• ISSN 1008-505X
  • CN 11-3996/S

施硅降低麦长管蚜对小麦寄主选择偏好的化学机理

王明飞, 戚秀秀, 王中华, 刘艺凝, 姜瑛, 孙晓

王明飞, 戚秀秀, 王中华, 刘艺凝, 姜瑛, 孙晓. 施硅降低麦长管蚜对小麦寄主选择偏好的化学机理[J]. 植物营养与肥料学报, 2022, 28(3): 555-565. DOI: 10.11674/zwyf.2021365
引用本文: 王明飞, 戚秀秀, 王中华, 刘艺凝, 姜瑛, 孙晓. 施硅降低麦长管蚜对小麦寄主选择偏好的化学机理[J]. 植物营养与肥料学报, 2022, 28(3): 555-565. DOI: 10.11674/zwyf.2021365
WANG Ming-fei, QI Xiu-xiu, WANG Zhong-hua, LIU Yi-ning, JIANG Ying, SUN Xiao. Silicon application decreases host selection preference of Sitobion avenae (Fabricius)[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(3): 555-565. DOI: 10.11674/zwyf.2021365
Citation: WANG Ming-fei, QI Xiu-xiu, WANG Zhong-hua, LIU Yi-ning, JIANG Ying, SUN Xiao. Silicon application decreases host selection preference of Sitobion avenae (Fabricius)[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(3): 555-565. DOI: 10.11674/zwyf.2021365

施硅降低麦长管蚜对小麦寄主选择偏好的化学机理

基金项目: 国家自然科学基金项目(42077050, 32071658);河南省科技攻关项目(212102110393)。
详细信息
    作者简介:

    王明飞E-mail: wangmingfei2021@163.com;†

    戚秀秀为共同第一作者 E-mail: qixiuxiu0318@163.com

    通讯作者:

    姜瑛 E-mail: JY27486@163.com

    孙晓 E-mail: sunxiao2017@126.com

Silicon application decreases host selection preference of Sitobion avenae (Fabricius)

  • 摘要:
    目的 

    从施硅对小麦挥发物释放影响的角度,探究施硅提高作物抗虫能力的作用机理。

    方法 

    采用水培试验方法,供试小麦品种为‘郑麦1036’,供试蚜虫为黄淮地区的优势种麦长管蚜(Sitobion avenae),供试营养液为 Hoagland 营养液。设置不施硅不接蚜虫对照(CK)、不施硅接蚜虫(A)、施硅不接蚜虫(Si)、施硅接蚜虫(SiA) 4个处理。于小麦两叶一心、三叶一心时分别喷施200 mL的硅试剂,于小麦五叶一心时用毛笔将无翅成虫接到小麦叶片上,每盆小麦接30头蚜虫。采用Y形嗅觉仪研究麦长管蚜寄主的选择行为,采用顶空吸附法收集小麦挥发物,采用气相色谱–质谱联用仪(GC-MS)进行分离鉴定。通过主成分分析与相关性分析寻找对麦长管蚜寄主选择偏好影响较大的气体挥发物。

    结果 

    无论接蚜虫与否,施硅均显著降低了麦长管蚜对小麦寄主的趋向性(P<0.01)。对所有处理的小麦挥发物中气体进行收集分析后发现,小麦挥发物中均包含烷烃类、苯类、醇类等化合物。与A相比,SiA显著提高了挥发物十二甲基环己氧烷、3-己烯-1-醇(E)、D-柠檬烯的相对含量,提高幅度分别为56.25%、112.00%、117.78%;而2,4-二甲基-庚烷的相对含量显著降低了81.02%。主成分与相关性分析结果表明,麦长管蚜对寄主的选择与气体挥发物2,4-二甲基-庚烷呈显著正相关;与气体挥发物十二甲基环己氧烷、3-己烯-1-醇(E)、D-柠檬烯呈显著负相关。

    结论 

    施硅可通过增加小麦气体挥发物十二甲基环己氧烷、3-己烯-1-醇(E)、D-柠檬烯的释放,且减少2,4-二甲基-庚烷的释放,共同影响麦长管蚜的寄主选择,从而提高寄主小麦对麦长管蚜的趋避性。

    Abstract:
    Objectives 

    We investigated the chemical mechanism of how silicon decreases Sitobion avenae's host selection preference by studying the influence of silicon application on the release of wheat volatiles.

    Methods 

    A hydroponic wheat experiment was conducted using the wheat cultivar ‘Zhengmai 1036’ as a test crop, Sitobion avenae as the aphid, and Hoagland as a nutrient solution. The four treatments were no Si application and no aphid infestation (CK), only aphid infestation (A), only Si application (Si), and both Si application and aphid infestation (SiA). Si was sprayed on wheat seedlings at 2-open leaves-1-sprout and 3-open leaves-1-sprout stages. The aphids were infected on wheat leaves at the 5-leaves-1-sprout stage, with 30 aphids per pot. The Y-shaped olfactory instrument was used to test the host selection behavior of aphids. Wheat volatiles were collected using the headspace adsorption method, identified, and quantitatively determined using GC-MS. Principal component and correlation analyses were used to define the influence of volatiles on the host selection preference of aphids.

    Results 

    Si application led to a (P<0.01) difference in wheat's tropism and repellency regardless of aphid infection. Aphids were more likely to choose wheat as a host when Si was not applied. Alkanes, benzenes, and alcohols were among the volatiles found in wheat. The number and concentrations of volatile chemicals in wheat were altered by Si treatment and aphid infection. Compared with A, SiA (P<0.05) increased the relative content of the volatiles dodecamethyl, 3-hexen-1-ol (E), and D-limonene by 56.25%, 112.00%, and 117.78%, respectively; the relative content of 2,4-dimethyl-heptane was (P<0.05) reduced by 81.02%. The principal component and correlation analysis results showed that the selection of the host by Sitobion avenae was (P<0.05) positively correlated with the volatile gas 2,4-dimethyl-heptane, and (P<0.05) negatively correlated with the volatile gas dodecamethyl, 3-hexen-1-ol (E) and D-limonene.

