 唐杉, 王允青, 赵决建, 等. 紫云英还田对双季稻产量及稳定性的影响[J]. 生态学杂志, 2015, 34(11): 3086–3093. Tang S, Wang Y Q, Zhao J J, et al. Effect of milk vetch application on double cropping rice yield and yield stability[J]. Chinese Journal of Ecology, 2015, 34(11): 3086–3093.

    Tang S, Wang Y Q, Zhao J J, et al. Effect of milk vetch application on double cropping rice yield and yield stability[J]. Chinese Journal of Ecology, 2015, 34(11): 3086-3093.

    [28]

    DalCorso G, Farinati S, Maistri S, Furini A. How plants cope with cadmium: Staking all on metabolism and gene expression[J]. Journal of Integrative Plant Biology, 2008, 50(10): 1268–1280. DOI: 10.1111/j.1744-7909.2008.00737.x

    [29] 唐非, 雷鸣, 唐贞, 等. 不同水稻品种对镉的积累及其动态分布[J]. 农业环境科学学报, 2013, 32(6): 1092–1098. Tang F, Lei M, Tang Z, et al. Accumulation characteristic and dynamic distribution of Cd in different genotypes of rice[J]. Journal of Agro-Environment Science, 2013, 32(6): 1092–1098.

    Tang F, Lei M, Tang Z, et al. Accumulation characteristic and dynamic distribution of Cd in different genotypes of rice[J]. Journal of Agro-Environment Science, 2013, 32(6): 1092-1098.

    [30] 文志琦, 赵艳玲, 崔冠男, 等. 水稻营养器官镉积累特性对稻米镉含量的影响[J]. 植物生理学报, 2015, 51(8): 1280–1286. Wen Z Q, Zhao Y L, Cui G N, et al. Effects of cadmium accumulation characteristics in vegetative organs on cadmium content in grains of rice[J]. Plant Physiology Journal, 2015, 51(8): 1280–1286.

    Wen Z Q, Zhao Y L, Cui G N, et al. Effects of cadmium accumulation characteristics in vegetative organs on cadmium content in grains of rice[J]. Plant Physiology Journal, 2015, 51(8): 1280-1286.

    [31] 范美蓉, 张春霞, 廖育林, 等. 不同品种紫云英对镉污染土壤水稻生长累积效应的研究[J]. 中国农学通报, 2020, 36(20): 72–76. Fan M R, Zhang C X, Liao Y L, et al. Chinese milk vetch varieties: Accumulation effect on the rice growth in cadmium contaminated soil[J]. Chinese Agricultural Science Bulletin, 2020, 36(20): 72–76.

    Fan M R, Zhang C X, Liao Y L, et al. Chinese milk vetch varieties: Accumulation effect on the rice growth in cadmium contaminated soil[J]. Chinese Agricultural Science Bulletin, 2020, 36(20): 72-76.

    [32] 何其辉, 谭长银, 曹雪莹, 等. 肥料对土壤重金属有效态及水稻幼苗重金属积累的影响[J]. 环境科学研究, 2018, 31(5): 942–951. He Q H, Tan C Y, Cao X Y, et al. Effects of fertilizer on the availability of heavy metals in soil and its accumulation in rice seedlings[J]. Research of Environmental Sciences, 2018, 31(5): 942–951.

    He Q H, Tan C Y, Cao X Y, et al. Effects of fertilizer on the availability of heavy metals in soil and its accumulation in rice seedlings[J]. Research of Environmental Sciences, 2018, 31(5): 942-951.

    [33] 邓伟, 张玉烛, 敖和军, 等. 不同镉积累型水稻品种苗期镉积累及转运变化特征[J]. 中国稻米, 2018, 24(4): 86–90. Deng W, Zhang Y Z, Ao H J, et al. Cadmium accumulation and transfer capacity among different types of rice cultivars at seedling stage[J]. China Rice, 2018, 24(4): 86–90. DOI: 10.3969/j.issn.1006-8082.2018.04.021

    Deng W, Zhang Y Z, Ao H J, et al. Cadmium accumulation and transfer capacity among different types of rice cultivars at seedling stage[J]. China Rice, 2018, 24(4): 86-90. DOI: 10.3969/j.issn.1006-8082.2018.04.021

    [34] 刘春梅, 罗盛国, 刘元英. 硒对镉胁迫下寒地水稻镉含量与分配的影响[J]. 植物营养与肥料学报, 2015, 21(1): 190–199. Liu C M, Luo S G, Liu Y Y. Effects of Se on Cd content and distribution in rice plant under Cd stress in cold regions[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 190–199. DOI: 10.11674/zwyf.2015.0121

