Loading [MathJax]/jax/output/SVG/jax.js
  • ISSN 1008-505X
  • CN 11-3996/S

施用生物炭对黑土各组分有机质结构的影响

龙杰琦, 苗淑杰, 李娜, 郝翔翔, 乔云发

龙杰琦, 苗淑杰, 李娜, 郝翔翔, 乔云发. 施用生物炭对黑土各组分有机质结构的影响[J]. 植物营养与肥料学报, 2022, 28(5): 775-785. DOI: 10.11674/zwyf.2021290
引用本文: 龙杰琦, 苗淑杰, 李娜, 郝翔翔, 乔云发. 施用生物炭对黑土各组分有机质结构的影响[J]. 植物营养与肥料学报, 2022, 28(5): 775-785. DOI: 10.11674/zwyf.2021290
LONG Jie-qi, MIAO Shu-jie, LI Na, HAO Xiang-xiang, QIAO Yun-fa. Effects of biochar application on the structural properties of organic matter fractions in Mollisols[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(5): 775-785. DOI: 10.11674/zwyf.2021290
Citation: LONG Jie-qi, MIAO Shu-jie, LI Na, HAO Xiang-xiang, QIAO Yun-fa. Effects of biochar application on the structural properties of organic matter fractions in Mollisols[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(5): 775-785. DOI: 10.11674/zwyf.2021290

施用生物炭对黑土各组分有机质结构的影响

基金项目: 国家自然科学基金项目(42130506, 42177279)。
详细信息
    作者简介:

    龙杰琦 E-mail:longjieqi1997@163.com

    通讯作者:

    乔云发 E-mail:qiaoyunfa@nuist.edu.com

Effects of biochar application on the structural properties of organic matter fractions in Mollisols

  • 摘要:
    目的 

    生物炭还田已经成为培肥土壤的重要农艺措施之一,研究生物炭还田对黑土各粒径水稳性团聚体中有机碳的分配,以及对不同密度组分有机质化学结构的影响,以深化认识施用生物炭增加农田土壤固碳潜力的机理。

    方法 

    选取中国科学院海伦农业生态实验站内长期定位试验中施用化肥(−BC)和化肥配施生物炭(+BC) 的两个处理,采集土壤样品以常规方法分析了有机质总量,并将土壤样品分离为>2 mm、2~0.25 mm、0.25~0.053 mm和 <0.053 mm 4个粒级水稳性团聚体,测定其中的有机碳含量。将土壤样品中的有机质分为游离态轻组(free light fraction, LF)、闭蓄态轻组(occluded light fraction, OF)和矿物结合态组(mineral-associated fraction, MF) 3个密度组分,利用元素分析仪和傅里叶红外光谱技术分析了有机碳含量和化学结构。

    结果 

    与−BC处理相比,+BC处理的土壤有机质含量增加19.72%,密度组分中LF和OF有机质含量分别增加了73.50%和192.66%,团聚体>2 mm和2~0.25 mm两个粒级的有机质含量分别显著增加了12.54%和21.35%。土壤中除芳香族C=C和羰基C=O相对丰度分别减少了18.18%和21.95%以外,其他官能团均增加,−CH/C=C和−CH/C=O值分别增加66.67%和62.11%;在>2 mm团聚体中,脂肪族−CH的相对丰度增加了55.11%,芳香族C=C减少17.06%,致使>2 mm团聚体中的−CH/C=C和−CH/C=O值增加;在<0.25 mm粒级中,芳香族C=C相对丰度增加27.63%~49.83%,脂肪族−CH减少了16.58%~20.80%,致使−CH/C=C和−CH/C=O值下降。在>2 mm的团聚体中—CH/C=C和CH/C=O值的增幅最大。此外,与−BC相比,+BC处理各密度组分中脂肪族−CH和芳香族C=C相对丰度均增加,其中OF组分中增幅分别达125.74%和29.06%,−CH/C=C值增加了74.19%。

    结论 

    施用生物炭增加了黑土有机质含量,促使土壤特别是大团聚体中的有机质结构趋于脂肪化,促进了微团聚体中有机质的稳定性。闭蓄态轻组中脂肪族−CH的相对丰度增幅最大,有利于促进有机质活性的增强,加快土壤有机质的周转更新。

    Abstract:
    Objectives 

    Biochar application has become one of the important agronomic strategies for increasing soil fertility. We studied the distribution of organic matter in various soil aggregates, and the variation of chemical structures of organic matter across density fractions, to understand the effect of biochar application on carbon sequestration potential of farmland soil.

    Methods 

    The long-term experiment of biochar application was located in the Hailun Agricultural Ecological Experimental Station of the Chinese Academy of Sciences, which started from 2011. Soil samples were collected from the plots of applying biochar (+BC) and without biochar (−BC). Total conent of soil organic carbon was analyzed with conventional method. Subsamples were divided into four aggregate classes as > 2 mm, 2–0.25 mm, 0.25–0.053 mm and < 0.053 mm and soil organic carbon were determined in them. Moreover, subsamples were divided into free light fraction (LF), occluded light fraction (OF) and mineral-associated fraction (MF) according to their density. The concentration and characteristics of infrared spectrum of soil organic carbon in aggregates and density fraction were determined by Fourier infrared spectroscopy.

    Results 

    Compared to –BC treatment, +BC treatment increased the concent of soil organic matter (SOM) in bulk soil, free light fraction (LF) and occluded light fraction (OF) by 19.72%, 73.50%, and 192.66%, respectively. +BC treatment increased the concent of SOM by 12.54% and 21.35% in >2 mm and 2–0.25 mm aggregates, respectively. Among the main functional groups in bulk soil, +BC treatment decreased the relative abundances of aromatic C=C and carbonyl C=O by 18.18% and 21.95%, respectively, while increased other groups, and the ratio of −CH/C=C and −CH/C=O increased by 66.67% and 62.11% respectively. In >2 mm aggregate, +BC treatment increased the relative abundance of aliphatic −CH by 55.11%, but decreased the aromatic C=C by 17.06%, leading to the increase in −CH/C=C and −CH/C=O ratios. In <0.25 mm aggregate, +BC treatment increased the relative abundance of aromatic C=C by 27.63%−49.83%, but reduced the aliphatic −CH by 16.58%−20.80%, leading to the decrease in −CH/C=C and −CH/C=O ratios. Compared to −BC treatment, +BC treatment increased the relative abundances of aliphatic —CH and aromatic −C=C in the three density fractions, and increased the —CH/C=C ratio in OF by 74.19%.

    Conclusions 

    Biochar application increased significantly organic matter content in Mollisols, which led to more aliphatic groups in macro-aggregates and improved stability of micro-aggregates. The increment of relative abundance of aliphatic —CH in occluded fraction was the highest across density fractions, which enhanced the turnover of soil organic matter.

  • 土壤有机质(soil organic matter, SOM)作为土壤的关键组成部分,是影响土壤肥力的决定因子[1],是促进土壤发育和提高土壤功能的最原始且最核心的驱动者,在土壤质量和农业生产力的可持续性方面具有重要的作用[2-3]。SOM是动态变化的,并由不同组分构成,组分的分子结构特征直接影响土壤有机质的稳定性[4]。为了更深入探究有机质结构的变化规律,通常把SOM分为化学分级和物理分级,但因后者在分组过程对SOM破坏性小,更能有效反映有机质的结构特征,故其成为研究SOM组分的重要手段[5]。土壤有机质物理分级主要依据土壤密度、颗粒大小、空间分布等进行分类[2],根据密度大小将有机质分为游离态轻组(free light fraction, LF)、闭蓄态轻组(occluded light fraction, OF)和矿物结合态组分(mineral-associated fraction, MF)[6-7],根据团聚体粒级将有机质筛分为>2 mm、2~0.25 mm、0.25~0.053 mm和<0.053 mm团聚体有机质[8]。SOM在土壤中的功能与其化学结构密切相关,不同粒径团聚体内的有机质组分和化学结构存在差异[9]。土壤有机质的组分和结构决定了其稳定性,有机质的稳定性与其含量密切相关,而维持和提升农田土壤有机质含量的关键就是输入外源有机物质[3]