    Conclusions 

    Si application can enhance the repellency of host wheat to Sitobion avenae by increasing the release of wheat gas volatiles dodecamethyl, 3-hexen-1-ol (E) and D-limonene and decreasing the release of 2,4-dimethyl-heptane, which together impact the host selection of Sitobion avenae.

  • 小麦作为世界上最重要的粮食作物之一,是仅次于玉米和水稻的第三大粮食作物[1],而蚜虫是小麦减产的主要害虫之一[2]。我国黄淮地区比较常见的蚜虫有麦长管蚜Sitobion avenae (Fabricius)、禾谷缢管蚜Rhopalosiphum padi、麦无网长管蚜Metopolophium dirhodum (Walker) 等,其中麦长管蚜是小麦幼苗期、扬花至灌浆期蚜虫的优势种之一[3]。麦长管蚜从小麦的韧皮部吸取汁液,使其穗部受害,造成麦粒瘪小,以致严重减产。研究表明,当小麦穗部的麦长管蚜虫达100头/穗时,小麦减产高达44.26%[4]。此外,麦长管蚜还会传播小麦病毒病[5]。研究表明可通过增加小麦叶片颜色以及蜡质层厚度等物理防御来调控小麦外部环境[6];也可以使用化学防治技术,但传统合成杀虫剂不仅会对部分有益昆虫产生有害影响,还会影响环境安全[7],蚜虫也会通过进化从而增强对杀虫剂的抗性[8]

    硅是地球表面含量仅次于氧的大量元素[9],能够缓解作物的生物(如病虫害)胁迫[10]。研究表明,硅在植物细胞表皮的沉积提高了叶表的粗糙度与机械强度,增加植食性昆虫刺吸与取食的困难[11]。施硅后的小麦可通过增加多酚氧化酶、苯丙氨酸解氨酶和过氧化物酶3种防御酶的活性,增强小麦对麦二叉蚜Schizaphisgraminum (Rondani) 的抗性[12]。此外,研究发现小麦对蚜虫的抗性与植株体内可溶性糖含量呈正相关,与可溶性蛋白和氨基酸的含量呈负相关[13-15]

    植物挥发物是植物防御害虫侵袭的一类物质,对植食性昆虫有趋避的作用。植物挥发物属于植物代谢次生物质,一般分子量在100~200,包括烃、醇、醛、酮、酯和有机酸等[16],挥发物在植物体内的积累有利于促进植物之间的相互交流,同时也有助于植物进行主动防御[17]。植物挥发物与植食性昆虫的寄主选择存在密切的关系,昆虫可以识别不同浓度的植物挥发物,对适宜的寄主植物进行定位和选择[18]。研究表明马铃薯甲虫Leptinotarsa decemlineata (Say) 对马铃薯叶片气味有着非常敏感的嗅觉定位,只要有马铃薯叶片的气味存在,就可以产生对寄主的定向选择[19]。在水稻与甘蓝(非寄主)上也发现,二化螟幼虫Chilo suppressalis (Walker) 显著趋向水稻挥发物而回避非寄主挥发物,证实了水稻挥发物在其寄主定位中的作用[20]

    关于施硅提高小麦对病虫害防御的研究多集中在机械阻碍、营养物质和次生物质代谢等方面[21]。从小麦挥发物与蚜虫寄主选择两方面去探究施硅对小麦麦长管蚜抗性方面的研究还鲜见报道。本研究通过Y形嗅觉仪探究施硅对麦长管蚜寄主选择偏好的影响,采用顶空吸附法对小麦挥发物进行收集,通过GC-MS鉴定。从小麦挥发物方面对施硅影响蚜虫寄主选择偏好的原因进行探究,以期为丰富植物施硅抗虫机制的理论提供依据。

    试验所选用的麦种为黄淮主栽品种‘郑麦1036’,挑选小麦种子洗净后经10%的双氧水消毒30 min,蒸馏水洗净后,常温下浸泡12 h,在25℃下催芽。选取萌发一致的小麦,移栽塑料盆中于光照培养室中培养,待用。

    供试蚜虫为黄淮地区的优势种麦长管蚜。于温度为20℃、相对湿度为70%、光照(LED灯)周期为L∶D=14 h∶10 h,光强为3000 lx的光照培养箱内的小麦植株上培养,小麦品种为‘郑麦1036’,选取大小和日龄一致的无翅成虫用于试验。

    有机硅:首先将4 mL无水乙醇与190 mL蒸馏水充分搅拌0.5 h,将0.1344 mL硅酸四乙酯 (TEOS)、4 mL无水乙醇以及2 mL吐温80的混合液缓缓滴入,充分搅拌2 h,配制成总体积为200 mL的硅制剂。

    本试验采用水培试验,共设置不施硅不接蚜虫(CK)、不施硅接蚜虫(A)、施硅不接蚜虫(Si)、施硅接蚜虫(SiA) 4个处理。选取萌发一致的小麦,移栽塑料盆中于光照培养室中培养。每3天更换一次营养液,每个处理于小麦两叶一心、三叶一心时分别喷施200 mL的硅试剂,于小麦五叶一心时用毛笔将无翅成虫接到小麦叶片上,每盆小麦接30头蚜虫,为防止蚜虫从接虫植株上迁出,用上端开口的玻璃纸罩将植株罩住,开口处再盖上用0.178 mm的尼龙网做成的盖子,每个处理30株苗/盆,每个处理重复3次(共3盆)。麦长管蚜在温度为24℃、相对湿度为70%、光照(LED灯)周期为L∶D=14 h∶10 h,光强为3000 lx的光照培养室内培养。在接虫后的48 h测定蚜虫的寄主选择,取有效重复数60个进行统计,同时进行取样,样品于河南大学生命科学学院进行气体挥发物的收集鉴定,试验重复4次。

