Effects of returning the root of green manure on reducing N application in maize within their intercropping system in Hexi oasis irrigation area
-
摘要:目的
明确玉米与间作豆科绿肥根茬还田生产方式在河西绿洲灌区的氮肥减施效应。
方法玉米间作豆科绿肥,绿肥(针叶豌豆和毛叶苕子)地上部乂割做饲草根部还田,定位试验位于甘肃河西绿洲,始于2011年,至本试验取样时已进行了10年。试验共设8个处理,包括无绿肥根茬还田条件下后茬玉米不施肥对照,施常规量氮肥(N 375 kg/hm2),只有针叶豌豆、毛叶苕子根部还田,以及根部还田配合常规氮肥量的80%、90%。于2020年玉米收获后测产,并测定了玉米秸秆和籽粒氮、磷、钾养分含量,同时分析了0—20 cm土壤有机质、速效氮磷钾含量及土壤氮库(全氮、有机氮、无机氮、颗粒态有机氮、可溶性有机氮、土壤微生物量氮)。
结果与常规施氮肥相比,根茬单独还田降低了玉米产量;绿肥根茬配施80%、90%常规量氮肥处理之间的玉米籽粒产量没有显著变化,其中针叶豌豆配合80%常规量氮肥还显著增加了玉米产量7.6%;玉米地上部氮磷钾累积量略有增加,而籽粒氮、磷、钾养分累积量分别增加了31.7%~56.4%、37.8%~60.0%、61.7%~96.8%;玉米氮肥农学效率、偏生产力、氮素吸收效率和氮肥表观利用率均显著增加,以针叶豌豆根茬配施80%常规量氮肥处理的增加幅度最高,增加值分别为43.6%、34.5%、107.9%、35.8个百分点 (P<0.05)。采用改进的内梅罗指数法对土壤综合肥力进行评价,以针叶豌豆根茬还田配施80%常规量氮肥处理提升土壤肥力的效果最为显著,土壤综合肥力指数较常规施氮肥处理提升23.0%。偏最小二乘法路径模型和聚合增强树分析表明,施肥处理主要通过调节土壤氮贮量影响玉米产量,土壤全氮、无机氮对产量的贡献率较高,分别为36.5%、26.8%。
结论绿肥根茬连续还田条件下,减少后茬玉米氮肥常规用量的20%可维持甚至提高玉米产量,大幅提升玉米的氮磷钾吸收量和氮肥表观利用率。根茬还田配合适量氮肥可以通过提升土壤氮库贮量提高土壤综合肥力。在河西走廊,玉米产量和环境效益俱佳的栽培管理方式是针叶豌豆根茬还田配合80%的常规氮肥用量,毛叶苕子根茬还田配合80%~90%的常规氮肥用量。
Abstract:ObjectivesMaize yield and soil fertility were investigated under the continuous return of green manure (GM) roots to the field and reducing fertilizer input in subsequent maize cultivation in a maize-green manure rotation system. We aimed to provide the basis for nutrient management to achieve sustainable and efficient crop production in the Hexi oasis irrigation area.
MethodsThe long-term experiment was established in Hexi oasis, Gansu Province, in 2011. The two intercropping systems tested were needle leaf pea and hairy vetch with maize. The aboveground parts of the GM crop were cut as forage while the root remained in the soil. The sowing rows of GM and maize were exchanged every other year. Eight fertilizer treatments in maize were set up as no fertilizer application nor GM root control (CK), conventional N fertilizer rate (N 375 kg/hm2) without GM root retained (CF), retained GM root and applying N fertilizer at 0, 90%, and 80% of the conventional N fertilizer rate. At maize harvest in 2020, we analyzed the yield and NPK accumulation in maize straw and grain. Also, we collected 0–20 cm soil samples to determine the organic matter and N storage.
ResultsCompared with CF, returning GM roots to the soil only (P<0.05) decreased maize yield. The combination of GM root and 80%, 90% conventional fertilizer application rate resulted in a similar or increased maize yield. It also increased the grain N, P, and K accumulation by 31.7%–56.4%, 37.8%–60.0%, and 61.7%–96.8%, respectively. Consequently, the agronomic efficiency of N fertilizer and apparent utilization by maize increased. The improved Nemoro Index Method showed that needle leaf pea with 80% N fertilizer application consistently enhanced comprehensive soil fertility, increasing by 23.0% compared with CF. Partial least squares regression and aggregated boosted trees analyses showed that fertilization treatments changed maize yield by regulating the soil N storage. The total and inorganic N concentrations had the highest contribution, accounting for 36.5% and 26.8% of the yield increase, respectively.
ConclusionsRetaining green manure roots continuously on the field could replace 10%–20% of N fertilizer input for subsequent maize. This practice stabilizes the maize yield, increases NPK content, and improves N fertilization efficiency. The practice improves comprehensive soil fertility by increasing N storage. We recommend that when GM roots are retained in soil, 80% of the conventional N fertilization rate should be applied in maize after needle leaf pea and 80%–90% after hairy vetch.
-
施用氮肥是提高作物产量的重要手段[1]。我国现阶段氮肥利用率为30%~35%,而氮肥损失率却高达40%~50%[2-3]。大量的化学氮肥投入不仅造成资源浪费,而且还带来一系列环境问题[4]。适当降低氮肥投入量,提高氮肥养分利用率是我国农业生产中亟待突破的瓶颈。绿肥在作物高产稳产和建立良好农业生态环境方面发挥着极其重要的作用[5-7],是一种纯天然的清洁有机肥源[8]。种植豆科绿肥能通过生物固氮向农田生态系统输入氮素[9],减少作物对化学氮肥的需求。研究表明,在我国西北[10-11]、西南[12]、华北地区[13],种植绿肥并翻压时,较秋闲田或冬闲田减施化肥15%~30%,主作物产量不低于当地常规施肥并稳中有升[7]。2020年,高嵩涓等[14]运用南方稻区11点联网定位试验,也证实了种植利用绿肥的增产节肥效应,接茬水稻不减肥或减肥20%水稻分别增产6.5%和4.2%,减施40%化肥时水稻不减产。
在我国河西绿洲灌区,玉米间作豆科绿肥,绿肥盛花期收割地上部用作饲草,残留根茬用于培肥土壤是一种常见的生产模式[15]。该模式下,豆科绿肥与玉米共同生长期间,玉米能有效利用豆科绿肥生物固定的氮素[16],绿肥根茬连续还田还能增加接茬作物的产量[11,17]。我们利用位于河西绿洲灌区连续10年(2011—2020)的定位试验,研究了玉米间作豆科绿肥(针叶豌豆、毛叶苕子),绿肥根茬还田下后茬作物减施氮肥的可行性,旨在为该地区农田养分高效管理提供技术和理论支撑。
1. 材料与方法
1.1 试验区概况和试验材料
试验于2011年在甘肃省农业科学院武威绿洲试验基地(37°43′N,102°35′E)进行。基地海拔1504 m、年平均气温≥10℃,全年积温3016℃,年日照时数2800~3300 h、无霜期150 天,年平均降水量222 mm、蒸发量2021 mm。供试土壤为灌漠土,耕层土壤(0—20 cm)容重1.39 g/cm3、有机质20.61 g/kg、全氮1.22 g/kg、全磷0.43 g/kg、全钾20.9 g/kg、碱解氮57.09 mg/kg、有效磷29.54 mg/kg、速效钾179 mg/kg、pH 8.31。