    我国作物秸秆资源丰富,秸秆还田是培肥地力最为普遍的农艺措施,能有效提升土壤质量,维持其可持续生产力。东北黑土地区气候寒冷,秸秆还田后不易腐解,降低作物出苗率,而将秸秆制备成生物炭(biochar)施入土壤后其可以通过对腐殖质及微域特征的影响来促进碳素固定,增加土壤有机碳含量。由于生物炭具有较大的比表面积、高度芳香化碳结构和发达孔隙结构等特性[10-12],能提高土壤有机质含量和改善土壤理化性质,所以近年来生物炭作为一种土壤改良剂在农业领域内被广泛应用。高尚志等[13]研究发现,生物炭可促进土壤团聚体对有机碳的物理化学保护,对土壤有机碳的稳定性增强、含量提升以及促进碳封存都具有积极的影响。李江舟等[14]对云南烟区红壤的研究结果表明,生物炭对土壤有机碳的作用过程是持续的,连续施用生物炭在改善土壤物理性状的同时,也有利于稳定增加土壤碳汇。因此,本研究将土壤团聚体和密度分组的有机质含量与红外光谱特征相结合,揭示生物炭对土壤有机质含量动态变化和稳定性机制的影响。

    红外光谱技术(fourier transform infrared spectroscopy, FTIR)是一种利用物质有机官能团如C−H、O−H、N−H等对红外光的选择性吸收来进行分子结构分析的技术,通过物质的特征红外吸收光谱进行定性和定量分析,可有效反映土壤中官能团特性和结构变化的方法[15-17],应用红外光谱技术研究土壤有机质的化学组成和结构也是近年来的热点之一。常汉达等[18]采用FTIR研究弃耕地开垦前后不同土层土壤有机质红外光谱特征,发现开垦后土壤有机质结构更为复杂,且芳香族官能团所占比例的提高是土壤有机质结构稳定性提高的重要原因。Demyan等[19]采集了施用不同肥料处理5年的土壤,发现在红外光谱波长 1620 cm−1处芳香族结构和2930 cm−1处脂肪族结构吸收峰面积的比值与有机碳含量的比值呈显著正相关,可作为SOM稳定性指标。前人对SOM的组分与结构的研究集中在短期内,有机质含量波动较小,生物炭对黑土SOM长期动态变化影响的研究还鲜有报道。

    东北黑土区是我国重要的土壤有机碳储库(有机碳储量为C 12.6 Pg),但近年来,东北黑土有机质含量呈下降趋势[20],土壤肥力降低威胁国家粮食安全。因此,本研究依托施用生物炭9年的长期定位试验平台,利用红外光谱分析技术,以土壤团聚体有机质组分和密度组分的有机质分子结构为切入点,对比分析施用与未施用生物炭的土壤有机质红外光谱特征,探讨生物炭对黑土有机质组分和结构特征的影响,揭示生物炭对黑土有机质的动态变化影响规律,为进一步利用生物炭提高农田土壤固碳潜力提供理论依据。

    试验布设在中国科学院海伦农业生态实验站(47°27'19.83″N,126°55'49.31″E),位于黑龙江省松嫩平原腹地黑土中心地带,该区属于中温带大陆性季风气候,冬季寒冷干燥,夏季高温多雨,雨热同期,年均降水量550 mm,平均蒸发量2300 mm,年均气温1.5℃,全年有效积温(≥10℃) 2450℃,无霜期125天,海拔约210 m,地势平坦[21]。供试土壤为黑土,pH为7.02,母质为第四纪黄土。试验初始时土壤有机质51.96 g/kg、全氮2.32 g/kg、全磷1.67 g/kg。

    选取2011年中国科学院海伦农业生态实验站建立的生物炭还田长期定位试验的2个处理:传统农田施化肥(−BC)和传统农田施化肥配施生物炭(+BC),每个处理3次重复,小区面积为12 m2 (4 m×3 m)。氮磷钾施肥量为N 174 kg/hm2、P2O5 40.2 kg/hm2和K2O 44.8 kg/hm2,2011年试验开始时一次性施用玉米秸秆烧制成粉末状生物炭12000 kg/hm2,其施用量为耕层0—20 cm土壤全碳储量的15%,施入0—20 cm的耕层土壤充分混匀,田间管理与当地农业生产相一致。

    2019年10月1日采集土样,取0—20 cm的耕层土样,每个小区采用“S”形多点采集。带回实验室后,阴干过程中沿土壤结构的自然纹理掰分成小团块,去除杂质保留生物炭颗粒。

    土壤水稳性团聚体筛分:采用Yoder湿筛法[22],套筛孔径依次为2、0.25和0.053 mm。将土样浸润糊化10 min后倒入套筛,团聚体分析仪上下筛分频率为20 r/min,筛分10 min。筛分结束后,用蒸馏水冲洗套筛上的各级团聚体至已称重烧杯里,65℃下烘干至恒重。分离出 > 2 mm、2~0.25 mm、0.25~0.053 mm和 < 0.053 mm 粒级团聚体。

    有机质密度分组[23]:1)称取10.00 g土样装入离心管中,加入50 mL的碘化钠重液(d=1.7 g/cm3),混匀后在3500 r/min离心15 min。用吸管吸出上清液,经0.45 µm滤膜过滤,用CaCl2 0.01 mol/L溶液和蒸馏水洗涤吸管和滤膜,滤膜及滤膜上残留物全部转移至已称重烧杯中,40℃烘干称重,这一组分即为游离态轻组(free light fraction, LF)。2)离心管里的沉淀加50 mL碘化钠,进行超声波破碎15 min(40 Hz,100 W)后再离心,同样方法取上清液、过滤、洗涤、烘干即得到闭蓄态轻组(occluded light fraction, OF)。3)离心管内沉淀加50 mL蒸馏水,振荡20 min,4000 r/min离心20 min,倒出上清液,重复洗沉淀3次,然后再用95%乙醇反复洗涤至无色,转移至已称重烧杯中,40℃烘干后称重,这一组分即矿物结合态组分(mineral-associated fraction, MF)。

    有机碳测定:将全土、各粒级团聚体和各组分研磨过0.25 mm筛,用元素分析仪(Vario EL III)测定,供试土壤无碳酸盐反应。

    有机质含量换算公式如下:

    土壤有机质(g/kg)=土壤有机碳(g/kg)×1.724

    傅里叶红外光谱测定[24]:称取土样0.7 mg和70 mg溴化钾于玛瑙研钵中混匀,用压片机制作压片,用傅里叶红外光谱仪(Nicolet-6700型)测定其红外透射光谱,光谱的测量范围为4000~400 cm–1,分辨率为4 cm–1,扫描次数为16次。

    采用Excel 2010软件整理数据,SPSS 21.0软件进行t检验,设置显著性P0.05,用Origin 8.0绘制图和主成分分析,Ommic Version 8.0处理红外光谱图。

    图1显示,相同处理中不同粒径团聚体有机质含量随粒径减小呈现先升高后降低的变化规律,其中各处理2~0.25 mm粒级团聚体中有机质含量最高,为58.39~70.86 g/kg,<0.053 mm团聚体中含量较低,为50.86~61.37 g/kg。与–BC处理相比,+BC处理的土壤有机质增加了19.72%,>2 mm和2~0.25 mm粒级中的有机质含量分别增加了12.54%和21.35%,在<0.25 mm粒级中的增加量不显著。

    图  1  全土及其各粒级团聚体中的有机质含量
    注:−BC—施化肥;+BC—施化肥配施生物炭。柱上不同字母表示同一粒级中不同处理差异显著(P<0.05)。
    Figure  1.  The concentrations of soil organic matter in bulk soil and aggregate fraction
    Note: −BC—Application of chemical fertilizer;+BC—Application of chemical fertilizer and biochar. Different letters above the bars indicate significant difference between treatments in the same particle size (P<0.05).

    图2显示,有机质含量OF组分>LF组分>MF组分。+BC处理的各密度组分中有机质含量变化幅度不同,LF组分中增加了73.50%,OF组分中增加了192.66%,而MF组分中有机质含量无显著变化。这表明施用生物炭主要增加了>0.25 mm粒级大团聚体中的有机质含量,增加的有机质主要为LF和OF组分。

    图  2  密度组分中的有机质含量
    注:LF—游离态轻组;OF—闭蓄态轻组;MF—矿物结合态组分。−BC—施化肥;+BC—施化肥配施生物炭。图中不同字母表示同一组分中不同处理间差异显著(P<0.05)。
    Figure  2.  The concentrations of soil organic matter in density fractions
    Note: LF—Free light fraction; OF—Occluded light fraction; MF—Mineral-associated fraction. −BC—Application of chemical fertilizer; +BC—Application of chemical fertilizer and biochar. Different letters above the bars indicate significant difference between treatments in the same fraction (P<0.05).