    Y形嗅觉仪由玻璃制作,其内径4 cm,侧臂和柄(主臂)长25 cm,两侧臂夹角为90°。

    选取长势大致相同的CK和Si处理小麦各30株,分别放入两个圆柱形玻璃缸内进行试验。Y形嗅觉仪基部一端为麦长管蚜的释放管,两个臂用硅胶管分别连接气味源,气味源连接真空泵,气流从 QC-1 型大气采样仪吹出使管道中保持持续的气味源,气流进入气味源前经活性碳过滤器过滤,并保持气流在流出每个味源时以500 mL/min的速度进入Y形管两臂。测试前将成虫饥饿处理,每测试1头蚜虫,改变选择臂的方向,以排除位置或者环境因素对寄主选择的影响;每测试10头蚜虫更换Y形嗅觉仪。记录每头麦长管蚜成虫的选择行为,如果2 min内测试的麦长管蚜没有做出选择则弃去不算,直至获得60个有效数据为1组,重复4组。测试完成后,选取A和SiA处理的小麦各30株,重复上述操作。整个测试过程在相对湿度为70%~80%、温度为(27±1)℃的室内进行。每次测定完成后用酒精或丙醇清洗Y形嗅觉仪与连接胶管。

    采用动态顶空吸附收集挥发物,将需要收集挥发物的小麦放置于玻璃烧杯,捕集过滤器用二氯甲烷清洗3次,置于圆形玻璃罐(高45 cm,内径22 cm,杭州定制)内。气流进入玻璃罐之前先经过活性炭、硅胶和分子筛来净化空气和除去水分;接着进入填充有Super Q吸附剂(孔径100目)的吸附管,装置用聚四氟乙烯管连接。每次采集持续4 h,每个处理重复4次。每次采集挥发物后,用1 mL的二氯甲烷从吸附剂中萃取,样品储存于–40℃的冰箱中。

    采用气相色谱质谱联用仪(日本,岛津 GCMS-QP2010)对植物挥发物进行定量定性分析。气相色谱/质谱联用系统有自动流量控制、AOC-20s自动进样器。毛细管柱:HP-5MS (30 mm × 0.25 mm × 0.25 μm)。质量扫描范围35~335 m/z,喷射器的温度维持在230℃,电导率维持在60 cm/s,间隔冲洗流量设定为3 mL/min。以氦气为载体气体,流速1.0 mL/min,电压应小于2.0 kV。

    对小麦挥发物GC-MS分析的质谱图进行检索,筛选出可能的化合物质,列出化合物成分的化学式与名称,以及各个化合物峰面积的相对含量。试验测得的数据用Excel 2010整理,使用SPSS 23.0、Microsoft Office 2010和Metabo Analyst进行数据的统计和分析,采用LSD法检验处理间的差异显著性(P<0.05),采用Pearson进行相关性分析。

    图1为施硅与不施硅对麦长管蚜寄主选择的影响,不施硅处理(CK、A)小麦被蚜虫选择的百分比均显著高于施硅处理(Si、SiA)。在无蚜虫组中,麦长管蚜对Si与CK处理的小麦趋性存在极显著性差异(F=15.79,P=0.0073),施硅使麦长管蚜对小麦的选择百分比降低了28.57% [(Si处理蚜虫选择百分比平均值−CK处理蚜虫选择百分比平均值)/CK处理蚜虫选择百分比平均值];在接蚜虫组中,麦长管蚜对A和SiA处理的小麦趋性同样存在极显著性差异(F=346.80,P<0.0001),麦长管蚜对SiA处理小麦的选择百分比较A处理降低了44.16%,这表明无论接虫与否,施硅均能够显著降低蚜虫对寄主的选择。

    图  1  不同施硅和接虫处理对麦长管蚜选择偏好的影响
    注:选择偏好=(施Si处理蚜虫选择数–不施硅处理蚜虫选择数)/不施硅处理蚜虫选择数×100;CK—不施硅也不接种蚜虫;A—不施硅接蚜虫;Si—施硅不接蚜虫;SiA—施硅接蚜虫。图中为CK与Si、A与SiA比较,每个处理4个重复(4个柱); **表示相同接虫条件下两个处理之间差异在0.01水平显著。
    Figure  1.  Selection preference of Sitobion avenae F. to host wheat as affected by Si application and aphid infection
    Note: Selection preference = (selecting aphid number with Si application – selecting aphid number without Si application)/selecting aphid number without Si application×100. CK—No Si application and no aphid infection; A—Aphid infection; Si—Si application; SiA—Si application plus aphid infection. The selection preference for up part of figure was by CK and Si, and the bottom was for A and SiA. Each threatment has 4 replicates and ** represents significant difference in selection preference between the two treatments of each group at the 0.01 level.

    施硅对小麦各挥发物含量、种类及物质类别均存在较大的影响(表1)。CK处理共收集7种化合物,其中烷烃类4种,约占总含量84.60%;苯类2种,约占总含量的10.80%;醇类1种,约占总量的4.60%,其中2,4-二甲基-庚烷相对含量较高。A处理共收集到32种化合物,其中烯类14种,约占总含量62.10%;烷烃类9种,约占总含量23.10%;酯类3种,约占总含量8.90%;苯类3种,约占总含量3.20%;醇类2种,约占总含量1.90%;炔类1种,约占总含量0.76%,其中α-蒎烯相对含量较高。Si处理共收集6种化合物,其中烷烃类3种,约占总含量77.60%;醛类1种,约占总含量9.70%;醇类1种,约占总含量5.10%;苯类1种,约占总含量7.60%,2,4-二甲基-庚烷相对含量较高。SiA处理共收集8种化合物,其中烷烃类3种,约占总含量46.80%;烯类2种,约占总含量26.10%;醛类1种,约占总含量9.60%;苯类1种,约占总含量7.30%;醇类1种,约占总含量10.20%,其中辛烷相对含量较高。