供试玉米(Zea mays L.)品种为‘武科2号’。供试绿肥为针叶豌豆(Pisum sativum L.),品种为‘陇豌2号’;毛叶苕子(Vicia villosa Roth),品种为‘土库曼毛叶苕子’。
1.2 试验设计
试验设8个处理,分别为:后茬玉米不施肥对照(CK);施用常规量氮肥(CF);针叶豌豆根茬还田条件下,后茬玉米不施氮肥(P)和施用常规氮肥量的90%和80% (N90P、N80P);毛叶苕子根茬还田条件下,后茬玉米不施氮肥(V)和施用常规氮肥量的90% 和80% (N90V、N80V),每个处理重复3次,小区面积21 m2 (4.2 m×5.0 m),随机区组排列。供试氮肥、磷肥分别为尿素(N 46%)、重过磷酸钙(P2O5 43%)。当地玉米常规氮肥施肥量为N 375 kg/hm2,氮肥按基肥∶拔节期追肥∶大喇叭口期追肥=3∶3∶4分施,除对照外,每个处理均基施P2O5 150 kg/hm2。
玉米绿肥采用宽窄行种植,条播。玉米带宽为40 cm,覆膜2行种植,株距20 cm,行距40 cm,播种密度为82500株/hm2;绿肥带宽80 cm,种植3行绿肥,株距20 cm,行距20 cm。CK、CF处理除不种植绿肥外,种植模式均同于其他处理,种植模式如图1所示。播种量为针叶豌豆75 kg/hm2、毛叶苕子45 kg/hm2。玉米于2020年4月下旬播种,2020年10月上旬收获。针叶豌豆和毛叶苕子均于2020年3月下旬播种,2020年6月下旬收获(针叶豌豆为籽粒成熟期,毛叶苕子为盛花期),绿肥收获时玉米处于大喇叭口期,两者共生期约为60天。绿肥处理方式为,在收获时将地上部乂割移走作为饲草,留根茬肥田。绿肥以小区为单位测产,针叶豌豆、毛叶苕子地上部干物质量分别为1568、1878 kg/hm2。次年,玉米带与绿肥带倒茬播种,如此循环。采用漫灌的方式在玉米拔节期、大喇叭口期追肥后灌水。
1.3 样品采集与分析
2020年10月玉米成熟期,各小区单打单收,果穗风干后脱粒,称其籽粒干重,即为小区产量,再由小区产量折成单位面积玉米籽粒产量。随机选取3株成熟玉米进行考种,于105℃杀青30 min,60℃烘干至恒重,称重、粉碎后备用。植株样品采用浓硫酸–过氧化氢法消煮,凯氏定氮法测定氮、钒钼黄比色法测定磷、火焰光度计法测定钾含量[18]。
玉米收获后每小区按5点取样法采集0—20 cm耕层土样,分取部分鲜土进行活性氮指标分析,剩余土样自然风干,过筛后用于理化性质分析。土壤理化性质测定方法如下:土壤有机质采用重铬酸钾—外加热法测定;土壤有效磷采用0.5 mol/L碳酸氢钠提取—钼锑抗比色法测定;土壤速效钾采用醋酸铵浸提—火焰光度计法测定;土壤pH采用电位法(水土比2.5∶1)测定[18]。
土壤氮库指标测定参照杨璐[19]、周国朋等[6]试验方法,包括:全氮、有机氮、无机氮、颗粒态有机氮、可溶性有机氮、土壤微生物量氮。
1.4 计算公式
1.4.1 氮肥利用指标
选择氮肥农学效率、氮肥偏生产力、氮素吸收效率、氮肥表观利用率来比较不同处理间的氮肥效益。
氮肥农学效率(kg/kg)=YN−Y0Nr; 氮肥偏生产力(kg/kg)=YNNr; 氮素吸收效率(kg/kg)=TNNNr; 氮肥表观利用率(%)=TNN−TN0Nr×100 式中:TNN—施氮区玉米吸氮量(kg/hm2);TN0—不施氮区玉米吸氮量(kg/hm2);YN—施氮区玉米产量(kg/hm2);Y0—不施氮区玉米产量(kg/hm2);Nr—氮素施入量(kg/hm2)。
1.4.2 修正后的内梅罗 (Nemoro) 公式
IFI=(n−1n)√(Pi)2min+(Pi)2ave2 式中:IFI为土壤综合肥力指数;(Pi)min为土壤所有指标中单项肥力指数最小值;(Pi)ave为土壤所有指标中单项肥力指数平均值;n为参评的土壤肥力指标数。引入(Pi)min替代原公式中的(Pi)max,其目的是强化此因子对土壤肥力指数的制约,(n−1)/n是土壤综合肥力指数的修正项,参评的因子越多,可信度越高,本研究中n=6。参评因子肥力指数(Pi)是将测定的各土壤基础理化性质值参考土壤肥力参评指标分级标准,将其分级划分后再运用公式进行标准化处理,以消除各因子之间的量纲差别。主要参照第二次全国土壤普查分级标准及其他学者的研究成果[20]。
1.5 数据处理
试验数据选用SPSS 17.0软件进行数据处理、统计与方差分析,Duncan新复极差法多重比较判断处理间差异显著性(P<0.05);通过R 2.7.0中的“gbmplus”包[21]进行聚合增强树分析(ABT);使用R 3.6.1中的“plspm”包[22],构建绿肥品种、施氮量、土壤理化性质、氮库指标、玉米产量、地上部养分累积量及玉米氮素利用特征之间的路径分析模型。采用Origin 2019作图。
2. 结果与分析
2.1 绿肥根茬还田下氮肥减施对玉米产量及养分吸收利用的影响
由表1可知,与不施肥CK处理相比,仅绿肥根茬还田(P和V处理)不能显著提高玉米产量;玉米产量以N80P处理最高,较CF处理增产7.6% (P < 0.05),其余绿肥根茬还田配施80%~90%常规量氮肥处理均同CF保持基本一致的产量。可见,绿肥根茬还田下氮肥减施常规量的10%~20%,玉米产量稳中有升。
表 1 不同处理的玉米产量(2020年)Table 1. Maize yield under different treatments in 2020处理
Treatment产量 Grain yield
(kg/hm2)CK 7353±450 c CF 15090±1661 b P 7799±653 c V 7466±263 c N90P 15493±458 ab N80P 16239±583 a N90V 15071±822 b N80V 15022±352 b 注(Note):CK—后茬玉米不施肥对照 No fertilizer application nor green manure root control; CF—施用常规量氮肥 Conventional N fertilizer rate (N 375 kg/hm2) without green manure root retained; P、V、N90P、 N90V、N80P、N80V分别表示豆科绿肥针叶豌豆、毛叶苕子根茬还田条件下,后茬玉米不施氮肥和施用常规氮量的 90% 和 80% P, V, N90P, N90V, N80P, N80V respectively mean that retained green manure root and applying N fertilizer at 0, 90%, and 80% of the conventional N fertilizer rate. 表中数据为平均值±标准差 (n = 3) Data are presented as the mean± standard error of 3 replicates; 同列数据后不同字母表示处理间差异达5%显著水平 Values followed by different letters in a column represent significant difference among treatments (P < 0.05). 不同施肥处理间玉米氮、磷、钾养分累积量与玉米产量呈现相同的变化趋势(图2)。绿肥根茬还田配施80%~90%常规量氮肥条件下,玉米籽粒氮、磷、钾累积量分别较CF处理增加31.7%~56.4%、37.8%~60.0%、61.7%~96.8% (P < 0.05)。同CF处理相比,地上部氮、磷、钾累积量以N80P处理最高。由表2可见,与CF相比,绿肥根茬还田配施80%~90%常规量氮肥不同程度促进了玉米氮素利用。各施肥处理的氮肥农学效率、氮肥偏生产力、氮素吸收效率、氮肥表观利用率均以N80P处理最高,分别为29.62 kg/kg、54.13 kg/kg、0.79 kg/kg、53.6%,较CF处理增加43.6%、34.5%、107.9%、35.8个百分点 (P<0.05)。整体来看,绿肥根茬还田下减施常规量10%~20%氮肥,可促进玉米养分的吸收利用,利于玉米丰产。
图 2 不同处理下玉米籽粒和秸秆中的氮、磷、钾累积量[注(Note):CK—后茬玉米不施肥对照 No fertilizer application nor green manure root control; CF—施用常规量氮肥 Conventional N fertilizer rate (N 375 kg/hm2) without green manure root retained; P、V、N90P、N90V、N80P、N80V分别表示豆科绿肥针叶豌豆、毛叶苕子根茬还田条件下,后茬玉米不施氮肥和施用常规氮量的90%和80% P, V, N90P, N90V, N80P, N80V respectively mean that retained green manure root and applying N fertilizer at 0, 90%, and 80% of the conventional N fertilizer rate. 