    全土、各粒级团聚体和密度组分红外光谱测定结果(图3图4)表明,−BC和+BC处理下土壤及其各粒级团聚体中的有机质光谱图的吸收峰相似,主要包括3620 cm−1 (自由醇酚−OH)、3417 cm−1 (缔合醇酚−OH)、2934 cm−1 (不对称脂肪族−CH)、2853 cm−1 (对称脂肪族−CH)、1631 cm−1 (芳香族C=C)、1720 cm−1 (羰基C=O)和1030 cm−1 (多糖C−O) 7个吸收峰[25-26]。与土壤红外特征峰相比,3个有机质密度组分的主要吸收峰是3614 cm−1 (自由醇酚−OH)、3391 cm−1 (缔合醇酚−OH)、2923 cm−1 (不对称脂肪族−CH)、2851 cm−1 (对称脂肪族−CH)、1631 cm−1 (芳香族C=C)和1033 cm−1 (多糖C−O) 6个特征峰,除了共有特征峰外,OF组分中出现吸收峰1384 cm−1 (甲基−CH3),MF组分出现吸收峰1720 cm−1 (羰基C=O)。−BC和+BC处理3个密度组分的特征峰相似,仅相对峰面积有变化,说明生物炭没有影响密度组分有机质特征结构,但影响了有机结构的相对丰度。

    图  3  全土及其各粒级团聚体有机质红外光谱
    注:−BC—施化肥;+BC—施化肥配施生物炭。
    Figure  3.  Infrared spectrum of organic matter in all aggregates and bulk
    Note: −BC—Application of chemical fertilizer; +BC—Application of chemical fertilizer and biochar.
    图  4  密度组分有机质红外光谱
    注:LF—游离态轻组;OF—闭蓄态轻组;MF—矿物结合态组分。−BC—施化肥;+BC—施化肥配施生物炭。
    Figure  4.  Infrared spectrum of organic matter in density fractions
    Note: LF—Free light fraction; OF—Occluded light fraction; MF—Mineral-associated fraction. −BC—Application of chemical fertilizer; +BC—Application of chemical fertilizer and biochar.

    红外特征峰相对丰度表示相应基团和物质含量,本试验将自由−OH和缔合−OH的加和代表醇酚−OH,脂肪族对称和不对称−CH加和代表脂肪族−CH,采用Ommic软件对各吸收峰进行积分,计算某一峰的面积占特征峰面积的百分比,即所对应的官能团相对丰度[10]。由表1可知,同一处理中,不同粒级中的基团相对丰度不同,多糖C−O伸缩振动最强,其次是醇酚−OH、芳香族C=C和脂肪族−CH,羰基C=O伸缩振动最弱。与−BC处理相比,+BC处理土壤的芳香族C=C和羰基C=O相对丰度减少,其余5个官能团相对丰度均增加,且脂肪族−CH增幅最大,增加了30.64%,芳香族C=C和羰基C=O相对丰度分别减少了18.18%和21.95%,−CH/C=C与−CH/C=O值均增大,分别增加66.67%和62.11%。生物炭对团聚体不同粒级中的基团相对丰度影响也不同,与−BC处理相比,在>2 mm粒级中,+BC处理的醇酚−OH和脂肪族−CH的相对丰度分别增加了7.68%和55.11%,芳香族C=C和羰基C=O分别减少了17.06%和26.67%,多糖C−O降幅较低,−CH/C=C和−CH/C=O值增幅分别达78.57%和91.25%;2~0.25 mm粒级中,+BC处理的醇酚−OH增辐较小,其余官能团丰度均减少,其中芳香族C=C减少了27.15%,羰基C=O 和多糖C−O分别减少17.5%和14.36%,−CH/C=C和−CH/C=O值增大。在<0.25 mm粒级的+BC处理中,除了芳香族C=C和羰基C=O相对丰度增加以外,其余官能团均减少,在0.25~0.053 mm粒级中分别增加27.63%和18.18%,且在<0.053 mm粒级中增加程度最大,增幅分为49.83%和31.43%,其中脂肪族−CH减少16.58%~20.80%,醇酚−OH和多糖C−O的相对丰度变化不大,−CH/C=C和−CH/C=O值减小。这表明施用生物炭增加了大团聚体中有机质的脂肪族物质和微团聚体中有机质中的芳香族物质。

    表  1  全土和各粒级团聚体中有机质红外光谱特征峰相对丰度(%)
    Table  1.  The relative abundance of characteristic peak in all aggregates and bulk soil
    土壤和团聚体粒径
    Bulk soil and aggregate size
    处理
    Treatment
    醇酚−OH
    Phenolic and
    alcoholic −OH
    脂肪族−CH
    Aliphatic
    −CH
    芳香族C=C
    Aromatic
    C=C
    羰基C=O
    Carbonyl
    C=O
    多糖C−O
    Polysaccharide
    C−O
    −CH/C=C−CH/C=O
    全土 Bulk soil−BC25.38±0.641.73±0.1513.91±0.700.50±0.0358.47±1.140.12±0.013.51±0.38
    +BC26.60±1.272.26±0.2611.77±2.060.41±0.0959.04±1.300.20±0.055.69±1.63
    >2 mm−BC24.62±1.371.76±0.2212.97±1.500.38±0.0160.64±0.080.14±0.044.80±0.51
    +BC26.51±1.322.73±0.5011.08±1.390.30±0.0459.38±2.250.25±0.049.18±1.76
    2~0.25 mm−BC26.06±0.421.81±0.1013.44±0.720.47±0.0358.22±1.280.13±0.013.85±0.02
    +BC27.40±3.621.72±0.3910.57±2.600.40±0.0650.91±1.110.16±0.024.43±1.69
    0.25~0.053 mm−BC28.95±0.812.52±0.4310.17±1.530.33±0.0158.33±1.700.23±0.017.62±1.31
    +BC26.68±2.451.93±0.6312.98±2.560.39±0.0858.02±2.970.15±0.064.23±2.17
    <0.053 mm−BC28.84±0.331.51±1.128.85±0.810.35±0.0560.64±1.800.17±0.034.64±3.93
    +BC24.96±0.681.25±0.0713.26±1.470.46±0.0660.07±0.790.13±0.023.85±0.69
    注: −BC—施化肥;+BC—施化肥配施生物炭。
    Note: −BC—Application of chemical fertilizer; +BC—Application of chemical fertilizer and biochar.
    下载: 导出CSV 
    | 显示表格

    表2所示,两个处理的不同密度组分中有机质官能团相对丰度变化有差异,红外特征峰相对丰度最高的是多糖C−O,其次是醇酚−OH和芳香族C=C,最低的是脂肪族−CH。与−BC处理相比,+BC处理的醇酚−OH、芳香族C=C和脂肪族−CH在3个组分中相对丰度均增加,多糖C−O在LF和OF组分中降低。与−BC处理相比,在LF组分有机质中,+BC处理除了多糖C−O的相对丰度减小外,其他基团吸收峰相对丰度均增强,−CH/C=C值变化较小;OF组分有机质中,+BC处理的多糖C−O相对丰度为45.53%,减少了20.51%,而芳香族C=C和脂肪族−CH相对丰度分别增加了29.06%和125.74%,−CH/C=C值增幅达最大74.19%,同时甲基−CH3也增加了14.86%;在MF组分中,芳香族C=C、脂肪族−CH和多糖C−O相对丰度虽有增加,但增幅较小,同样羰基C=O的相对丰度变化也不大,−CH/C=C和−CH/C=O的值增大。这表明施用生物炭均增加了3个组分有机质官能团的相对丰度,其中闭蓄态轻组中有机质相对丰度增幅最大。