    Liu C M, Luo S G, Liu Y Y. Effects of Seon Cd content and distribution inrice plant under Cd stress in cold regions[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 190-199. DOI: 10.11674/zwyf.2015.0121

    [35] 周静, 杨洋, 孟桂元, 等. 不同镉污染土壤下水稻镉富集与转运效率[J]. 生态学杂志, 2018, 37(1): 89–94. Zhou J, Yang Y, Meng G Y, et al. Cadmium accumulation and translocation efficiency of rice under different cadmium-polluted soils[J]. Chinese Journal of Ecology, 2018, 37(1): 89–94.

    Zhou J, Yang Y, Meng G Y, et al. Cadmium accumulation and translocation efficiency of rice under different cadmium-pol-luted soils[J]. Chinese Journal of Ecology, 2018, 37(1): 89-94.

    [36] 刘昭兵, 纪雄辉, 彭华, 等. 磷肥对土壤中镉的植物有效性影响及其机理[J]. 应用生态学报, 2012, 23(6): 1585–1590. Liu Z B, Ji X H, Peng H, et al. Effects of phosphorous fertilizers on phytoavailability of cadmium in its contaminated soil and related mechanism[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1585–1590.

    Liu Z B, Ji X H, Peng H, et al. Effects of phosphorous fertilizers on phytoavailability of cadmium in its contaminated soil and related mechanism[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1585-1590.

    [37] 王阳, 刘恩玲, 王奇赞, 等. 紫云英还田对水稻镉和铅吸收积累的影响[J]. 水土保持学报, 2013, 27(2): 189–193. Wang Y, Liu E L, Wang Q Z, et al. Effects of milk vetch on cadmium and lead accumulation in rice[J]. Journal of Soil and Water Conservation, 2013, 27(2): 189–193.

    Wang Y, Liu E L, Wang Q Z, et al. Effects of milk vetch on cadmium and lead accumulation in rice[J]. Journal of Soil and Water Conservation, 2013, 27(2): 189-193.

    [38] 张珺穜, 曹卫东, 徐昌旭, 等. 种植利用紫云英对稻田土壤微生物及酶活性的影响[J]. 中国土壤与肥料, 2012, (1): 19–25. Zhang J T, Cao W D, Xu C X, et al. Effects of incorporation of milk vetch (Astragalus sinicus) on microbial populations and activities of paddy soil in Jiangxi[J]. Soil and Fertilizer Sciences in China, 2012, (1): 19–25. DOI: 10.3969/j.issn.1673-6257.2012.01.004

    Zhang J T, Cao W D, Xu C X, et al. Effects of incorporation of milk vetch (Astragalus sinicus) on microbial populations and activities of paddy soil in Jiangxi[J]. Soil and Fertilizer Sciences in China, 2012, (1): 19-25. DOI: 10.3969/j.issn.1673-6257.2012.01.004

    [39] 周亮, 肖峰, 肖欢, 等. 施用石灰降低污染稻田上双季稻镉积累的效果[J]. 中国农业科学, 2021, 54(4): 780–791. Zhou L, Xiao F, Xiao H, et al. Effects of lime on cadmium accumulation of double-season rice in paddy fields with different cadmium pollution degrees[J]. Scientia Agricultura Sinica, 2021, 54(4): 780–791. DOI: 10.3864/j.issn.0578-1752.2021.04.010

    Zhou L, Xiao F, Xiao H, et al. Effects of lime on cadmium accumulation of double-season rice in paddy fields with different cadmium pollution degrees[J]. Scientia Agricultura Sinica, 2021, 54(4): 780-791. DOI: 10.3864/j.issn.0578-1752.2021.04.010

    [40] 薛毅, 盛浩, 黄勇, 等. 湘东地区双季稻施用有机肥对土壤镉活性及稻米镉含量的影响[J]. 土壤通报, 2020, 51(5): 1203–1210. Xue Y, Sheng H, Huang Y, et al. Effects of organic fertilizer application on cadmium activity of soil and cadmium content of rice in a double cropping paddy field in eastern Hunan Province[J]. Chinese Journal of Soil Science, 2020, 51(5): 1203–1210.

    Xue Y, Sheng H, Huang Y, et al. Effects of organic fertilizer application on cadmium activity of soil and cadmium content of rice in a double cropping paddy field eastern Hunan Province[J]. Chinese Journal of Soil Science, 2020, 51(5): 1203-1210.