柱上和柱中不同字母表示处理间差异达5%显著水平Different letters above and in the bars mean significant difference among treatments at 5% level.]Figure 2. Accumulation of N, P, and K in grain and straw of maize under different treatments表 2 不同处理下的玉米氮素利用率Table 2. Nitrogen use efficiency of maize under different treatments处理 Treatment 氮肥农学效率 NAE (kg/kg) 氮肥偏生产力 NPFP (kg/kg) 氮素吸收效率 NUPE (kg/kg) 氮肥表观利用率 NUE (%) CF 20.63±4.43 b 40.24±4.33 d 0.38±0.04 c 17.8±3.82 c N90P 24.12±1.36 b 45.91±1.36 c 0.63±0.06 b 40.3±5.77 b N80P 29.62±1.94 a 54.13±1.94 a 0.79±0.05 a 53.6±5.26 a N90V 22.87±2.44 b 44.66±2.44 c 0.64±0.04 b 41.9±4.28 b N80V 22.72±1.04 b 50.08±1.17 b 0.69±0.01 b 43.2±1.07 b 注(Note):NAE—氮肥农学效率 Nitrogen agronomic efficiency; NPFP—氮肥偏生产力 Nitrogen partial factor productivity; NUPE—氮素吸收效率 Nitrogen uptake potential efficiency; NUE—氮肥表观利用率 Nitrogen apparent utilization efficiency. CF—施用常规量氮肥 Conventional N fertilizer rate (N 375 kg/hm2) without green manure root retained; N90P、N90V、N80P、N80V分别表示豆科绿肥针叶豌豆、毛叶苕子根茬还田条件下,后茬玉米施用常规氮量的 90% 和 80% N90P, N90V, N80P, N80V mean that retained green manure root and applying N fertilizer at 0, 90%, and 80% of the conventional N fertilizer rate, respectively. 表中数据为平均值±标准差(n=3) Data are presented as the mean± standard error of 3 replicates; 同列数据后不同字母表示处理间差异达 5% 显著水平 Values followed by different letters in same column represent significant difference among treatments (P < 0.05). 2.2 绿肥根茬还田下氮肥减施对土壤氮库的影响
表3表明,各施肥处理下的土壤全氮、有机氮、颗粒态有机氮(POMN)和土壤微生物量氮(SMBN)变化趋势相似,贮量较CK均提高。与CF处理相比,氮肥减施常规量的10%~20%情况下,针叶豌豆根茬还田显著增加土壤铵态氮(NH4+-N)含量,同时针叶豌豆、毛叶苕子根茬还田下土壤硝态氮(NO3–-N)含量均呈降低趋势。双因素方差分析结果表明,施氮量极显著地影响土壤氮库贮量,同时绿肥品种与施氮量对NO3–-N、NH4+-N的影响表现出显著交互作用。
表 3 不同处理下土壤不同形态氮含量Table 3. N contents in different forms in soils under different treatments处理
Treatment全氮
Total N
(g/kg)有机氮
Organic N
(g/kg)铵态氮
NH4+-N
(mg/kg)硝态氮
NO3–-N
(mg/kg)颗粒态有机氮
POMN
(mg/kg)可溶性有机氮
DON
(mg/kg)微生物量氮
MBN
(mg/kg)CK 1.05±0.00 c 1.04±0.00 b 0.15±0.18 b 5.04±0.63 bc 82.33±9.06 b 101.44±6.90 a 102.70±2.79 c CF 1.14±0.03 ab 1.14±0.03 a 0.24±0.20 b 8.04±0.99 a 110.61±26.54 ab 114.21±5.60 a 250.79±16.00 b P 1.12±0.00 c 1.04±0.00 b 0.46±0.22 b 6.05±0.61 b 121.41±6.60 ab 111.49±5.26 a 372.88±29.96 a V 1.10±0.01 bc 1.09±0.01 ab 0.19±0.07 b 4.45±0.34 c 117.29±31.50 ab 111.32±7.72 a 291.42±73.03 ab N90P 1.16±0.07 ab 1.15±0.07 a 0.87±0.11 a 5.29±0.54 bc 146.39±29.59 a 119.10±13.91 a 242.63±25.99 b N80P 1.18±0.07 a 1.15±0.07 a 0.96±0.03 a 5.37±0.55 bc 139.81±30.89 a 119.92±8.53 a 244.31±23.64 b N90V 1.13±0.03 ab 1.13±0.03 a 0.26±0.16 b 6.11±0.87 b 145.75±22.67 a 108.06±5.66 a 263.54±28.10 ab N80V 1.18±0.04 a 1.17±0.03 a 0.26±0.14 b 5.80±0.12 b 146.21±8.85 a 111.39±0.71 a 224.42±22.51 b 双因素方差分析 Two-ANOVA analysis 绿肥 (GM)
Green manure0.62 0.64 8.24** 32.81*** 0.00 1.22 0.18 施氮量 (T)
N application rate12.04*** 11.67*** 19.52*** 10.02*** 8.09*** 0.72 18.91*** GM×T 0.66 0.73 0.34* 13.15*** 0.04 0.46 1.81 注(Note):表中数据为平均值 ± 标准差 (n = 3) Data are presented as the mean± standard error of 3 replicates. POMN—颗粒态有机氮 Particle organic matter N; DON—可溶性有机氮 Dissolved organic N; MBN—微生物量氮 Microbial biomass N; CK—后茬玉米不施肥对照 No fertilizer application nor green manure root control; CF—施用常规量氮肥 Conventional N fertilizer rate (N 375 kg/hm2) without green manure root retained; P、V、N90P、 N90V、N80P、N80V分别表示豆科绿肥针叶豌豆、毛叶苕子根茬还田条件下,后茬玉米不施氮肥和施用常规氮量的 90% 和 80% P, V, N90P, N90V, N80P, N80V respectively mean that retained green manure root and applying N fertilizer at 0, 90%, and 80% of the conventional N fertilizer rate. 同列数据后不同字母表示处理间差异达 5% 显著水平 Values followed by different letters in the same column represent significant difference among treatments (P < 0.05); *—P < 0.05; **—P < 0.01; ***—P < 0.001. 2.3 绿肥根茬还田下氮肥减施对土壤综合肥力指数的影响
选取6项常规土壤基本指标分级标准化,对各处理的土壤肥力进行评价(表4)。与CK相比,各施肥处理下的土壤综合肥力指数(IFI)提升了17.2%~23.0% (P<0.05)。从不同处理的产量对土壤综合肥力指数的响应分析来看(图3),绿肥根茬还田配施80%~90%常规量氮肥处理的玉米产量对IFI的响应均处于相对较高水平,其中N80P处理尤为突出。
表 4 不同处理下的土壤综合肥力指数(IFI)Table 4. Soil integrated fertility index (IFI) under different treatments处理
Treatment单项肥力指数 Single index (Pi) IFI 有机质
Organic matter全氮
Total N无机氮
Inorganic N有效磷
Available P速效钾
Available KpH CK 3.00±0.00 a 1.40±0.00 c 1.37±0.03 d 1.12±0.08 d 2.26±0.04 a 0.93±0.01 a 1.22±0.08 c CF 3.00±0.00 a 1.53±0.04 ab 1.83±0.03 c 2.37±0.08 c 2.08±0.01 b 0.94±0.00 a 1.44±0.00 b P 3.00±0.00 a 1.50±0.05 ab 2.02±0.01 cd 3.00±0.00 a 2.23±0.10 ab 0.93±0.00 a 1.47±0.01 ab V 3.00±0.00 a 1.46±0.01 bc 2.01±0.01 cd 3.00±0.00 a 1.79±0.04 c 0.93±0.01 a 1.43±0.00 b N90P 3.00±0.00 a 1.55±0.09 ab 2.32±0.02 a 3.00±0.00 a 2.16±0.03 ab 0.94±0.00 a 1.44±0.02 b N80P 3.00±0.00 a 1.57a±0.05 a 2.43±0.32 a 3.00±0.00 a 2.21±0.14 ab 0.93±0.00 a 1.50±0.02 a N90V 3.00±0.00 a 1.51±0.04 ab 2.43±0.22 a 2.70±0.24 b 2.09±0.10 b 0.93±0.00 a 1.46±0.02 ab N80V 3.00±0.00 a 1.55±0.06 ab 2.23±0.20 ab 3.00±0.00 a 2.16±0.13 ab 0.93±0.00 a 1.48±0.01 ab 注(Note):CK—后茬玉米不施肥对照 No fertilizer application nor green manure root control; CF—施用常规量氮肥 Conventional N fertilizer rate (N 375 kg/hm2) without green manure root retained; P、V、N90P、 N90V、N80P、N80V分别表示豆科绿肥针叶豌豆、毛叶苕子根茬还田条件下,后茬玉米不施氮肥和施用常规氮量的 90% 和 80% P, V, N90P, N90V, N80P, N80V respectively mean that retained green manure root and applying N fertilizer at 0, 90%, and 80% of the conventional N fertilizer rate. 