    表  2  土壤各密度组分中有机质红外光谱特征峰相对强度(%)
    Table  2.  The relative abundance of characteristic peak in all density fractions of soil
    密度组分
    Density fractions
    处理
    treatment
    醇酚−OH
    Phenolic and
    alcoholic−OH
    脂肪族−CH
    Aliphatic
    −CH
    芳香族C=C
    Aromatic
    C=C
    甲基−CH3
    Methyl−CH3
    羰基C=O
    Carbonyl
    C=O
    多糖C−O
    Polysaccharide
    C−O
    −CH/C=C−CH/C=O
    LF−BC25.97±6.872.50±1.549.64±5.4561.90±10.100.26±0.16
    +BC27.79±3.553.08±0.7711.34±0.2157.7±4.530.27±0.06
    OF−BC29.67±2.822.72±0.068.74±0.873.97±0.7054.87±4.250.31±0.03
    +BC32.47±1.036.14±1.3411.28±2.334.56±1.5045.53±4.150.54±0.00
    MF−BC25.42±3.441.32±0.1410.68±1.145.10±1.0557.39±1.390.12±0.020.26±0.08
    +BC25.64±2.481.47±0.2111.20±1.155.10±0.7558.25±2.770.13±0.030.29±0.07
    注:LF—游离态轻组;OF—闭蓄态轻组;MF—矿物结合态组分。−BC—施化肥;+BC—施化肥配施生物炭。醇酚—OH (3417 cm−1+3620 cm−1);脂肪族—CH (2934 cm−1+2853 cm−1);芳香族C—C (1631 cm−1);甲基—CH3 (1384 cm−1);羰基C=O (1720 cm−1);多糖C—O (1030 cm−1)。
    Note: LF—Free light fraction; OF—Occluded light fraction; MF—Mineral-associated fraction. −BC—Application of chemical fertilizer; +BC—Application of chemical fertilizer and biochar. Phenolic and alcoholic—OH (3417 cm−1+3620 cm−1); Aliphatic—CH (2934 cm−1+2853 cm−1); Aromatic C = C (1631 cm−1); Methyl—CH3 (1384 cm−1); Carbonyl C = O (1720 cm−1); Polysaccharide C—O (1030 cm−1).
    下载: 导出CSV 
    | 显示表格

    根据特征值大于1,总贡献率大于80%的原则选取得到了2个主成分,载荷绝对值大于0.5表示与主成分相关性大,第一个主成分累计贡献率为50.8%,第二个主成分累计贡献率为35.8%。如图5A所示,+BC处理和−BC处理之间的全土、>2 mm、2~0.25 mm和<0.053 mm团聚体聚合度较小,说明施用生物炭主要引起全土、>2 mm、2~0.25 mm和<0.053 mm粒级团聚体中的有机质结构变化。由载荷图5B可知,与–BC处理相比,+BC处理中有机质官能团发生较大变化的是芳香族C=C和脂肪族−CH,说明施用生物炭主要影响全土、>2 mm、2~0.25 mm 和<0.053 mm团聚体有机质中的芳香族C=C和脂肪族−CH。

    图  5  全土及其各粒级团聚体有机质红外光谱特征峰主成分分析
    注:−BC—施化肥;+BC—施化肥配施生物炭。
    Figure  5.  Principal component analysis of infrared characteristic peak in soil organic matter in all aggregates and bulk soil
    Note: −BC—Application of chemical fertilizer; +BC—Application of chemical fertilizer and biochar.

    图6A所示,+BC处理的LF和OF组分与−BC处理之间的聚合度较小,说明生物炭主要引起游离态轻组和闭蓄态轻组分中的有机质结构变化。由图6B可知,与−BC处理相比,+BC处理中有机质的主要变化基团是芳香族C=C、脂肪族−CH和多糖C−O,结果表明了生物炭使LF和OF组分有机质中的芳香族C=C、脂肪族−CH和多糖C−O发生变化。

    图  6  密度组分有机质红外光谱特征峰主成分分析
    注:LF—游离态轻组;OF—闭蓄态轻组;MF—矿物结合态组分。−BC—施化肥;+BC—施化肥配施生物炭。
    Figure  6.  Principal component analysis of infrared characteristic peak in soil organic matter in density fractions
    Note: LF—Free light fraction; OF—Occluded light fraction; MF—Mineral-associated fraction. −BC—Application of chemical fertilizer; +BC—Application of chemical fertilizer and biochar.

    土壤有机质作为土壤碳库主要的存在形式,对全球碳循环的平衡起着重要作用,一定程度上,土壤有机质含量决定着土壤肥力水平[27-28]。本研究中,生物炭显著提高了土壤有机质含量,2~0.25 mm和>2 mm粒径团聚体中有机质显著增加,这与李江舟等[14]在研究云南烟区红壤团聚体时,得出施加生物炭显著增加>0.25 mm粒级团聚体有机质含量的结论相一致。具有富碳和多微孔结构特性的生物炭,一方面能吸附土壤有机分子,通过表面催化活性来促进小的有机分子聚合成有机质[29],另一方面作为有机胶结剂,能促进大团聚体的形成,而大团聚体在为有机质提供物理保护的同时,也作为新增有机质的主要载体,从而提高了土壤有机质含量。MF组分主要以有机-无机复合体的形式存在,有机腐殖化程度高,比轻组反应慢,即能稳定储存有机质[30]。本研究中,施用生物炭显著增加了LF和OF组分的有机质含量,其中OF有机质含量增幅大于LF,而生物炭对MF中有机质含量没有显著影响,这与前人[14,31]的研究结果一致,这可能与生物炭主要以稳定的芳香族碳形式存在有关,它抗微生物分解的能力强[32],在进入土壤后提高了LF和OF组分有机质的抗分解能力。同时随着在土壤中存在时间的延长,表面钝化后的生物炭与土壤相互作用产生一种保护基质,增加了土壤有机质的氧化稳定性[33]。另外生物炭的施用可促进土壤团聚体的聚合,对OF有机质的团聚体物理保护作用增强,从而提高了OF组分的有机质储存能力,使有机质含量增加。

    在全土中,醇酚−OH、多糖C−O和脂肪族−CH的相对丰度增加,芳香族C=C和羰基C=O减少,−CH/C=C和−CH/C=O值增大,芳香族碳是难分解有机碳之一,能在土壤中选择性保留,而芳香族C=C相对丰度减少,这可能是秸秆生物炭本身的芳构化程度低,脂肪性强,对土壤中烷基碳大幅度的增加和芳香族C=C相对丰度减少产生了一定影响[9,34]。3391+3614 cm−1是−OH伸缩振动的吸收峰,主要来源于土壤中的碳水化合物,这类化合物在进入土壤后一部分吸附在矿物质表面,另一部分则进入团聚体中[35]。玉米秸秆制成的生物炭可能会含有木质素衍生物结构,是游离羟基、脂肪族类和多糖的主要来源[36]。生物炭使脂肪族−CH相对丰度在 >2 mm粒级团聚体中增加,使芳香族C=C在<0.25 mm团聚体中增加。生物炭作为胶结剂,促进了大团聚体的形成,外界进入的新鲜有机物增多,有机质周转更新加快,活性有机质官能团比例增大[37];另外小粒级团聚体的有机质主要以腐殖质的形式存在,而生物炭极为缓慢的分解有助于腐殖质的形成[38],减小了小粒级团聚体中有机质的降解程度。土壤大部分有机质会与土壤粘土矿物结合,不同粒级大小的土壤颗粒表面化学性质存在差异,即与土壤矿物相结合的有机质稳定性和化学性质也会存在明显的区别[39]

    施用生物炭增加了LF组分有机质中的醇酚−OH、脂肪族−CH和芳香族C=C的相对丰度,减少了多糖C−O的相对丰度,一方面生物炭孔隙结构发达,并大量集中于轻组中,能吸附聚集较多的有机物质,引起LF组分做出敏感反应,使相应的脂肪族物质和芳香族物质增加;另一方面,生物炭增加了土壤孔隙度,使外源有机物易进入这一组分,微生物活动强烈,将多糖物质分解,多糖含量减少[40]。生物炭增加了OF组分中脂肪族−CH和芳香族C=C的相对丰度,−CH/C=C值增幅最大,脂肪性结构增强,与相应组分中有机质含量测定结果相符,这主要与生物炭的重要成分是烷基和芳香结构有关,在施入土壤后增加了OF组分中的烷基−C,如脂肪酸和脂类物质[41],其次,生物炭表面含有部分易解碳源和氮源[42],促进了微生物活动,加速了少部分芳香碳物质的氧化分解,导致其丰度增幅没有脂肪族−CH大。施用生物炭对MF中各官能团丰度增幅影响不大,这是因为重组主要是腐殖质与土壤矿物相结合的组分,两者的化学结合能促进有机质的稳定[43],所以其对外界响应的敏感性要低于轻组部分。同时,生物炭本身极为缓慢的分解有助于重组中腐殖质的形成[38,44],生物炭通过长期作用使MF有机质结构更稳定更不易分解[45]。MF组分中脂肪族物质增加,使脂肪族的碳更容易吸附在矿物表面,有利于增强有机质的稳定性[46]