    表  1  不同处理小麦挥发物的种类和相对含量
    Table  1.  Collected volatile compounds and their relative contents in wheat under different treatments
    序号 No.挥发性化合物 Volatile compound相对含量 Relative content (%)
    CKASiSiA
    1甲苯 Toluene0.20±0.01 b0.34±0.07 ab0.27±0.08 ab0.38±0.17 a
    2辛烷 Octane1.22±0.17 b1.27±0.33 ab1.20±0.04 b1.67±0.30 a
    3十二甲基环己氧烷 Cyclohexasiloxane, dodecamethyl0.30±0.12 b0.32±0.05 b0.27±0.03 b0.50±0.03 a
    42,4-二甲基-庚烷 Heptane, 2,4-dimethyl1.49±0.16 a1.37±0.34 a1.27±0.30 a0.26±0.02 b
    53-己烯-1-醇(E) 3-Hexen-1-ol, (E)0.19±0.01 b0.25±0.05 b0.18±0.03 b0.53±0.12 a
    6四戊烷 Tetrapentacontane0.41±0.11 a0.98±0.33 a
    7对二甲苯 p-Xylene0.23±0.05 a0.34±0.12 a
    83-己烯醛 3-Hexenal0.34±0.05 a0.50±0.23 a
    9D-柠檬烯 D-Limonene0.45±0.02 b0.98±0.20 a
    10可巴烯 Copaene0.30±0.16 a0.37±0.12 a
    11四十烷 Tetracontane0.23±0.03
    12角鲨烷 Squalane0.34±0.03
    13螺环[4.4]壬-1,6-二烯, (S) Spiro[4.4]nona-1,6-diene, (S)0.24±0.01
    14四甲基十五烷 Pentadecane, 4-methyl0.41±0.02
    15邻二甲苯 o-Xylene0.09±0.02
    16乙酸异丁酯 Isobutyl acetate0.21±0.05
    17水杨酸三甲环己酯 Homosalate0.72±0.04
    18氧化石竹烯 Caryophyllene oxide0.57±0.03
    19石竹烯 Caryophyllene2.14±0.89
    20α, β-二甲基-苯乙醇 Benzeneethanol, α, β-dimethyl0.27±0.12
    21芳香二烯 Aromandendrene0.88±0.04
    22香树稀 Alloaromadendrene0.54±0.09
    23壬基乙酸酯 Acetic acid, nonyl ester1.16±0.17
    242-甲基四烷 2-Methyltetracosane0.25±0.11
    251-癸炔 1-Decyne0.18±0.00
    2611-甲基三氯乙烷 11-Methyltricosane0.25±0.00
    271,5,9,9-四甲基-1,4,7-环十一烯, 1Z, 4Z, 7Z
    1, 4, 7-Cycloundecatriene,1,5,9,9-tetramethyl-, 1Z, 4Z, 7Z
    0.88±0.38
    285-(1-甲基亚乙基)-1,3-环戊二烯
    1,3-Cyclopentadiene,5-(1-methylethylidene)
    0.22±0.05
    29β-罗勒烯 β-Ocimene0.60±0.18
    30β-月桂烯 β-Myrcene2.31±0.82
    31α-蒎烯 α-Pinene4.99±1.12
    32ɑ-愈创木烯 α-Guaiene0.17±0.04
    331-甲基-4-(6-甲基庚-5-烯-2-亚基)环己-1-烯
    (Z)-1-Methyl-4-(6-methylhept-5-en-2-ylidene) cyclohex-1-ene
    0.26±0.03
    注:CK—不施硅也不接种蚜虫;A—不施硅接蚜虫;Si—施硅不接蚜虫;SiA—施硅接蚜虫。同行数据后不同小写字母表示处理间差异显著 (P<0.05)。“—”代表挥发物未被检出。
    Note: CK—No Si application and no aphid infection; A—Aphid infection; Si—Si application; SiA—Si application plus aphid infection. Different lowercase letters in the row indicate significant difference in the same gas volatiles among different treatments (P<0.05).“—”means the volatile has not been detected.
    下载: 导出CSV 
    | 显示表格

    表1显示,相较CK在不接虫条件下,施硅处理(Si)下辛烷、十二甲基环己氧烷、2,4-二甲基-庚烷、3-己烯-1-醇(E)的含量分别降低了1.64%、10.00%、14.77%、5.26%,甲苯的相对含量提高了35.00%,但差异均未达到显著水平,且施硅处理(Si)比CK处理多出了一种“3-己烯醛”挥发性物质,缺少了“四戊烷”和“对二甲苯”两种挥发性物质。

    相比不施硅处理(A),在接虫条件下,施硅处理(SiA)的十二甲基环己氧烷、3-己烯-1-醇(E)、D-柠檬烯含量分别显著提高了56.25%、112.00%、117.78%,2,4-二甲基-庚烷的相对含量显著降低了81.02 %,甲苯、辛烷、可巴烯的含量虽有所提高,但未达到显著水平(表1)。

    各处理间主成分分析结果(图2)表明,第一主成分(principal component 1, PC1)占71.70%,第二主成分(principal component 2, PC2)占20.20%,第三主成分(principal component 3, PC3)占4.20%,第四主成分(principal component 4, PC4)占2.50%,第五主成分(principal component 5, PC5)占0.80% (图2a)。无论接虫与否,施硅均能够使CK、Si、A、SiA 4个处理显著分离,而且PC2显著分离了不施硅接虫(A)处理(图2b)。气体挥发物的主成分分析如图2c所示,3-己烯醛、3-己烯-1-醇、十二甲基环己氧烷、辛烷 4种物质显著影响了PC1;四戊烷、对二甲苯、2,4-二甲基-庚烷、11-甲基三氯乙烷 4种物质显著影响了PC2。

    图  2  挥发性化合物的主成分分析
    注:CK—不施硅也不接种蚜虫;A—不施硅接蚜虫;Si—施硅不接蚜虫;SiA—施硅接蚜虫。
    Figure  2.  Principal component analysis of volatile compounds
    Note: CK—No Si applicationand no aphid infection; A—Aphid infection; Si—Si application; SiA—Si application plus aphid infection.