同列数据后不同字母表示处理间差异达 5% 显著水平 Values followed by different letters in same column represent significant difference among treatments (P < 0.05). 图 3 不同处理产量对土壤综合肥力指数的响应[注(Note):CK—后茬玉米不施肥对照 Neither fertilizer application nor green manure root control; CF—施用常规量氮肥 Conventional N fertilizer rate (N 375 kg/hm2) without green manure root retained; P、V、N90P、 N90V、N80P、N80V分别表示豆科绿肥针叶豌豆、毛叶苕子根茬还田条件下,后茬玉米不施氮肥和施用常规氮量的 90% 和 80% P, V, N90P, N90V, N80P, N80V respectively mean that retained green manure root and applying N fertilizer at 0, 90%, and 80% of the conventional N fertilizer rate. ]Figure 3. Yield response to integrated fertility index (IFI) under different treatments2.4 土壤不同性状与玉米产量之间的相互作用
运用聚合增强树(ABT)方法分析土壤性状对玉米产量的相对贡献(图4),结果表明全氮对玉米产量的贡献最大,其次为Nmin、有效磷,贡献率分别为36.5%、26.8%、10.3%。偏最小二乘路径模型(PLS-PM)结果(图5)表明,不同施氮水平对土壤有机质、有效磷、土壤氮库(NL)有显著正影响,其中对NL的影响更大(0.64,P<0.01)。从标准化的路径系数来看,NL对玉米产量具有最高的贡献值(0.99,P <0.001)。
图 4 不同土壤性状对玉米产量的贡献率[注(Note):TN—全氮 Total N; Nmin—无机氮 Inorganic N (NO3–-N+NH4+-N); AP—有效磷 Available P;AK—速效钾 Available K; DON—可溶性有机氮Dissolved organic N; POMN—颗粒态有机氮 Particle organic matter N; SMBN—土壤微生物量氮 Soil microbial biomass N; SOM—土壤有机质 Soil organic matter; SON—土壤有机氮 Soil organic N.]Figure 4. The contribution rate of different soil properties to maize yield图 5 偏最小二乘路径分析[注(Note):箭头旁数值为标准化的路径系数 Numbers next to the arrows are the standardized path coefficients, GOF 值表示模型的拟合优度 The value of GOF indicates the goodness of fit of the model. *—P < 0.05; **—P < 0.01; ***—P < 0.001. GM—绿肥 Green manure; T—施氮量处理 N application treatment; TN—全氮 Total N; NL—土壤氮库 Soil nitrogen storage; SOM—土壤有机质 Soil organic matter; AP—有效磷 Available P; AK—速效钾 Available K; SON—土壤有机氮 Soil organic N; DON—可溶性有机氮 Dissolved organic N; Nmin—无机氮 Inorganic N (NO3–-N + NH4+-N); POMN—颗粒态有机氮 Particle organic matter nitrogen; SMBN—土壤微生物量氮 Soil microbial biomass nitrogen; Shoot-NPK—地上部氮磷钾积累量N, P, K accumulation in shoot; Shoot-N—地上部氮积累量 N accumulation in shoot; Shool-P—地上部磷积累量 P accumulation in shoot; Shoot-K—地上部钾积累量 K accumulation in shoot; NU—氮素利用指数 Nitrogen utilization index; NAE—氮肥农学效率Nitrogen agronomic efficiency; NPFP—氮肥偏生产力 Nitrogen partial factor productivity; NUPE—氮肥吸收效率 Nitrogen uptake potential efficiency; NUE—氮肥表观利用率 Nitrogen apparent utilization efficiency.]Figure 5. Partial least squares path analysis3. 讨论
3.1 绿肥根茬还田配施减量氮肥下的玉米生产效应
大力发展豆科绿肥是实现化肥“零增长”的重要途径[23]。在我国河西绿洲灌区,禾豆间作能提高主栽作物产量,多年种植豆科绿肥可替代部分化学氮肥[24]。已有研究表明,与常规施氮肥相比,玉米间作箭筈豌豆并全量翻压情况下,配合减施25%常规量氮肥,可以保证玉米籽粒不减产[25]。本研究发现,玉米间作豆科绿肥模式中,针叶豌豆根茬还田、减施20%常规量氮肥较常规施氮肥处理玉米籽粒增产7.6% (P<0.05);绿肥毛叶苕子根茬还田及减施10%~20%常规量氮肥可收获与常规施氮肥基本一致的籽粒产量。可见,在河西绿洲灌区的禾豆间作模式下,仅绿肥根茬还田就可替代10%~20%常规量化学氮肥。两类绿肥作物处理之间,间作针叶豌豆的节肥、增产潜力高于间作毛叶苕子,这与本定位试验7年前的研究结果类似,即在试验第3年玉米间作针叶豌豆处理率先表现出玉米减肥不减产的效果[26],这可能是因为茎秆喜攀援的针叶豌豆相比蔓生性强的毛叶苕子具有更高的光能利用效率,提高了运向根瘤菌固氮体系的光合产物[27-28]。值得注意的是,同等试验条件下,间作豆科绿肥节肥效益由试验第3年的节肥10%到试验第10年的节肥20%,说明间作豆科绿肥的节肥潜力可随种植年限的延长而增强[24,29],具有一定的累加效应。
种植利用绿肥能促进后茬作物对土壤养分的吸收利用[30]。在玉米间作豆科绿肥模式下,豆科绿肥可通过根系–根瘤菌共生固氮系统固定氮素,增加土壤有效氮含量[10,16,31],较好地保证了玉米氮素供应,从而减少氮肥投入。本研究基于针叶豌豆和毛叶苕子根茬还田,减施10%~20%常规量氮肥能够有效促进玉米对氮、磷、钾养分(P<0.05)的吸收(图2)。前人研究也表明,绿肥氮与化肥氮配施,不同形态氮素间的交互作用利于作物对化肥氮的吸收利用[14,19],进而提高氮肥利用效率[32]。本研究中,氮肥减施常规量的10%~20%并配合绿肥根茬还田措施,氮肥表观利用率较常规施氮肥处理显著增加(P<0.05),其中针叶豌豆根茬还田配施减量20%常规氮肥处理表现最为突出(表2)。这可能由于:1)绿肥根茬氮素缓慢释放,能够协调玉米生长对氮的需求[33];2)低水平的外源氮投入以及玉米–绿肥共生期间玉米对土壤氮的耗竭,激发豆科绿肥自身的固氮潜力[31]。与本研究结果类似,张达斌[34]的研究也证实低氮肥施用水平下应用豆科绿肥对作物氮吸收的贡献优于高氮条件。综上,绿肥根茬还田不仅利于主栽作物对养分(尤其是氮素)的吸收利用,而且在减少氮肥投入等方面也发挥着重要作用。
3.2 绿肥根茬还田配施减量氮肥对土壤肥力的影响
本研究中,施用氮肥及绿肥根茬还田对土壤无机氮(铵态氮、硝态氮)的影响表现出显著交互作用(表3)。土壤铵态氮、硝态氮含量在玉米成熟期显著低于抽雄期(数据未列出),以硝态氮含量的降低最为明显,这与硝态氮是玉米吸收利用的主要氮源有关[35]。PLS-PM模型分析表明,不同梯度的氮肥投入通过调节土壤氮库(0.64,P<0.01)进而影响玉米产量(0.99,P<0.001) (图5),运用聚合增强树分析(图4)也发现,土壤全氮、无机氮含量对玉米产量具有较高的贡献率,这进一步表明土壤氮含量在促进作物生长和增产方面发挥着重要作用[36]。前人研究表明,将绿肥纳入种植制度有利于土壤氮库培育[7,37]。例如,高菊生等[38]利用长期定位试验,持续30年种植利用豆科绿肥,土壤全氮含量显著增加了9%。本研究中,在减施10%~20%常规量氮肥条件下,根茬还田各处理的土壤氮库贮量较常规量施氮肥处理有上升趋势,但差异未达到显著水平。造成与前人研究结果差异的原因一方面可能是本研究在绿肥盛花期将其地上部乂割移除用作饲草,绿肥鲜草从土壤中汲取了大部分氮素;另一方面本定位试验年限相对较短,绿肥根茬还田带入的氮素含量还不足以显著影响土壤氮贮量。
豆科绿肥作为一种优质的有机肥源,茬地利用不仅有助于增加土壤有效养分含量[39],而且具有提升土壤肥力的作用[40]。本研究发现,针叶豌豆根茬还田配施减常规量20%氮肥的土壤综合肥力指数较常规施氮肥显著提升23.0%。本试验条件下,针叶豌豆和毛叶苕子残根的氮养分含量分别为2.6%、2.4%,其根冠比均约为1/10,可推算出针叶豌豆和毛叶苕子的地下部根茬氮累积量约为4.0、4.5 kg/hm2,地上部氮累积量分别为34.5、58.2 kg/hm2。在针叶豌豆和毛叶苕子根茬氮累积量差异不大的情况下,毛叶苕子从系统中移除的氮累积量明显高于针叶豌豆,这是造成土壤肥力差异的主要原因。与不施肥处理相比,豆科绿肥根茬还田(P、V处理)土壤综合肥力指数能维持较高水平,但玉米产量、养分累积量无显著差异,这可能因为绿肥根茬养分释放缓慢,致使养分供应与玉米生长不平衡,说明绿肥还田需配施一定量的化肥才能充分发挥其肥效。综上,种植绿肥具有提升土壤肥力兼具增加土壤氮库贮量的长期效应和提高速效养分含量的即时效应[14]。可见,在玉米间作豆科绿肥模式中,绿肥根茬还田的生产方式不仅具备一定的减肥潜力,同时对于维持并提升土壤肥力水平也发挥着重要的作用。