    生物炭提高了土壤及其大团聚体中的轻组有机质含量,尤其对闭蓄态轻组有机质含量的提升效果最为显著。总的来看,施加生物炭致使土壤有机质结构中芳香族C=C和羰基C=O的相对丰度减少,脂肪族−CH、醇酚−OH和多糖C−O增加,−CH/C=C和−CH/C=O值升高。土壤和大团聚体中的有机质结构趋于脂肪化,微团聚体中的有机质稳定性提高。在闭蓄态轻组有机质中,与其他官能团相比,生物炭对脂肪型结构物质的相对丰度增幅最大,有利于促进该组分有机质活性的增强,加快土壤有机质的周转更新。

  • 图  1   全土及其各粒级团聚体中的有机质含量

    注:−BC—施化肥;+BC—施化肥配施生物炭。柱上不同字母表示同一粒级中不同处理差异显著(P<0.05)。

    Figure  1.   The concentrations of soil organic matter in bulk soil and aggregate fraction

    Note: −BC—Application of chemical fertilizer;+BC—Application of chemical fertilizer and biochar. Different letters above the bars indicate significant difference between treatments in the same particle size (P<0.05).

    图  2   密度组分中的有机质含量

    注:LF—游离态轻组;OF—闭蓄态轻组;MF—矿物结合态组分。−BC—施化肥;+BC—施化肥配施生物炭。图中不同字母表示同一组分中不同处理间差异显著(P<0.05)。

    Figure  2.   The concentrations of soil organic matter in density fractions

    Note: LF—Free light fraction; OF—Occluded light fraction; MF—Mineral-associated fraction. −BC—Application of chemical fertilizer; +BC—Application of chemical fertilizer and biochar. Different letters above the bars indicate significant difference between treatments in the same fraction (P<0.05).

    图  3   全土及其各粒级团聚体有机质红外光谱

    注:−BC—施化肥;+BC—施化肥配施生物炭。

    Figure  3.   Infrared spectrum of organic matter in all aggregates and bulk

    Note: −BC—Application of chemical fertilizer; +BC—Application of chemical fertilizer and biochar.

    图  4   密度组分有机质红外光谱

    注:LF—游离态轻组;OF—闭蓄态轻组;MF—矿物结合态组分。−BC—施化肥;+BC—施化肥配施生物炭。

    Figure  4.   Infrared spectrum of organic matter in density fractions

    Note: LF—Free light fraction; OF—Occluded light fraction; MF—Mineral-associated fraction. −BC—Application of chemical fertilizer; +BC—Application of chemical fertilizer and biochar.

    图  5   全土及其各粒级团聚体有机质红外光谱特征峰主成分分析

    注:−BC—施化肥;+BC—施化肥配施生物炭。

    Figure  5.   Principal component analysis of infrared characteristic peak in soil organic matter in all aggregates and bulk soil

    Note: −BC—Application of chemical fertilizer; +BC—Application of chemical fertilizer and biochar.

    图  6   密度组分有机质红外光谱特征峰主成分分析

    注:LF—游离态轻组;OF—闭蓄态轻组;MF—矿物结合态组分。−BC—施化肥;+BC—施化肥配施生物炭。

    Figure  6.   Principal component analysis of infrared characteristic peak in soil organic matter in density fractions

    Note: LF—Free light fraction; OF—Occluded light fraction; MF—Mineral-associated fraction. −BC—Application of chemical fertilizer; +BC—Application of chemical fertilizer and biochar.

    表  1   全土和各粒级团聚体中有机质红外光谱特征峰相对丰度(%)

    Table  1   The relative abundance of characteristic peak in all aggregates and bulk soil

    土壤和团聚体粒径
    Bulk soil and aggregate size
    处理
    Treatment
    醇酚−OH
    Phenolic and
    alcoholic −OH
    脂肪族−CH
    Aliphatic
    −CH
    芳香族C=C
    Aromatic
    C=C
    羰基C=O
    Carbonyl
    C=O
    多糖C−O
    Polysaccharide
    C−O
    −CH/C=C−CH/C=O
    全土 Bulk soil−BC25.38±0.641.73±0.1513.91±0.700.50±0.0358.47±1.140.12±0.013.51±0.38
    +BC26.60±1.272.26±0.2611.77±2.060.41±0.0959.04±1.300.20±0.055.69±1.63
    >2 mm−BC24.62±1.371.76±0.2212.97±1.500.38±0.0160.64±0.080.14±0.044.80±0.51
    +BC26.51±1.322.73±0.5011.08±1.390.30±0.0459.38±2.250.25±0.049.18±1.76
    2~0.25 mm−BC26.06±0.421.81±0.1013.44±0.720.47±0.0358.22±1.280.13±0.013.85±0.02
    +BC27.40±3.621.72±0.3910.57±2.600.40±0.0650.91±1.110.16±0.024.43±1.69
    0.25~0.053 mm−BC28.95±0.812.52±0.4310.17±1.530.33±0.0158.33±1.700.23±0.017.62±1.31
    +BC26.68±2.451.93±0.6312.98±2.560.39±0.0858.02±2.970.15±0.064.23±2.17
    <0.053 mm−BC28.84±0.331.51±1.128.85±0.810.35±0.0560.64±1.800.17±0.034.64±3.93
    +BC24.96±0.681.25±0.0713.26±1.470.46±0.0660.07±0.790.13±0.023.85±0.69
    注: −BC—施化肥;+BC—施化肥配施生物炭。
    Note: −BC—Application of chemical fertilizer; +BC—Application of chemical fertilizer and biochar.
    下载: 导出CSV

    表  2   土壤各密度组分中有机质红外光谱特征峰相对强度(%)

    Table  2   The relative abundance of characteristic peak in all density fractions of soil

    密度组分
    Density fractions
    处理
    treatment
    醇酚−OH
    Phenolic and
    alcoholic−OH
    脂肪族−CH
    Aliphatic
    −CH
    芳香族C=C
    Aromatic
    C=C
    甲基−CH3
    Methyl−CH3
    羰基C=O
    Carbonyl
    C=O
    多糖C−O
    Polysaccharide
    C−O
    −CH/C=C−CH/C=O
    LF−BC25.97±6.872.50±1.549.64±5.4561.90±10.100.26±0.16
    +BC27.79±3.553.08±0.7711.34±0.2157.7±4.530.27±0.06
    OF−BC29.67±2.822.72±0.068.74±0.873.97±0.7054.87±4.250.31±0.03
    +BC32.47±1.036.14±1.3411.28±2.334.56±1.5045.53±4.150.54±0.00
    MF−BC25.42±3.441.32±0.1410.68±1.145.10±1.0557.39±1.390.12±0.020.26±0.08
    +BC25.64±2.481.47±0.2111.20±1.155.10±0.7558.25±2.770.13±0.030.29±0.07
    注:LF—游离态轻组;OF—闭蓄态轻组;MF—矿物结合态组分。−BC—施化肥;+BC—施化肥配施生物炭。醇酚—OH (3417 cm−1+3620 cm−1);脂肪族—CH (2934 cm−1+2853 cm−1);芳香族C—C (1631 cm−1);甲基—CH3 (1384 cm−1);羰基C=O (1720 cm−1);多糖C—O (1030 cm−1)。
    Note: LF—Free light fraction; OF—Occluded light fraction; MF—Mineral-associated fraction. −BC—Application of chemical fertilizer; +BC—Application of chemical fertilizer and biochar. Phenolic and alcoholic—OH (3417 cm−1+3620 cm−1); Aliphatic—CH (2934 cm−1+2853 cm−1); Aromatic C = C (1631 cm−1); Methyl—CH3 (1384 cm−1); Carbonyl C = O (1720 cm−1); Polysaccharide C—O (1030 cm−1).
    下载: 导出CSV
  • [1] 潘根兴, 丁元君, 陈硕桐, 等. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451–464. Pan G X, Ding Y J, Chen S T, et al. Exploring the nature of soil organic matter from humic substances isolation to SOMics of molecular assemblage[J]. Advances in Earth Science, 2019, 34(5): 451–464. DOI: 10.11867/j.issn.1001-8166.2019.05.0451