    为了进一步探究蚜虫取食为害情况下,施硅对气体挥发物与寄主选择之间关系的影响。将表1中与处理A相比SiA处理中相对含量有差异的7种气体挥发物,与寄主选择之间进行相关性分析(表2),同时对处理A与SiA全体气体挥发物与寄主选择蚜虫百分比进行相关矩阵和热图分析(图3图4)。结果表明,麦长管蚜对寄主的选择与气体挥发物2,4-二甲基-庚烷呈显著正相关;与气体挥发物十二甲基环己氧烷、3-己烯-1-醇(E)、D-柠檬烯物质呈显著负相关。

    表  2  蚜虫侵染后挥发性化合物与寄主选择之间的相关性分析
    Table  2.  Correlation of volatile compounds and host selection under aphid infection
    指标
    Index
    蚜虫百分比
    Percentage of aphids
    甲苯
    Toluene
    辛烷
    Octane
    十二甲基环己氧烷
    Cyclohexasiloxane, dodecamethyl
    3-己烯-1-醇(E)
    3-Hexen-1-ol, (E)
    2,4-二甲基-庚烷
    Heptane, 2,4-dimethyl
    D-柠檬烯
    D-Limonene
    可巴烯
    Copaene
    蚜虫百分比
    Percentage of aphids
    1−0.199−0.563−0.448−0.935**0.915**−0.915**−0.276
    甲苯 Toluene−0.19910.3730.2410.418−0.180.4880.647
    辛烷 Octane−0.5630.37310.5290.498−0.7750.732−0.112
    十二甲基环己氧烷
    Cyclohexasiloxane, dodecamethyl
    −0.977**0.2410.52910.966**−0.841*0.921**0.219
    3-己烯-1-醇(E)
    3-Hexen-1-ol, (E)
    −0.935**0.4180.4980.966**1−0.803*0.901**0.378
    2,4-二甲基-庚烷
    Heptane, 2,4-dimethyl
    0.915**−0.18−0.775−0.841*−0.803*1−0.853*−0.169
    D-柠檬烯 D-Limonene−0.915**0.4880.7320.921**0.901**−0.853*10.294
    可巴烯 Copaene−0.2760.647−0.1120.2190.378−0.1690.2941
    注: 表中只包括施Si与不施Si处理间有差异的挥发性化合物。*—P<0.05; **—P<0.01。
    Note: The volatile compounds in the table have different contents between SiA and A treatment. *—P<0.05; **—P<0.01.
    下载: 导出CSV 
    | 显示表格
    图  3  硅诱导蚜虫趋性和小麦挥发物的相关矩阵
    Figure  3.  The correlation analysis of silicon-induced aphid tropism and wheat volatiles
    图  4  硅诱导蚜虫趋性和小麦挥发物的热图分析
    Figure  4.  The heat map analysis of silicon-induced aphid tropism and wheat volatiles

    植物的抗虫性是在一定条件下植物与害虫之间表现出的相互适应与相互制约关系[22]。植物的抗虫机制表现为抗生性(antibiosis)、耐害性(tolerance)和不选择性(non-preference) 3个方面。不选择性表现为植物使昆虫不趋向植物栖息、产卵或取食的特性。植物的生理生化特性和分泌的挥发性次生物质可以阻止昆虫趋向植物产卵或取食,从而减轻害虫对其为害。研究表明,施硅能够降低许多经济作物的生物营养从而影响昆虫的取食路径[23]。使用硅石灰处理的甘蔗茎秆可以抑制甘蔗非洲茎螟Eldana saccharina幼虫的取食[24]。在玉米的叶片上喷施二氧化硅会影响玉米叶蚜Rhopalosiphum maidis (Fitch)的生长,降低其取食量[25]。本研究对蚜虫寄主选择的结果表明蚜虫趋向于不施硅处理的数量显著高于施硅处理,这说明施硅可以减少麦长管蚜的寄主选择。

    植物挥发物是植物在生长过程中不同组织如叶片、果实或枝条所释放的微量次生化合物,包括醇、醛、酯、烷类等。同种植物的不同生长期、不同的植物之间、不同的环境条件下、虫害与否等都会对释放的挥发物造成一定的影响,这些影响主要体现在挥发物的种类和量的变化上,对植物的生态适应性具有重要作用。植物可通过多种途径向周围生物展示自身及状态,释放挥发性有机化合物是其主要手段之一[26]。小麦在自然状态下会释放出各种挥发物,这些挥发物在植食性昆虫的取食、寄主识别等方面发挥着重要作用[27]