4. 结论
绿肥根茬连续还田条件下,减少后茬玉米氮肥常规用量的20%可维持甚至提高玉米产量,大幅提升玉米的氮磷钾吸收量和氮肥表观利用率。根茬还田配合适量氮肥可以通过提升土壤氮库贮量提高土壤综合肥力。在河西走廊,玉米产量和环境效益俱佳的栽培管理方式是针叶豌豆根茬还田配合80%的常规氮肥用量,毛叶苕子根茬还田配合80%~90%的常规氮肥用量。
-
图 2 不同处理下玉米籽粒和秸秆中的氮、磷、钾累积量
[注(Note):CK—后茬玉米不施肥对照 No fertilizer application nor green manure root control; CF—施用常规量氮肥 Conventional N fertilizer rate (N 375 kg/hm2) without green manure root retained; P、V、N90P、N90V、N80P、N80V分别表示豆科绿肥针叶豌豆、毛叶苕子根茬还田条件下,后茬玉米不施氮肥和施用常规氮量的90%和80% P, V, N90P, N90V, N80P, N80V respectively mean that retained green manure root and applying N fertilizer at 0, 90%, and 80% of the conventional N fertilizer rate. 柱上和柱中不同字母表示处理间差异达5%显著水平Different letters above and in the bars mean significant difference among treatments at 5% level.]
Figure 2. Accumulation of N, P, and K in grain and straw of maize under different treatments
图 3 不同处理产量对土壤综合肥力指数的响应
[注(Note):CK—后茬玉米不施肥对照 Neither fertilizer application nor green manure root control; CF—施用常规量氮肥 Conventional N fertilizer rate (N 375 kg/hm2) without green manure root retained; P、V、N90P、 N90V、N80P、N80V分别表示豆科绿肥针叶豌豆、毛叶苕子根茬还田条件下,后茬玉米不施氮肥和施用常规氮量的 90% 和 80% P, V, N90P, N90V, N80P, N80V respectively mean that retained green manure root and applying N fertilizer at 0, 90%, and 80% of the conventional N fertilizer rate. ]
Figure 3. Yield response to integrated fertility index (IFI) under different treatments
图 4 不同土壤性状对玉米产量的贡献率
[注(Note):TN—全氮 Total N; Nmin—无机氮 Inorganic N (NO3–-N+NH4+-N); AP—有效磷 Available P;AK—速效钾 Available K; DON—可溶性有机氮Dissolved organic N; POMN—颗粒态有机氮 Particle organic matter N; SMBN—土壤微生物量氮 Soil microbial biomass N; SOM—土壤有机质 Soil organic matter; SON—土壤有机氮 Soil organic N.]
Figure 4. The contribution rate of different soil properties to maize yield
图 5 偏最小二乘路径分析
[注(Note):箭头旁数值为标准化的路径系数 Numbers next to the arrows are the standardized path coefficients, GOF 值表示模型的拟合优度 The value of GOF indicates the goodness of fit of the model. *—P < 0.05; **—P < 0.01; ***—P < 0.001. GM—绿肥 Green manure; T—施氮量处理 N application treatment; TN—全氮 Total N; NL—土壤氮库 Soil nitrogen storage; SOM—土壤有机质 Soil organic matter; AP—有效磷 Available P; AK—速效钾 Available K; SON—土壤有机氮 Soil organic N; DON—可溶性有机氮 Dissolved organic N; Nmin—无机氮 Inorganic N (NO3–-N + NH4+-N); POMN—颗粒态有机氮 Particle organic matter nitrogen; SMBN—土壤微生物量氮 Soil microbial biomass nitrogen; Shoot-NPK—地上部氮磷钾积累量N, P, K accumulation in shoot; Shoot-N—地上部氮积累量 N accumulation in shoot; Shool-P—地上部磷积累量 P accumulation in shoot; Shoot-K—地上部钾积累量 K accumulation in shoot; NU—氮素利用指数 Nitrogen utilization index; NAE—氮肥农学效率Nitrogen agronomic efficiency; NPFP—氮肥偏生产力 Nitrogen partial factor productivity; NUPE—氮肥吸收效率 Nitrogen uptake potential efficiency; NUE—氮肥表观利用率 Nitrogen apparent utilization efficiency.]
Figure 5. Partial least squares path analysis
表 1 不同处理的玉米产量(2020年)
Table 1 Maize yield under different treatments in 2020
处理
Treatment产量 Grain yield
(kg/hm2)CK 7353±450 c CF 15090±1661 b P 7799±653 c V 7466±263 c N90P 15493±458 ab N80P 16239±583 a N90V 15071±822 b N80V 15022±352 b 注(Note):CK—后茬玉米不施肥对照 No fertilizer application nor green manure root control; CF—施用常规量氮肥 Conventional N fertilizer rate (N 375 kg/hm2) without green manure root retained; P、V、N90P、 N90V、N80P、N80V分别表示豆科绿肥针叶豌豆、毛叶苕子根茬还田条件下,后茬玉米不施氮肥和施用常规氮量的 90% 和 80% P, V, N90P, N90V, N80P, N80V respectively mean that retained green manure root and applying N fertilizer at 0, 90%, and 80% of the conventional N fertilizer rate. 表中数据为平均值±标准差 (n = 3) Data are presented as the mean± standard error of 3 replicates; 同列数据后不同字母表示处理间差异达5%显著水平 Values followed by different letters in a column represent significant difference among treatments (P < 0.05). 表 2 不同处理下的玉米氮素利用率
Table 2 Nitrogen use efficiency of maize under different treatments
处理 Treatment 氮肥农学效率 NAE (kg/kg) 氮肥偏生产力 NPFP (kg/kg) 氮素吸收效率 NUPE (kg/kg) 氮肥表观利用率 NUE (%) CF 20.63±4.43 b 40.24±4.33 d 0.38±0.04 c 17.8±3.82 c N90P 24.12±1.36 b 45.91±1.36 c 0.63±0.06 b 40.3±5.77 b N80P 29.62±1.94 a 54.13±1.94 a 0.79±0.05 a 53.6±5.26 a N90V 22.87±2.44 b 44.66±2.44 c 0.64±0.04 b 41.9±4.28 b N80V 22.72±1.04 b 50.08±1.17 b 0.69±0.01 b 43.2±1.07 b 注(Note):NAE—氮肥农学效率 Nitrogen agronomic efficiency; NPFP—氮肥偏生产力 Nitrogen partial factor productivity; NUPE—氮素吸收效率 Nitrogen uptake potential efficiency; NUE—氮肥表观利用率 Nitrogen apparent utilization efficiency. CF—施用常规量氮肥 Conventional N fertilizer rate (N 375 kg/hm2) without green manure root retained; N90P、N90V、N80P、N80V分别表示豆科绿肥针叶豌豆、毛叶苕子根茬还田条件下,后茬玉米施用常规氮量的 90% 和 80% N90P, N90V, N80P, N80V mean that retained green manure root and applying N fertilizer at 0, 90%, and 80% of the conventional N fertilizer rate, respectively. 表中数据为平均值±标准差(n=3) Data are presented as the mean± standard error of 3 replicates; 同列数据后不同字母表示处理间差异达 5% 显著水平 Values followed by different letters in same column represent significant difference among treatments (P < 0.05). 表 3 不同处理下土壤不同形态氮含量