    Pan G X, Ding Y J, Chen S T, et al. Exploring the nature of soil organic matter from humic substances isolation to SOMics of molecular assemblage[J]. Advances in Earth Science, 2019, 34(5): 451–464. DOI: 10.11867/j.issn.1001-8166.2019.05.0451

    [2] 贺美, 王迎春, 王立刚, 等. 应用DNDC模型分析东北黑土有机碳演变规律及其与作物产量之间的协同关系[J]. 植物营养与肥料学报, 2017, 23(1): 9–19. He M, Wang Y C, Wang L G, et al. Using DNDC model to simulate black soil organic carbon dynamics as well as its coordinate relationship with crop yield[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(1): 9–19. DOI: 10.11674/zwyf.16146

    He M, Wang Y C, Wang L G, et al. Using DNDC model to simulate black soil organic carbon dynamics as well as its coordinate relationship with crop yield[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(1): 9–19. DOI: 10.11674/zwyf.16146

    [3] 梁尧, 韩晓增, 丁雪丽. 东北黑土有机质组分与结构的研究进展[J]. 土壤, 2012, 44(6): 888–897. Liang Y, Han X Z, Ding X L. Review of soil organic matter fractions and structure of black soil in northeast China[J]. Soils, 2012, 44(6): 888–897.

    Liang Y, Han X Z, Ding X L. Review of soil organic matter fractions and structure of black soil in northeast China[J]. Soils, 2012, 44(6): 888–897.

    [4]

    Yu H Y, Ding W X, Luo J F, et al. Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil[J]. Biology and Fertility of Soils, 2012, 48(3): 325–336. DOI: 10.1007/s00374-011-0629-2

    [5] 窦森. 土壤有机质: 土壤有机质的分组[M]. 北京: 科学出版社, 2010.

    Dou S. Soil organic matter: Fractionation of soil organic matter[M]. Beijing: Science Press, 2010.

    [6]

    Yamashita T, Flessa H, John B, et al. Organic matter in density fractions of water-stable aggregates in silty soils: Effect of land use[J]. Soil Biology and Biochemistry, 2006, 38(11): 3222–3234. DOI: 10.1016/j.soilbio.2006.04.013

    [7]

    Helfrich M, Ludwig B, Buurman P, et al. Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state 13C NMR spectroscopy[J]. Geoderma, 2006, 136(1): 331–341.

    [8]

    Singh P, Heikkinen J, Mitra S, et al. Impact of tillage and residue management practices on soil aggregates and soil organic carbon[M]. Springer International Publishing, 2016.

    [9] 盛明, 龙静泓, 雷琬莹. 秸秆还田对黑土团聚体内有机碳红外光谱特征的影响[J]. 土壤与作物, 2020, 9(4): 355–366. Sheng M, Long J H, Lei W Y. Effects of straw returning on the characteristics of fourier infrared spectroscopy organic carbon within aggregates in a Mollisols[J]. Soil and Crops, 2020, 9(4): 355–366.

    Sheng M, Long J H, Lei W Y. Effects of straw returning on the characteristics of fourier infrared spectroscopy organic carbon within aggregates in a Mollisols[J]. Soil and Crops, 2020, 9(4): 355–366.

    [10]

    Rizwan M, Ali S, Qayyum M F, et al. Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review[J]. Environmental Science and Pollution Research International, 2015, 23(3): 2230–2248.

    [11] 宋燕凤, 张前前, 吴震, 等. 田间陈化生物质炭提高稻田土壤团聚体稳定性和磷素利用率[J]. 植物营养与肥料学报, 2020, 26(4): 613–621. Song Y F, Zhang Q Q, Wu Z, et al. Field-aged biochar improves soil aggregation stability and phosphorus use efficiency in paddy field[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 613–621.

    Song Y F, Zhang Q Q, Wu Z, et al. Field-aged biochar improves soil aggregation stability and phosphorus use efficiency in paddy field[J]. Journal of Plant Nutrition and Fertilizer Science, 2020, 26(4): 613–621.

    [12] 朱建伟, 刘玉学, 吴超凡, 等. 施用生物炭后土壤有机碳的近红外光谱模型研究与应用[J]. 生态学报, 2020, 40(20): 7430–7440. Zhu J W, Liu Y X, Wu C F, et al. Study on near-infrared spectroscopy model of soil organic carbon after biochar addition and its application[J]. Acta Ecologica Sinica, 2020, 40(20): 7430–7440.

    Zhu J W, Liu Y X, Wu C F, et al. Study on near-infrared spectroscopy model of soil organic carbon after biochar addition and its application[J]. Acta Ecologica Sinica, 2020, 40(20): 7430–7440.

    [13] 高尚志, 刘日月, 窦森, 等. 不同施量生物炭对土壤团聚体及其密度组分中有机碳含量的影响[J/OL]. 吉林农业大学学报, (2020-09-02)[2021-05-08]. https://doi.org/10.13327/j.jjlau.2020.5638.pdf.

    Gao S Z, Liu R Y, Dou S, et al. Eeffect of different dosage of biochar application on organic carbon contents associates with soil aggregates and its density fractionation[J/OL]. Journal of Jilin Agricultural University, (2020-09-02)[2021-05-08]. https://doi.org/10.13327/j.jjlau.2020.5638.pdf.

    [14] 李江舟, 代快, 张立猛, 等. 施用生物炭对云南烟区红壤团聚体组成及有机碳分布的影响[J]. 环境科学学报, 2016, 36(6): 2114–2120. Li J Z, Dai K, Zhang L M, et al. Eeffects of biochar application on soil organic carbon distribution and soil aggregate composition of red soils in Yunnan tobacco planting area[J]. Acta Scientiae Circumstantiae, 2016, 36(6): 2114–2120.

    Li J Z, Dai K, Zhang L M, et al. Eeffects of biochar application on soil organic carbon distribution and soil aggregate composition of red soils in Yunnan tobacco planting area[J]. Acta Scientiae Circumstantiae, 2016, 36(6): 2114–2120.

    [15]

    Leone A P, Vaphael-Rpssel R A, Amenta P, et al. Prediction of soil properties with PLSR and VIS-NIR spectroscopy: Application to mediterranean soils from southern Italy[J]. Current Analytical Chemistry, 2012, 8(2): 283–299. DOI: 10.2174/157341112800392571

    [16]

    Cobo J G, Dercon G, Yekeye T, et al. Integration of mid-infrared spectroscopy and geostatistics in the assessment of soil spatial variability at landscape level[J]. Geoderma, 2010, 158(3): 398–411.

    [17] 姜桂英, 张玉军, 魏喜, 等. 不同碳饱和水平下典型农田土壤有机质的红外光谱特征[J]. 中国农业科学, 2018, 51(16): 3117–3129. Jiang G Y, Zhang Y J, Wei X, et al. The soil infrared spectral characteristics of soil organic matter under different carbon staturation levels[J]. Scientia Agricultura Sinica, 2018, 51(16): 3117–3129. DOI: 10.3864/j.issn.0578-1752.2018.16.008

    Jiang G Y, Zhang Y J, Wei X, et al. The soil infrared spectral characteristics of soil organic matter under different carbon staturation levels[J]. Scientia Agricultura Sinica, 2018, 51(16): 3117–3129. DOI: 10.3864/j.issn.0578-1752.2018.16.008

    [18] 常汉达, 王晶, 张凤华. 基于傅里叶红外光谱弃耕地开垦前后土壤有机质结构变化分析[J]. 土壤通报, 2019, 50(2): 333–340. Chang H D, Wang J, Zhang F H. Change in soil organic matter structure before and after reclamation for the abandoned farmland based on fourier transform infrared spectrometer[J]. Chinese Journal of Soil Science, 2019, 50(2): 333–340.

    Chang H D, Wang J, Zhang F H. Change in soil organic matter structure before and after reclamation for the abandoned farmland based on fourier transform infrared spectrometer[J]. Chinese Journal of Soil Science, 2019, 50(2): 333–340.