    寄主植物所释放的特异性或普通气味化合物能够影响昆虫的多种行为,比如定位寄主、取食、产卵、交配、传粉等[28]。许多植食性昆虫能够通过识别植物特异挥发物来选择寄主植物,通常这些组分对所涉及的昆虫表现出很强的吸引力或排斥力[29]。多数昆虫依赖植物体所释放的挥发性信息化合物对适宜的寄主植物进行近距离搜索和定向,这是其生存及繁衍的重要保证[30]。前人的研究发现:植物中的一些特征性挥发物是促使蛾类昆虫取食行为的“标志性刺激物”[31]。例如,桑树叶片中的柠檬醛、氧化芳樟醇、乙酸萜品酯等挥发物对家蚕Bombyx mori (Linnaeus) 幼虫有强烈的引诱活性[32];棉铃虫Helicoverpa armigera (Hübner) 为害后的棉花大量释放的类萜烯及单宁等物质会导致3-己烯-1-醇(E)的含量较少,而施硅使棉花的3-己烯-1-醇(E)含量较多[33]。本研究也表明施硅能产生更多的3-己烯-1-醇(E)来驱避麦长管蚜。研究发现水稻挥发物中3-己烯醛对褐飞虱Nilaparvata lugens (Stal)成虫有显著的驱避作用[34]。本研究结果表明施硅能产生更多的3-己烯醛来驱避麦长管蚜。本研究在蚜虫取食为害后,与不施硅(A)处理相比,施硅处理(SiA)分别显著提高了十二甲基环己氧烷(56.25%)、3-己烯-1-醇(E)(112.00%)、D-柠檬烯(117.78%)的相对含量,且显著降低了2,4-二甲基-庚烷的相对含量。本研究结果表明,蚜虫为害与施硅共同作用下,可能会诱导寄主小麦产生复杂的防御反应。

    麦长管蚜更倾向于选择不施硅的小麦为寄主。在蚜虫侵害后,施硅可通过减少小麦挥发物2,4-二甲基-庚烷的释放,提高十二甲基环己氧烷、3-己烯-1-醇(E)、D-柠檬烯等气体的释放,从而减少麦长管蚜对寄主小麦的趋向性。

  • 图  1   不同施硅和接虫处理对麦长管蚜选择偏好的影响

    注:选择偏好=(施Si处理蚜虫选择数–不施硅处理蚜虫选择数)/不施硅处理蚜虫选择数×100;CK—不施硅也不接种蚜虫;A—不施硅接蚜虫;Si—施硅不接蚜虫;SiA—施硅接蚜虫。图中为CK与Si、A与SiA比较,每个处理4个重复(4个柱); **表示相同接虫条件下两个处理之间差异在0.01水平显著。

    Figure  1.   Selection preference of Sitobion avenae F. to host wheat as affected by Si application and aphid infection

    Note: Selection preference = (selecting aphid number with Si application – selecting aphid number without Si application)/selecting aphid number without Si application×100. CK—No Si application and no aphid infection; A—Aphid infection; Si—Si application; SiA—Si application plus aphid infection. The selection preference for up part of figure was by CK and Si, and the bottom was for A and SiA. Each threatment has 4 replicates and ** represents significant difference in selection preference between the two treatments of each group at the 0.01 level.

    图  2   挥发性化合物的主成分分析

    注:CK—不施硅也不接种蚜虫;A—不施硅接蚜虫;Si—施硅不接蚜虫;SiA—施硅接蚜虫。

    Figure  2.   Principal component analysis of volatile compounds

    Note: CK—No Si applicationand no aphid infection; A—Aphid infection; Si—Si application; SiA—Si application plus aphid infection.

    图  3   硅诱导蚜虫趋性和小麦挥发物的相关矩阵

    Figure  3.   The correlation analysis of silicon-induced aphid tropism and wheat volatiles

    图  4   硅诱导蚜虫趋性和小麦挥发物的热图分析

    Figure  4.   The heat map analysis of silicon-induced aphid tropism and wheat volatiles

    表  1   不同处理小麦挥发物的种类和相对含量

    Table  1   Collected volatile compounds and their relative contents in wheat under different treatments

    序号 No.挥发性化合物 Volatile compound相对含量 Relative content (%)
    CKASiSiA
    1甲苯 Toluene0.20±0.01 b0.34±0.07 ab0.27±0.08 ab0.38±0.17 a
    2辛烷 Octane1.22±0.17 b1.27±0.33 ab1.20±0.04 b1.67±0.30 a
    3十二甲基环己氧烷 Cyclohexasiloxane, dodecamethyl0.30±0.12 b0.32±0.05 b0.27±0.03 b0.50±0.03 a
    42,4-二甲基-庚烷 Heptane, 2,4-dimethyl1.49±0.16 a1.37±0.34 a1.27±0.30 a0.26±0.02 b
    53-己烯-1-醇(E) 3-Hexen-1-ol, (E)0.19±0.01 b0.25±0.05 b0.18±0.03 b0.53±0.12 a
    6四戊烷 Tetrapentacontane0.41±0.11 a0.98±0.33 a
    7对二甲苯 p-Xylene0.23±0.05 a0.34±0.12 a
    83-己烯醛 3-Hexenal0.34±0.05 a0.50±0.23 a
    9D-柠檬烯 D-Limonene0.45±0.02 b0.98±0.20 a
    10可巴烯 Copaene0.30±0.16 a0.37±0.12 a
    11四十烷 Tetracontane0.23±0.03
    12角鲨烷 Squalane0.34±0.03
    13螺环[4.4]壬-1,6-二烯, (S) Spiro[4.4]nona-1,6-diene, (S)0.24±0.01
    14四甲基十五烷 Pentadecane, 4-methyl0.41±0.02
    15邻二甲苯 o-Xylene0.09±0.02
    16乙酸异丁酯 Isobutyl acetate0.21±0.05
    17水杨酸三甲环己酯 Homosalate0.72±0.04
    18氧化石竹烯 Caryophyllene oxide0.57±0.03
    19石竹烯 Caryophyllene2.14±0.89
    20α, β-二甲基-苯乙醇 Benzeneethanol, α, β-dimethyl0.27±0.12
    21芳香二烯 Aromandendrene0.88±0.04
    22香树稀 Alloaromadendrene0.54±0.09
    23壬基乙酸酯 Acetic acid, nonyl ester1.16±0.17
    242-甲基四烷 2-Methyltetracosane0.25±0.11
    251-癸炔 1-Decyne0.18±0.00
    2611-甲基三氯乙烷 11-Methyltricosane0.25±0.00
    271,5,9,9-四甲基-1,4,7-环十一烯, 1Z, 4Z, 7Z
    1, 4, 7-Cycloundecatriene,1,5,9,9-tetramethyl-, 1Z, 4Z, 7Z
    0.88±0.38
    285-(1-甲基亚乙基)-1,3-环戊二烯
    1,3-Cyclopentadiene,5-(1-methylethylidene)
    0.22±0.05
    29β-罗勒烯 β-Ocimene0.60±0.18
    30β-月桂烯 β-Myrcene2.31±0.82
    31α-蒎烯 α-Pinene4.99±1.12
    32ɑ-愈创木烯 α-Guaiene0.17±0.04
    331-甲基-4-(6-甲基庚-5-烯-2-亚基)环己-1-烯
    (Z)-1-Methyl-4-(6-methylhept-5-en-2-ylidene) cyclohex-1-ene
    0.26±0.03
    注:CK—不施硅也不接种蚜虫;A—不施硅接蚜虫;Si—施硅不接蚜虫;SiA—施硅接蚜虫。同行数据后不同小写字母表示处理间差异显著 (P<0.05)。“—”代表挥发物未被检出。
    Note: CK—No Si application and no aphid infection; A—Aphid infection; Si—Si application; SiA—Si application plus aphid infection. Different lowercase letters in the row indicate significant difference in the same gas volatiles among different treatments (P<0.05).“—”means the volatile has not been detected.
    下载: 导出CSV