Table 3 N contents in different forms in soils under different treatments
处理
Treatment全氮
Total N
(g/kg)有机氮
Organic N
(g/kg)铵态氮
NH4+-N
(mg/kg)硝态氮
NO3–-N
(mg/kg)颗粒态有机氮
POMN
(mg/kg)可溶性有机氮
DON
(mg/kg)微生物量氮
MBN
(mg/kg)CK 1.05±0.00 c 1.04±0.00 b 0.15±0.18 b 5.04±0.63 bc 82.33±9.06 b 101.44±6.90 a 102.70±2.79 c CF 1.14±0.03 ab 1.14±0.03 a 0.24±0.20 b 8.04±0.99 a 110.61±26.54 ab 114.21±5.60 a 250.79±16.00 b P 1.12±0.00 c 1.04±0.00 b 0.46±0.22 b 6.05±0.61 b 121.41±6.60 ab 111.49±5.26 a 372.88±29.96 a V 1.10±0.01 bc 1.09±0.01 ab 0.19±0.07 b 4.45±0.34 c 117.29±31.50 ab 111.32±7.72 a 291.42±73.03 ab N90P 1.16±0.07 ab 1.15±0.07 a 0.87±0.11 a 5.29±0.54 bc 146.39±29.59 a 119.10±13.91 a 242.63±25.99 b N80P 1.18±0.07 a 1.15±0.07 a 0.96±0.03 a 5.37±0.55 bc 139.81±30.89 a 119.92±8.53 a 244.31±23.64 b N90V 1.13±0.03 ab 1.13±0.03 a 0.26±0.16 b 6.11±0.87 b 145.75±22.67 a 108.06±5.66 a 263.54±28.10 ab N80V 1.18±0.04 a 1.17±0.03 a 0.26±0.14 b 5.80±0.12 b 146.21±8.85 a 111.39±0.71 a 224.42±22.51 b 双因素方差分析 Two-ANOVA analysis 绿肥 (GM)
Green manure0.62 0.64 8.24** 32.81*** 0.00 1.22 0.18 施氮量 (T)
N application rate12.04*** 11.67*** 19.52*** 10.02*** 8.09*** 0.72 18.91*** GM×T 0.66 0.73 0.34* 13.15*** 0.04 0.46 1.81 注(Note):表中数据为平均值 ± 标准差 (n = 3) Data are presented as the mean± standard error of 3 replicates. POMN—颗粒态有机氮 Particle organic matter N; DON—可溶性有机氮 Dissolved organic N; MBN—微生物量氮 Microbial biomass N; CK—后茬玉米不施肥对照 No fertilizer application nor green manure root control; CF—施用常规量氮肥 Conventional N fertilizer rate (N 375 kg/hm2) without green manure root retained; P、V、N90P、 N90V、N80P、N80V分别表示豆科绿肥针叶豌豆、毛叶苕子根茬还田条件下,后茬玉米不施氮肥和施用常规氮量的 90% 和 80% P, V, N90P, N90V, N80P, N80V respectively mean that retained green manure root and applying N fertilizer at 0, 90%, and 80% of the conventional N fertilizer rate. 同列数据后不同字母表示处理间差异达 5% 显著水平 Values followed by different letters in the same column represent significant difference among treatments (P < 0.05); *—P < 0.05; **—P < 0.01; ***—P < 0.001. 表 4 不同处理下的土壤综合肥力指数(IFI)
Table 4 Soil integrated fertility index (IFI) under different treatments
处理
Treatment单项肥力指数 Single index (Pi) IFI 有机质
Organic matter全氮
Total N无机氮
Inorganic N有效磷
Available P速效钾
Available KpH CK 3.00±0.00 a 1.40±0.00 c 1.37±0.03 d 1.12±0.08 d 2.26±0.04 a 0.93±0.01 a 1.22±0.08 c CF 3.00±0.00 a 1.53±0.04 ab 1.83±0.03 c 2.37±0.08 c 2.08±0.01 b 0.94±0.00 a 1.44±0.00 b P 3.00±0.00 a 1.50±0.05 ab 2.02±0.01 cd 3.00±0.00 a 2.23±0.10 ab 0.93±0.00 a 1.47±0.01 ab V 3.00±0.00 a 1.46±0.01 bc 2.01±0.01 cd 3.00±0.00 a 1.79±0.04 c 0.93±0.01 a 1.43±0.00 b N90P 3.00±0.00 a 1.55±0.09 ab 2.32±0.02 a 3.00±0.00 a 2.16±0.03 ab 0.94±0.00 a 1.44±0.02 b N80P 3.00±0.00 a 1.57a±0.05 a 2.43±0.32 a 3.00±0.00 a 2.21±0.14 ab 0.93±0.00 a 1.50±0.02 a N90V 3.00±0.00 a 1.51±0.04 ab 2.43±0.22 a 2.70±0.24 b 2.09±0.10 b 0.93±0.00 a 1.46±0.02 ab N80V 3.00±0.00 a 1.55±0.06 ab 2.23±0.20 ab 3.00±0.00 a 2.16±0.13 ab 0.93±0.00 a 1.48±0.01 ab 注(Note):CK—后茬玉米不施肥对照 No fertilizer application nor green manure root control; CF—施用常规量氮肥 Conventional N fertilizer rate (N 375 kg/hm2) without green manure root retained; P、V、N90P、 N90V、N80P、N80V分别表示豆科绿肥针叶豌豆、毛叶苕子根茬还田条件下,后茬玉米不施氮肥和施用常规氮量的 90% 和 80% P, V, N90P, N90V, N80P, N80V respectively mean that retained green manure root and applying N fertilizer at 0, 90%, and 80% of the conventional N fertilizer rate. 同列数据后不同字母表示处理间差异达 5% 显著水平 Values followed by different letters in same column represent significant difference among treatments (P < 0.05). -
[1] 陈欢, 曹承富, 孔令聪, 等. 长期施肥下淮北砂姜黑土区小麦产量稳定性研究[J]. 中国农业科学, 2014, 47(13): 2580–2590. DOI: 10.3864/j.issn.0578-1752.2014.13.010 Chen H, Cao C F, Kong L C, et al. Study on wheat yield stability in Huaibei lime concretion black soil area based on long-term fertilization experiment[J]. Scientia Agricultura Sinica, 2014, 47(13): 2580–2590. DOI: 10.3864/j.issn.0578-1752.2014.13.010
[2] 巨晓棠. 氮肥有效率的概念及意义——兼论对传统氮肥利用率的理解误区[J]. 土壤学报, 2014, 51(5): 921–933. Ju X T. The concept and meanings of nitrogen fertilizer availability ratio–discussing misunderstanding of traditional nitrogen use efficiency[J]. Acta Pedologica Sinica, 2014, 51(5): 921–933.