    [19]

    Demyan M S, Rasche F, Schulz E, et al. Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a haplic chernozem[J]. European Journal of Soil Science, 2012, 63(2): 189–199. DOI: 10.1111/j.1365-2389.2011.01420.x

    [20] 黄耀, 孙文娟. 近20年来中国大陆农田表土有机碳含量的变化趋势[J]. 科学通报, 2006, 51(7): 750–763. Huang Y, Sun W J. Change trend of topsoil organic carbon content of farmland in mainland China in the past 20 years[J]. Chinese Science Bulletin, 2006, 51(7): 750–763. DOI: 10.3321/j.issn:0023-074X.2006.07.002

    Huang Y, Sun W J. Change Trend of topsoil organic carbon content of farmland in mainland China in the past 20 years[J]. Chinese Science Bulletin, 2006, 51(7): 750–763. DOI: 10.3321/j.issn:0023-074X.2006.07.002

    [21] 胡伟, 张兴义, 严月. 不同土地利用方式下冻融期黑土水热过程观测研究[J]. 土壤与作物, 2018, 7(3): 312–323. Hu W, Zhang X Y, Yan Y. Dynamics of soil water and soil temperature during freezing and thawing period under different types of land use in millisols[J]. Soil and Crops, 2018, 7(3): 312–323. DOI: 10.11689/j.issn.2095-2961.2018.03.006

    Hu W, Zhang X Y, Yan Y. Dynamics of soil water and soil temperature during freezing and thawing period under different types of land use in millisols[J]. Soil and Crops, 2018, 7(3): 312–323. DOI: 10.11689/j.issn.2095-2961.2018.03.006

    [22]

    Yoder R E. A direct method of aggregate analysis of soil and a study of the physical nature of erosion losses[J]. Journal of American Society of Agronomy, 1936, 28(5): 337–351. DOI: 10.2134/agronj1936.00021962002800050001x

    [23] 芦思佳. 施肥对黑土有机碳组分及碳收支的影响[D]. 黑龙江哈尔滨: 东北农业大学硕士学位论文, 2011.

    Lu S J. Impact of fertilization on the component and budget of black soil organic carbon[D]. Harbin, Heilongjiang: MS Thesis of Northeast Agricultural University, 2011.

    [24]

    Pérez M G, Martin-Neto L, Saab S C, et al. Characterzation of humic acids from a Brazilian Oxisol under different tillage systems by EPR, 13C NMR, FTIR and fluorescence spectroscopy[J]. Geoderma, 2004, 118(3): 181–190.

    [25]

    Haberhauer G, Gerzabek M H. Drift and transmission FT-IR spectroscopy of forest soils: An approach to determine decomposition processes of forest litter[J]. Vibrational Spectroscopy, 1999, 19(2): 413–417. DOI: 10.1016/S0924-2031(98)00046-0

    [26]

    Madari B E, Reeves J B, Machado P L O A. Mid-and near-infrared spectroscopic assessment of soil compositional parameters and structural indices in two Ferralsols[J]. Geoderma, 2006, 136(1/2): 245–259. DOI: 10.1016/j.geoderma.2006.03.026

    [27] 张新乐, 窦欣, 谢雅慧, 等. 引入时相信息的耕地土壤有机质遥感反演模型[J]. 农业工程学报, 2018, 34(4): 143–150. Zhang X L, Dou X, Xie Y H, et al. Remote sensing inversion model of soil organic matter in farmland by introducing temporal information[J]. Transaction of the Chinese Society of Agricultural Engineering, 2018, 34(4): 143–150. DOI: 10.11975/j.issn.1002-6819.2018.04.017

    Zhang X L, Dou X, Xie Y H, et al. Remote sensing inversion model of soil organic matter in farmland by introducing temporal information[J]. Transaction of the Chinese Society of Agricultural Engineering, 2018, 34(4): 143–150. DOI: 10.11975/j.issn.1002-6819.2018.04.017

    [28] 章海亮, 罗微, 刘雪梅, 等. 应用遗传算法结合连续投影算法近红外光谱检测土壤有机质研究[J]. 光谱学与光谱分析, 2017, 37(2): 584–587. Zhang H L, Luo W, Liu X M, et al. Measurement of soil organic matter with near infrared spectroscopy combined with genetic algorithm and successive projection algorithm[J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 584–587.

    Zhang H L, Luo W, Liu X M, et al. Measurement of soil organic matter with near infrared spectroscopy combined with genetic algorithm and successive projection algorithm[J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 584–587.

    [29]

    Liang B, Lehmann J, Sohi S P, et al. Black carbon affects the cycling of non-black carbon in soil[J]. Organic Geochemistry, 2009, 41(2): 206–213.

    [30] 姜岩, 窦森. 土壤施用有机物料后重组有机质变化规律的探讨. Ⅰ. 对有机无机复合及腐殖质结合形态的影响[J]. 土壤学报, 1987, 24(2): 97–104. Jiang Y, Dou S. Effect of application of organic materials on the properties of humic substances in organo-mineral complexes of soils. Ⅰ. Effect of organic materials on the organo-mineral complexation and forms of humus[J]. Acta Pedologica Sinica, 1987, 24(2): 97–104.

    Jang Y, Dou S. Effect of application of organic materials on the properties of humic substances in organio-mineral complexes of soils. Ⅰ. Effect of organic materials on theorganio-mineral complexation and forms of humus[J]. Acta Pedologica Sinica, 1987, 24(2): 97–104.

    [31] 张福韬, 乔云发, 苗淑杰, 等. 长期玉米连作下黑土各组分有机质化学结构特征[J]. 中国农业科学, 2016, 49(10): 1913–1924. Zhang F T, Qiao Y F, Miao S J, et al. Chemical structure characteristics of all fractionations in mollisol organic matter under long-term continuous maize cropping[J]. Scientia Agricultura Sinica, 2016, 49(10): 1913–1924. DOI: 10.3864/j.issn.0578-1752.2016.10.008

    Zhang F T, Qiao Y F, Miao S J, et al. Chemical structure characteristics of all fractionations in mollisol organic matter under long-term continuous maize cropping[J]. Scientia Agricultura Sinica, 2016, 49(10): 1913-1924. DOI: 10.3864/j.issn.0578-1752.2016.10.008

    [32]

    Chen W F, Meng J, Han X R, et al. Past, present, and future of biochar[J]. Biochar, 2019, 1: 75–87. DOI: 10.1007/s42773-019-00008-3

    [33] 张千丰, 王光华. 生物炭理化性质及对土壤改良效果的研究进展[J]. 土壤与作物, 2012, 1(4): 219–226. Zhang Q F, Wang G H. Research progress of physiochemical properties of biochar and its effects as soil amendments[J]. Soil and Crop, 2012, 1(4): 219–226.

    Zhang Q F, Wang G H. Research progress of physiochemical properties of biochar and its effects as soil amendments[J]. Soil and Crop. 2012, 1(4): 219–226.

    [34] 周桂玉, 窦森, 刘世杰. 生物质炭结构性质及其对土壤有效养分和腐殖质组成的影响[J]. 农业环境科学学报, 2011, 30(10): 2075–2080. Zhou G Y, Dou S, Liu S J. The structural characteristics of biochar and its effects on soil available nutrients and humus composition[J]. Journal of Agro-Environment Science, 2011, 30(10): 2075–2080.

    Zhou G Y, Dou S, Liu S J. The structural characteristics of biochar and its effects on soil available nutrients and humus composition[J]. Journal of Agro-Environment Science, 2011, 30(10): 2075–2080.

    [35] 吴希慧. 侵蚀地貌土壤团聚体中有机质官能团结构特征[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2021.

    Wu X H. Composition characteristics of soil organic matter functional groups in soil aggregates of erosion landforms[D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2021.

    [36] 陈秋宇, 吴应琴, 雷天柱, 等. 基于Py-GC-MS/MS技术的高寒草原土壤有机质不同组分指纹特征研究[J]. 生态学报, 2018, 38(8): 1–9. Chen Q Y, Wu Y Q, Lei T Z, et al. Study on the fingerprints of soil organic components in alpine grassland based on Py-GC-MS/MS technology[J]. Acta Ecologica Sinica, 2018, 38(8): 1–9.

    Chen Q Y, Wu Y Q, Lei T Z, et al. Study on the fingerprints of soil organic components in alpine grassland based on Py-GC-MS/MS technology[J]. Acta Ecologica Sinica, 2018, 38(8): 1-9.

    [37] 王成己, 王义祥, 刘岑薇, 等. 不同材料生物质炭施用对果园土壤性状及活性有机碳的影响[J]. 福建农业科技, 2019(3): 66–70. Wang C J, Wang Y X, Liu C W, et al. Effects of different biochars on soil properties and labile organic carbon in orchards[J]. Fujian Agricultural Science and Technology, 2019(3): 66–70.