    表  2   蚜虫侵染后挥发性化合物与寄主选择之间的相关性分析

    Table  2   Correlation of volatile compounds and host selection under aphid infection

    指标
    Index
    蚜虫百分比
    Percentage of aphids
    甲苯
    Toluene
    辛烷
    Octane
    十二甲基环己氧烷
    Cyclohexasiloxane, dodecamethyl
    3-己烯-1-醇(E)
    3-Hexen-1-ol, (E)
    2,4-二甲基-庚烷
    Heptane, 2,4-dimethyl
    D-柠檬烯
    D-Limonene
    可巴烯
    Copaene
    蚜虫百分比
    Percentage of aphids
    1−0.199−0.563−0.448−0.935**0.915**−0.915**−0.276
    甲苯 Toluene−0.19910.3730.2410.418−0.180.4880.647
    辛烷 Octane−0.5630.37310.5290.498−0.7750.732−0.112
    十二甲基环己氧烷
    Cyclohexasiloxane, dodecamethyl
    −0.977**0.2410.52910.966**−0.841*0.921**0.219
    3-己烯-1-醇(E)
    3-Hexen-1-ol, (E)
    −0.935**0.4180.4980.966**1−0.803*0.901**0.378
    2,4-二甲基-庚烷
    Heptane, 2,4-dimethyl
    0.915**−0.18−0.775−0.841*−0.803*1−0.853*−0.169
    D-柠檬烯 D-Limonene−0.915**0.4880.7320.921**0.901**−0.853*10.294
    可巴烯 Copaene−0.2760.647−0.1120.2190.378−0.1690.2941
    注: 表中只包括施Si与不施Si处理间有差异的挥发性化合物。*—P<0.05; **—P<0.01。
    Note: The volatile compounds in the table have different contents between SiA and A treatment. *—P<0.05; **—P<0.01.
    下载: 导出CSV
  • [1]

    McMaster G S. Phenology, development, and growth of the wheat (Triticum aestivura L.) shoot apex: A review[J]. Advances in Agronomy, 1997, 59: 63–118.

    [2] ЗАЗИМО М И, 朱云香. 冬小麦病虫害防治的新观念[J]. 麦类作物学报, 1992, (5): 35–36. ЗАЗИМО М И, Zhu Y X. New concepts of winter wheat diseases and pests control[J]. Journal of Triticeae Crops, 1992, (5): 35–36.

    ЗАЗИМО М И, Zhu Y X. New concepts of winter wheat diseases and pests control [J]. Journal of Triticeae Crops, 1992, (5): 35-36.

    [3] 石卫东. 氮、钾及其配施对小麦抗蚜性及若干生化指标的影响[D]. 河南郑州: 河南农业大学硕士学位论文, 2011. 7-8.

    Shi W D. Effects of N and K combined application on aphid-resistance and some biochemical substance content in wheat[D]. Zhengzhou, Henan: MS Thesis of Henan Agricultural University, 2011. 7-8.

    [4] 徐利敏, 齐凤鸣, 张建平, 等. 麦长管蚜危害小麦产量损失的初步研究[J]. 内蒙古农业科技, 1998, (5): 28–41. Xu L M, Qi F M, Zhang J P, et al. Preliminary study on the damage of wheat yield by pipe aphid[J]. Inner Mongolia Agricultural Science and Technology, 1998, (5): 28–41.

    Xu L M, Qi F M, Zhang J P, et al. Preliminary study on the damage of wheat yield by pipe aphid [J]. Inner Mongolia Agricultural Science and Technology, 1998, (5): 28-41.

    [5] 黄晓磊, 乔格侠. 蚜虫类昆虫生物学特性及蚜虫学研究现状(1)[J]. 生物学通报, 2005, 40(11): 5–7. Huang X L, Qiao G X. The biological characters of aphids and recent research in Aphidology (1)[J]. Bulletin of Biology, 2005, 40(11): 5–7. DOI: 10.3969/j.issn.0006-3193.2005.11.003

    Huang X L, Qiao G X. The biological characters of aphids and recent research in Aphidology (1) [J]. Bulletin of Biology, 2005, (11): 5-7. DOI: 10.3969/j.issn.0006-3193.2005.11.003

    [6] 叶树辉, 陈爱娟, 师桂英. 北方春小麦形态特征与抗麦长管蚜的关系研究[J]. 草原与草坪, 2012, 32(3): 78–83. Ye S H, Chen A J, Shi G Y. Roles of spring wheat physical features in the resistance to Sitobion avenae (F)[J]. Grassland and Turf, 2012, 32(3): 78–83. DOI: 10.3969/j.issn.1009-5500.2012.03.016