    [41] 贺敏杰, 蔡昆争, 王维, 等. 硅素分期施用对土壤镉形态和水稻镉累积的影响[J]. 农业环境科学学报, 2018, 37(8): 1651–1659. He M J, Cai K Z, Wang W, et al. Effects of split silicon application on the fractions of Cd in soil and its accumulation in rice[J]. Journal of Agro-Environment Science, 2018, 37(8): 1651–1659. DOI: 10.11654/jaes.2018-0131

    He M J, Cai K Z, Wang W, et al. Effects of split silicon application on the fractions of Cd in soil and its accumulation in rice[J]. Journal of Agro-Environment Science, 2018, 37(8): 1651-1659. DOI: 10.11654/jaes.2018-0131

    [42] 李鹏, 葛滢, 吴龙华, 等. 两种籽粒镉含量不同水稻的镉吸收转运及其生理效应差异初探[J]. 中国水稻科学, 2011, 25(3): 291–296. Li P, Ge Y, Wu L H, et al. Uptake and translocation of cadmium and its physiological effects in two rice cultivars different in grain cadmium concentration[J]. Chinese Journal of Rice Science, 2011, 25(3): 291–296. DOI: 10.3969/j.issn.1001-7216.2011.03.010

    Li P, Ge Y, Wu L H, et al. Uptake and translocation of cadmium and its physiological effects in two rice cultivars different in grain cadmium concentration[J]. Chinese Journal of Rice Science, 2011, 25(3): 291-296. DOI: 10.3969/j.issn.1001-7216.2011.03.010

    [43]

    Ueno D, Yamaji N, Kono I, et al. Gene limiting cadmium accumulation in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(38): 16500–16505. DOI: 10.1073/pnas.1005396107

    [44]

    Uraguchi S, Fujiwara T. Rice breaks ground for cadmium-free cereals[J]. Current Opinion in Plant Biology, 2013, 16(3): 328–334. DOI: 10.1016/j.pbi.2013.03.012

    [45] 张亚丽, 沈其荣, 姜洋. 有机肥料对镉污染土壤的改良效应[J]. 土壤学报, 2001, 38(2): 212–218. Zhang Y L, Shen Q R, Jiang Y. Effect of organic manure on the amelioration of Cd-pollution soil[J]. Acta Pedologica Sinica, 2001, 38(2): 212–218. DOI: 10.3321/j.issn:0564-3929.2001.02.009

    Zhang Y L, Shen Q R, Jiang Y. Effect of organic manure on the amelioration of Cd-pollution soil[J]. Acta Pedologica Sinica, 2001, 38(2): 212-218. DOI: 10.3321/j.issn:0564-3929.2001.02.009

  • 期刊类型引用(5)

    1. 杨梦杰,王慧,程文龙,卜容燕,韩上,唐杉,李敏,朱睿,范洪黎,武际,朱林. 紫云英-稻秸协同还田高效阻控水稻镉吸收的机理. 植物营养与肥料学报. 2025(02): 330-342 . 本站查看
    2. 谢建成,聂军,王赟,周国朋,廖育林,鲁艳红,高嵩涓,曹卫东. 硝化抑制剂对湖南紫潮泥田紫云英-稻秸还田后水稻产量及镉吸收的影响. 中国土壤与肥料. 2024(05): 103-112 . 百度学术
    3. 孙振宇,谢晓丽,郭建国,汪玮,胡超,金社林. 4种除草剂土壤封闭处理对稻茬紫云英的安全性及对阔叶杂草的防除效果. 寒旱农业科学. 2024(12): 1173-1176 . 百度学术
    4. 胡含秀,周晓天,王垚,刘莹,马中文,陈勇,马友华. 修复复合肥与钝化剂对镉污染农田水稻安全生产的效果研究. 江苏农业科学. 2023(23): 203-210 . 百度学术
    5. 余艳芳,何世界,丁丽,杜光辉,杨光,雷海霞,刘彦龙,吕玉虎. 稻茬紫云英田阔叶草防治药剂筛选及安全性评价. 杂草学报. 2023(03): 55-60 . 百度学术

    其他类型引用(3)

图(1)  /  表(5)
计量
  • 文章访问数:  1690
  • HTML全文浏览量:  927
  • PDF下载量:  61
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-04-20
  • 录用日期:  2021-09-16
  • 网络出版日期:  2021-11-17
  • 刊出日期:  2021-11-24

目录

/

返回文章
返回