    Wang C J, Wang Y X, Liu J W, et al. Effects of different biochars on soil properties and labile organic carbon in orchards[J]. Fujian Agricultural Science and Technology, 2019, 3: 66-70.

    [38] 韩玮, 申双和, 谢祖彬, 等. 生物炭及秸秆对水稻土各密度组分有机碳及微生物的影响[J]. 生态学报, 2016, 36(18): 5838–5846. Han W, Shen S H, Xie Z B, et al. Effects of bichar and straw on both the organic carbon in different density fractions and the microbial in paddy soil[J]. Acta Ecologica Sinica, 2016, 36(18): 5838–5846.

    Han W, Shen S H, Xie Z B, et al. Effects of bichar and straw on both the organic carbon in different density fractions and the microbial in paddy soil[J]. Acta Ecologica Sinica, 2016, 36(18): 5838-5846.

    [39] 谢锦升, 杨玉盛, 解明曙. 土壤轻组有机质研究进展[J]. 福建林学院学报, 2006, 26(3): 281–288. Xie J S, Yang Y S, Xie M S. Advance of research on light fraction organic matter in soil[J]. Journal of Fujian College of Forestry, 2006, 26(3): 281–288. DOI: 10.3969/j.issn.1001-389X.2006.03.018

    Xie J S, Yang Y S, Xie M S. Advance of research on light fraction organic matter in soil[J]. Journal of Forest and Environment, 2006, 26(3): 281-288. DOI: 10.3969/j.issn.1001-389X.2006.03.018

    [40]

    Golchin A, Oades J M, Skjemstad J O, et al. Study of free and occluded particulate organic matter in soils by solid state 13C Cp/MAS NMR spectroscopy and scanning electron microscopy[J]. Soil Research, 1994, 32(2): 285–309. DOI: 10.1071/SR9940285

    [41]

    Gheorghe C, Marculescu C, Badea A, et al. Effect of pyrolysis conditions on biochar production from biomass[A]. Proceedings of 3rd WSEAS international conference in renewable energy sources[C]. Bucharest, Romania, 2009. 239−241.

    [42]

    Laird D A, Brown R C, Amonette J E, et al. Review of the pyrolysis platform for coproducing bio-oil and biochar[J]. Biofuels, Bioproducts and Biorefining, 2009, 3(5): 547–562. DOI: 10.1002/bbb.169

    [43]

    Kögel-Knabner I. 13C and 15N NMR spectroscopy tool in soil organic matter studies[J]. Geoderma, 1997, 80(3/4): 243–270. DOI: 10.1016/S0016-7061(97)00055-4

    [44] 刘梦云, 常庆瑞, 齐雁冰, 等. 黄土台塬不同土地利用土壤有机碳与颗粒有机碳[J]. 自然资源学报, 2010, 25(2): 218–226. Liu M Y, Chang Q R, Qi Y B, et al. Soil organic carbon and particulate organic carbon under different land use types on the loess plateau[J]. Journal of Natural Resources, 2010, 25(2): 218–226. DOI: 10.11849/zrzyxb.2010.02.006

    Liu M Y, Chang Q R, Qi Y B, et al. Soil organic carbon and particulate organic carbon under different land use types on the loess plateau[J]. Journal of Natural Resources, 2010, 25(2): 218-226. DOI: 10.11849/zrzyxb.2010.02.006

    [45]

    Lehmann J, Kinyangi J, Solomon D. Organic matter stabilization in soil microaggregates: Implications from spatial heterogeneity of organic carbon contents and carbon forms[J]. Biogeochemistry, 2007, 85(1): 45–57. DOI: 10.1007/s10533-007-9105-3

    [46]

    Lutzow M V, Kogel-Knabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions: A review[J]. European Journal of Soil Science, 2006, 57(4): 426–445. DOI: 10.1111/j.1365-2389.2006.00809.x

  • 期刊类型引用(18)

    1. 张韩,龚霞. 生物炭与改性物质对土壤中重金属影响的研究进展. 江西农业学报. 2025(01): 18-27 . 百度学术
    2. 刘东明,郭宇轩,魏圆慧,贾广昊,丁文杰,毛艳玲. 改性生物炭对土壤有机碳及化学结构的影响. 农业资源与环境学报. 2025(01): 187-196 . 百度学术
    3. 赖昊民. 白酒酒糟生物炭资源化处理用于土壤改良及碳封存的可行性研究. 酿酒科技. 2025(05): 73-78 . 百度学术
    4. 刘泽畅,梅傲,陈仁松,胡美忠. 生物炭及生物炭基肥对辣椒种植地改良的研究进展. 北方园艺. 2025(09): 138-145 . 百度学术
    5. 郝小雨,马星竹,周宝库,孙磊,匡恩俊,郑雨,赵月,常本超. 黑龙江省肥料减施增效技术应用现状及展望. 黑龙江农业科学. 2024(02): 100-104 . 百度学术
    6. 白雪,叶丽红,马岚,张铁坚,刘俊良. 污泥生物炭对土壤养分及重金属的影响. 应用化工. 2024(05): 1098-1103+1108 . 百度学术
    7. 王子郡,黄菁华,麦建军,胡斐南,赵世伟. 外源有机物料性质对黑土农田土壤微生物碳组分的影响. 植物营养与肥料学报. 2024(05): 980-995 . 本站查看
    8. 傅志强,刘祯,马春花,温梦玲,奚如春. 生物炭及炭基肥对土壤质量与植物生长的影响. 浙江农业学报. 2024(07): 1634-1645 . 百度学术
    9. 陈小翔,杨承,贺帅,赵炯平,章友爱,史久长,崔庆伟,王卫民,李林达,龚治翔,艾永峰,王晓强. 不同施肥方式对土壤理化性质和烟草生长的影响. 山地农业生物学报. 2024(05): 26-31+52 . 百度学术
    10. 孙枭沁,佘冬立. 生物质炭改良盐渍土CT孔隙图像的多重分形与相对熵特征. 土壤学报. 2024(05): 1212-1223 . 百度学术
    11. 臧艳,向宇轩,刘娟,姜培坤,吴家森,李永夫. 氮、磷添加对亚热带毛竹林土壤水稳性团聚体及有机碳分布的影响. 林业科学. 2024(07): 8-16 . 百度学术
    12. 武佳龙,迟铭,高燕,王祥,沈海鸥. 施加生物炭对黑土区坡耕地土壤主要理化指标的动态影响. 浙江农业学报. 2024(09): 2060-2069 . 百度学术
    13. 李兰若,马飞,王露璐,和苗苗. 生物炭协同生物措施防治土传病害的研究进展. 中国土壤与肥料. 2024(10): 249-259 . 百度学术
    14. 艾锋,张生,李强,陈占飞,张潇逸,赵俞,张凯煜. 蚯蚓肥复配土壤调理剂对盐碱地土壤性质及中科羊草生长的影响. 山西农业科学. 2023(05): 531-538 . 百度学术
    15. 王兴松,李灿,王铎,许东亚,张继旭,施定国,孔德翠,孔德旬,周维杰,王戈,王娜,白羽祥. 烟秆生物质炭基肥对不同烤烟品种生长、病害及产质量的影响. 江苏农业科学. 2023(13): 82-88 . 百度学术
    16. 宋凯悦,刘志伟,刘伟,马睿凌,李世贤,卞荣军,郑聚锋,潘根兴. 生物质炭施用对水稻土有机质分子结构和组成的影响. 环境科学研究. 2023(10): 1979-1987 . 百度学术
    17. 井玉丹,王家嘉,裴欢,李倩. 烘箱加热法测定土壤有机质的改进研究. 中国土壤与肥料. 2023(10): 245-250 . 百度学术
    18. 李尚珂,胡嘉源,陈岩,施维林,史广宇. 稻壳和稻壳生物炭对镉污染土壤肥力及镉有效性的影响. 中国土壤与肥料. 2023(12): 78-85 . 百度学术

    其他类型引用(11)

图(6)  /  表(2)
计量
  • 文章访问数:  1984
  • HTML全文浏览量:  941
  • PDF下载量:  128
  • 被引次数: 29
出版历程
  • 收稿日期:  2021-05-30
  • 录用日期:  2022-03-14
  • 网络出版日期:  2022-05-05
  • 刊出日期:  2022-05-24

目录

/

返回文章
返回