[3] 任科宇, 段英华, 徐明岗, 等. 施用有机肥对我国作物氮肥利用率影响的整合分析[J]. 中国农业科学, 2019, 52(17): 2983–2996. DOI: 10.3864/j.issn.0578-1752.2019.17.007 Ren K Y, Duan Y H, Xu M G, et al. Effect of manure application on nitrogen use efficiency of crops in China: A meta-analysis[J]. Scientia Agricultura Sinica, 2019, 52(17): 2983–2996. DOI: 10.3864/j.issn.0578-1752.2019.17.007
[4] 刘兆辉, 薄录吉, 李彦, 等. 氮肥减量施用技术及其对作物产量和生态环境的影响综述[J]. 中国土壤与肥料, 2016, (4): 1–8. DOI: 10.11838/sfsc.20160401 Liu Z H, Bo L J, Li Y, et al. A review of nitrogen reduction techniques and their effects on crop yield and ecological environment[J]. Soil and Fertilizer Sciences in China, 2016, (4): 1–8. DOI: 10.11838/sfsc.20160401
[5] 曹卫东, 黄鸿翔. 关于我国恢复和发展绿肥若干问题的思考[J]. 中国土壤与肥料, 2009, (4): 1–3. DOI: 10.3969/j.issn.1673-6257.2009.04.001 Cao W D, Huang H X. Ideas on restoration and development of green manure in China[J]. Soil and Fertilizer Sciences in China, 2009, (4): 1–3. DOI: 10.3969/j.issn.1673-6257.2009.04.001
[6] 周国朋, 谢志坚, 曹卫东, 等. 稻草高茬-紫云英联合还田改善土壤肥力提高作物产量[J]. 农业工程学报, 2017, 33(23): 157–163. DOI: 10.11975/j.issn.1002-6819.2017.23.020 Zhou G P, Xie Z J, Cao W D, et al. Co-incorporation of high rice stubble and Chinese milk vetch improving soil fertility and yield of rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 157–163. DOI: 10.11975/j.issn.1002-6819.2017.23.020
[7] 曹卫东, 包兴国, 徐昌旭, 等. 中国绿肥科研60年回顾与未来展望[J]. 植物营养与肥料学报, 2017, 23(6): 1450–1461. DOI: 10.11674/zwyf.17291 Cao W D, Bao X G, Xu C X, et al. Reviews and prospects on science and technology of green manure in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1450–1461. DOI: 10.11674/zwyf.17291
[8] 谢志坚, 周春火, 贺亚琴, 等. 21世纪我国稻区种植紫云英的研究现状及展望[J]. 草业学报, 2018, 27(8): 185–196. DOI: 10.11686/cyxb2017360 Xie Z J, Zhou C H, He Y Q, et al. A review of Astragalus sinicus in paddy fields in south China since 2000s[J]. Acta Prataculturae Sinica, 2018, 27(8): 185–196. DOI: 10.11686/cyxb2017360
[9] Zhou G P, Cao W D, Bai J S, et al. Co-incorporation of rice straw and leguminous green manure can increase soil available nitrogen and reduce carbon and N losses: An incubation study[J]. Pedosphere, 2020, 30(5): 661–670. DOI: 10.1016/S1002-0160(19)60845-3
[10] 张久东, 包兴国, 曹卫东, 等. 间作绿肥作物对玉米产量和土壤肥力的影响[J]. 中国土壤与肥料, 2013, (4): 43–47. Zhang J D, Bao X G, Cao W D, et al. Effect of intercropping green manure crops on maize yield and soil fertility[J]. Soil and Fertilizer Sciences in China, 2013, (4): 43–47.
[11] 卢秉林, 包兴国, 张久东, 等. 河西绿洲灌区玉米与绿肥间作模式对作物产量和经济效益的影响[J]. 中国土壤与肥料, 2014, (2): 67–71. DOI: 10.11838/sfsc.20140214 Lu B L, Bao X G, Zhang J D, et al. Effects of intercropping mode of maize and green manure on crop yield and economic benefit in Hexi oasis irrigation[J]. Soil and Fertilizer Sciences in China, 2014, (2): 67–71. DOI: 10.11838/sfsc.20140214
[12] 王劲松, 戴茨华, 徐红, 等. 红壤连续施用绿肥和有机肥对玉米产量及土壤肥力的影响[J]. 中国土壤与肥料, 2012, (5): 27–30. Wang J S, Dai C H, Xu H, et al. Effects of continuous application of green manure and organic manure on maize yield and soil fertility in red soil[J]. Soil and Fertilizer Sciences in China, 2012, (5): 27–30.
[13] 杨璐, 曹卫东, 白金顺, 等. 种植翻压二月兰配施化肥对春玉米养分吸收利用的影响[J]. 植物营养与肥料学报, 2013, 19(4): 799–807. DOI: 10.11674/zwyf.2013.0404 Yang L, Cao W D, Bai J S, et al. Effect of combined application of February Orchid (Orychophragmus violaceus L. ) and chemical fertilizer on nutrient uptake and utilization of spring maize[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(4): 799–807. DOI: 10.11674/zwyf.2013.0404
[14] 高嵩涓, 周国朋, 曹卫东. 南方稻田紫云英作冬绿肥的增产节肥效应与机制[J]. 植物营养与肥料学报, 2020, 26(12): 2115–2126. Gao S J, Zhou G P, Cao W D. Effects of milk vetch (Astragalus sinicus) as winter green manure on rice yield and rate of fertilizer application in rice paddies in south China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2115–2126.
[15] 陈礼智, 张淑珍, 曹卫东, 等. 肥饲兼用绿肥的种植及其综合效益研究[J]. 土壤肥料, 1993, (4): 14–17. Chen L Z, Zhang S Z, Cao W D, et al. Study on planting and comprehensive benefit of green manure combined with fertilizer and feed[J]. Soil and Fertilizer Sciences in China, 1993, (4): 14–17.
[16] Danso S K A, Zapata F, Hardarson G, et al. Nitrogen fixation in faba beans as affected by plant population density in sole or intercropped systems with barley[J]. Soil Biology and Biochemidtry, 1987, 19(4): 411–415. DOI: 10.1016/0038-0717(87)90031-9
[17] 吕汉强, 于爱忠, 柴强. 绿洲灌区玉米产量及水分利用对绿肥还田方式的响应[J]. 中国生态农业学报(中英文), 2020, 28(5): 671–679. Lü H Q, Yü A Z, Chai Q. Response of maize yield and water use to different green manure utilization patterns in arid oasis irrigation area[J]. Chinese Journal of Eco-Agriculture, 2020, 28(5): 671–679.
[18] 鲍士旦. 土壤农化分析 (第三版)[M]. 北京: 中国农业出版社, 2000. Bao S D. Soil and agricultural chemistry analysis (Third Edition) [M]. Beijing: China Agricultural Press, 2000.
[19] 杨璐. 种植翻压二月兰对春玉米氮素吸收与利用的影响[D]. 北京: 中国农业科学院硕士学位论文, 2013. Yang L. Effect of incorporation of February Orchid (Orychophragmus violaceus L. ) on nitrogen uptake and utilization of spring maize[D]. MS Thesis of Chinese Academy of Agricultural Sciences, 2013.
[20] 殷金岩, 姜林, 王海涛, 等. 西安市浐灞生态区绿地土壤肥力调查与评价[J]. 北京林业大学学报, 2012, 34(4): 93–98. Yin J Y, Jiang L, Wang H T, et al. Investigation and assessment of soil fertility in the greenbelts of Chanba Ecological Zone of Xi’an, northwestern China[J]. Journal of Beijing Forestry University, 2012, 34(4): 93–98.
[21] Sanchez G, Trinchera L. PLSPM: Partial least squares data analysis methods (R package version 0.2-2)[DB/OL]. 2012,http://cran.r–project.org/package=plspm
[22] De'Ath G. Boosted trees for ecological modeling and prediction[J]. Ecology, 2007, 88(1): 243–251. DOI: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
[23] 杨叶华, 张松, 王帅, 等. 中国不同区域常见绿肥产量和养分含量特征及替代氮肥潜力评估[J]. 草业学报, 2020, 29(6): 39–55. DOI: 10.11686/cyxb2019397 Yang Y H, Zhang S, Wang S, et al. Yield and nutrient concentration in common green manure crops and assessment of potential for nitrogen replacement in different regions of China[J]. Acta Prataculturae Sinice, 2020, 29(6): 39–55. DOI: 10.11686/cyxb2019397
[24] 刘威, 耿明建, 秦自果, 等. 种植绿肥与稻秸协同还田对单季稻田土壤有机碳库和酶活性的影响[J]. 农业工程学报, 2020, 36(7): 125–133. DOI: 10.11975/j.issn.1002-6819.2020.07.014 Liu W, Geng M J, Qin Z G, et al. Effects of co-incorporation of green manure planting and rice straw on soil organic carbon pool and soil enzyme activity in a mono-rice cropping system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 125–133. DOI: 10.11975/j.issn.1002-6819.2020.07.014
[25] 王琦明. 减氮及间作绿肥对玉米产量和土壤温室气体排放的互作效应[D]. 甘肃兰州: 甘肃农业大学硕士学位论文, 2019. Wang Q M. Interaction effect of maize yield and soil greenhouse gas emission under reducing N application and intercropping green manure[D]. Lanzhou, Gansu: MS Thesis of Gansu Agricultural University, 2019.
[26] 卢秉林, 包兴国, 张久东, 等. 间作绿肥饲草与减施氮肥对河西绿洲灌区玉米产量和土壤肥力的影响[J]. 干旱地区农业研究, 2015, 33(2): 170–175. Lu B L, Bao X G, Zhang J D, et al. Effects of intercropping green manure forages and nitrogen-reduction on corn yield and soil fertility in Hexi oasis irrigation[J]. Agricultural Research in the Arid Areas, 2015, 33(2): 170–175.
[27] 李飞, 宋明丹, 蒋福祯, 等. 青海高原春小麦留茬高度对后茬绿肥生物量和水分利用效率的影响[J]. 干旱地区农业研究, 2020, 38(6): 135–140. Li F, Song M D, Jiang F Z, et al. Effects of stubble height of spring wheat on biomass and water use efficiency of green manure on Qinghai plateau[J]. Agricultural Research in the Arid Areas, 2020, 38(6): 135–140.
[28] 邸伟. 大豆根瘤固氮酶活性与固氮量的研究[D]. 黑龙江哈尔滨: 东北农业大学硕士学位论文, 2010. Di W. Study on nitrogen fixation activity and nitrogen fixation in soybean root nodules[D]. Harbin, Heilongjiang: MS Thesis of Northeast Agricultural University, 2010.
[29] 万水霞, 朱宏斌, 唐杉, 等. 紫云英与化肥配施对安徽沿江双季稻区土壤生物学特性的影响[J]. 植物营养与肥料学报, 2015, 21(2): 389–397. Wan S X, Zhu H B, Tang S, et al. Effects of Astragalus sinicus manure and fertilizer combined application on biological properties of soil in Anhui double cropping rice areas along the Yangtze River[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(2): 389–397.
[30] Al-chammaa M, Al-ain F, Kurdali F. Growth, nitrogen and phosphorus uptake of sorghum plants as affected by green manuring with pea or faba bean shell pod wastes using N[J]. The Open Agriculture Journal, 2019, 13: 133–145. DOI: 10.2174/1874331501913010133
[31] Rosolino I, Gaetano A, Salvatore F A, et al. Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system[J]. PLoS ONE, 2019, 14(3): e0213672. DOI: 10.1371/journal.pone.0213672
[32] Nie J W, Yi L X, Xu H S, et al. Leguminous cover crop Astragalus Sinicus enhances grain yields and nitrogen use efficiency through increased tillering in an intensive double-cropping rice system in southern China[J]. Agronomy, 2019, 9(9): 544. DOI: 10.3390/agronomy9090544
[33] 包耀贤, 徐明岗, 吕粉桃, 等. 长期施肥下土壤肥力变化的评价方法[J]. 中国农业科学, 2012, 45(20): 4197–4204. DOI: 10.3864/j.issn.0578-1752.2012.20.009 Bao Y X, Xu M G, Lü F T, et al. Evaluation method on soil fertility under long-term fertilization[J]. Scientia Agricultura Sinica, 2012, 45(20): 4197–4204. DOI: 10.3864/j.issn.0578-1752.2012.20.009
[34] 张达斌. 黄土高原地区种植豆科绿肥协调土壤水分和氮素供应的效应及机理[D]. 陕西杨陵: 西北农林科技大学博士学位论文, 2016. Zhang D B. Effects of leguminous green manure on soil water and nitrogen supply and its mechanism in the loess plateau[D]. Yangling, Shaanxi: PhD Dissertation of Northwest A&F University, 2016.
[35] 韩梅, 胥婷婷, 曹卫东. 青海高原长期复种绿肥毛叶苕子对土壤供氮能力的影响[J]. 干旱地区农业研究, 2018, 36(6): 104–109. DOI: 10.7606/j.issn.1000-7601.2018.06.16 Han M, Xu T T, Cao W D. Effects of long-term green manure hairy vetch on soil nitrogen supply on the Qinghai Plateau[J]. Agricultural Research in the Arid Areas, 2018, 36(6): 104–109. DOI: 10.7606/j.issn.1000-7601.2018.06.16
[36] 吴科生, 宋尚有, 李隆, 等. 施氮和豌豆/玉米间作对土壤无机氮时空分布的影响[J]. 中国生态农业学报, 2014, 22(12): 1397–1404. Wu K S, Song S Y, Li L, et al. Effects of nitrogen application and intercropping on spatial-temporal distribution of soil inorganic nitrogen in pea/maize intercropping field[J]. Chinese Journal of Eco-Agriculture, 2014, 22(12): 1397–1404.
[37] Hong X, Ma C, Gao J, et al. Effects of different green manure treatments on soil apparent N and P balance under a 34-year double-rice cropping system[J]. Journal of Soils and Sediments, 2019, 19: 73–80. DOI: 10.1007/s11368-018-2049-5
[38] 高菊生, 徐明岗, 董春华, 等. 长期稻-稻-绿肥轮作对水稻产量及土壤肥力的影响[J]. 作物学报, 2013, 39(2): 343–349. DOI: 10.3724/SP.J.1006.2013.00343 Gao J S, Xu M G, Dong C H, et al. Effects of long-term rice-rice-green manure cropping rotation on rice yield and soil fertility[J]. Acta Agronomica Sinica, 2013, 39(2): 343–349. DOI: 10.3724/SP.J.1006.2013.00343
[39] Mbuthia L W, Acosta-martínez V, Debruyn J, et al. Long-term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality[J]. Soil Biology and Biochemistry, 2015, 89: 24–34. DOI: 10.1016/j.soilbio.2015.06.016
[40] 周国朋, 曹卫东, 白金顺, 等. 多年紫云英-双季稻下不同施肥水平对两类水稻土有机质及可溶性有机质的影响[J]. 中国农业科学, 2016, 49(21): 4096–4106. DOI: 10.3864/j.issn.0578-1752.2016.21.004 Zhou G P, Cao W D, Bai J S, et al. Effects of different fertilization levels on soil organic matter and dissolved organic matter in two paddy soils after multi-years' rotation of Chinese milk vetch and double-cropping rice[J]. Scientia Agricultura Sinica, 2016, 49(21): 4096–4106. DOI: 10.3864/j.issn.0578-1752.2016.21.004
-
期刊类型引用(11)
1. 姚百伦,宋明丹,韩梅,李正鹏. 绿肥还田配施氮肥对小麦产量、养分吸收和土壤肥力的影响. 青海大学学报. 2025(02): 20-26 . 百度学术
2. 王安林,马瑞,马彦军,吕彦勋. 民勤荒漠绿洲过渡带人工梭梭林土壤细菌群落结构及功能预测. 环境科学. 2024(01): 508-519 . 百度学术
3. 王安林,马瑞,马彦军,刘腾,田永胜,董正虎,柴巧弟. 复合型治沙措施对土壤细菌群落结构及功能的影响. 草业学报. 2024(03): 46-60 . 百度学术
4. 常单娜,陈子英,韩梅,李正鹏,严清彪,吕帅磊,周国朋,孙小凤,曹卫东. 毛叶苕子磷获取特征及根际特性的基因型差异. 草业学报. 2024(04): 122-134 . 百度学术
5. 肖玉涛,李正鹏,宋明丹,段豆豆,韩梅. 基于DNDC模型长期复种翻压绿肥对土壤有机碳和小麦产量的模拟. 草业科学. 2024(02): 332-344 . 百度学术
6. 董勇杰,张刁亮,李越,彭建辰,胡发龙,殷文,柴强,樊志龙. 不同施氮量下玉米生长及产量对间作豆科绿肥的响应. 中国农业科学. 2024(10): 1900-1914 . 百度学术
7. 秦文利,智健飞,谢楠,张立锋,刘忠宽,刘振宇,冯伟,潘璇,代云霞. 绿肥部分替代化肥对玉米干物质积累与产量形成的影响. 中国农业科学. 2024(13): 2549-2567 . 百度学术
8. 张钦,吴兴洪,姚单君,张爱华,况胜剑,廖恒,朱青,秦松. 翻压绿肥减施化肥下贵州猕猴桃果实快速增长期的叶片性状与土壤养分特征. 中国土壤与肥料. 2023(01): 140-148 . 百度学术
9. 刘源,龚雪,杨勇胜,司钰苇,罗跃,龚静. 贵州茶园绿肥间作研究进展. 茶叶. 2023(03): 144-148 . 百度学术
10. 张文霞,李盼,殷文,陈桂平,樊志龙,胡发龙,范虹,何蔚. 麦后复种绿肥及配施不同水平氮肥对小麦产量、品质及氮素利用的影响. 中国农业科学. 2023(17): 3317-3330 . 百度学术
11. 胡启良,杨滨娟,刘宁,黄国勤. 绿肥混播下不同施氮量对水稻产量、土壤碳氮和微生物群落的影响. 华中农业大学学报. 2022(06): 16-26 . 百度学术
其他类型引用(20)