    Ye S H, Chen A G, Shi G Y. Roles of spring wheat physical features in the resistance to Sitobion avenae (F) [J]. Grassland and Turf, 2012, 32(3): 78-83. DOI: 10.3969/j.issn.1009-5500.2012.03.016

    [7]

    Regan K, Ordosch D, Glover K D, et al. Effects of a pyrethroid and two neonicotinoid insecticides on population dynamics of key pests of soybean and abundance of their natural enemies[J]. Crop Protection, 2017, 98: 24–32. DOI: 10.1016/j.cropro.2017.03.004

    [8]

    Simon J C, Peccoud J. Rapid evolution of aphid pests in agricultural environments[J]. Current Opinions in Insect Science, 2018, 26: 17–24. DOI: 10.1016/j.cois.2017.12.009

    [9] 汪秀芳, 陈圣宾, 宋爱琴, 等. 植物在硅生物地球化学循环过程中的作用[J]. 生态学杂志, 2007, 26(4): 595–600. Wang X F, Chen S B, Song A Q, et al. Roles of plants in biogeochemical cycling of silicon[J]. Chinese Journal of Ecology, 2007, 26(4): 595–600. DOI: 10.3321/j.issn:1000-4890.2007.04.026

    Wang X F, Chen S B, Song A Q, et al. Roles of plants in biogeochemical cycling of silicon [J]. Chinese Journal of Ecology, 2007, (4): 595-600. DOI: 10.3321/j.issn:1000-4890.2007.04.026

    [10]

    Ma J F, Yamaji N. Silicon uptake and accumulation in higher plants[J]. Trends in Plant Science, 2006, 11(8): 392–397. DOI: 10.1016/j.tplants.2006.06.007

    [11]

    Han Y, Lei W, Wen B L, et al. Silicon-mediated resistance in a susceptible rice variety to the rice leaf folder, Cnaphalocrocis medinalis guenée (Lepidoptera: Pyralidae)[J]. PLoS ONE, 2015, 10(4): e0120557. DOI: 10.1371/journal.pone.0120557

    [12]

    Batista G F, Jair M C, Custodio D S, Goussain M M. Resistance induction in wheat plants by silicon and aphids[J]. Scientia Agricola, 2005, 62(6): 547–551. DOI: 10.1590/S0103-90162005000600006

    [13] 陈建新, 宋敦伦, 采长群, 等. 小麦抗禾缢管蚜的生化研究[J]. 昆虫学报, 1997, 40(增刊): 186-189.

    Chen J X, Song D L, Cai C Q, et al. Biochemical study on wheat resistance to Rhopalosiphum padi[J]. Acta Entomologica Sinica, 1997, 40(S): 186-189.

    [14] 刘旭明, 杨奇华. 棉花抗蚜的生理生化机制及其与棉蚜种群数量消长关系的研究[J]. 植物保护学报, 1993, 20(1): 25–29. Liu X M, Yang Q H. The relationships between the physiological and biochemical mechanisms of aphid resistance of cotton and the population dynamics of cotton aphid[J]. Journal of Plant Protection, 1993, 20(1): 25–29. DOI: 10.3321/j.issn:0577-7518.1993.01.020

    Liu X M, Yang Q H. The relationships between the physiological and biochemical mechanisms of aphid resistance of cotton and the population dynamics of cotton aphid [J]. Journal of Plant Protection, 1993, (01): 25-29. DOI: 10.3321/j.issn:0577-7518.1993.01.020

    [15] 辛苗, 杜相革, 朱晓清. 不同氮水平对黄瓜蚜虫生长发育的影响[J]. 植物保护学报, 2010, 37(5): 408–412. Xin M, Du X G, Zhu X Q. Influence of variable nitrogen fertilization on growth and development of aphid Aphis gossypii[J]. Journal of Plant Protection, 2010, 37(5): 408–412.

    Xin M, Du X G, Zhu X Q. Influence of variable nitrogen fertilization on growth and development of aphid Aphis gossypii [J]. Journal of Plant Protection, 2010, 37(5): 408-412.

    [16]

    Matsui K, Arimura G. Regulatory mechanism of plant volatile formation involved in chemical communications[J]. Tanpakushitsu Kakusan Koso Protein Nucleic Acid Enzyme, 2003, 48(13): 793–800.

    [17]

    Ferreira R S, Moraes J C, Antunes C S. Silicon influence on resistance induction against Bemisia tabaci biotype B (Genn. ) (Hemiptera: Aleyrodidae) and on vegetative development in two soybean cultivars[J]. Neotropical Entomology, 2011, 40(4): 495–500. DOI: 10.1590/S1519-566X2011000400014

    [18] 樊慧, 金幼菊, 李继泉, 等. 引诱植食性昆虫的植物挥发性信息化合物的研究进展[J]. 北京林业大学学报, 2004, 26(3): 76–81. Fan H, Jin Y J, Li J Q, et al. Advances on plant volatile semiochemicals attracting herbivorous insects[J]. Journal of Beijing Forestry University., 2004, 26(3): 76–81. DOI: 10.3321/j.issn:1000-1522.2004.03.016

    Fan H, Jin Y J, Li J Q, et al. Advances on plant volatile semiochemicals attracting herbivorous insects [J]. Journal of Beijing Forestry University. 2004, (3): 76-81. DOI: 10.3321/j.issn:1000-1522.2004.03.016

    [19] 李红卫, 于艳雪, 翟俊峰. 马铃薯甲虫嗅觉感受研究进展[J]. 植物检疫, 2020, 34(5): 32–37. Li H W, Yu Y X, Zhai J F. Review on olfactory sense research of Leptinotarsa decemlineata[J]. Plant Quarantine, 2020, 34(5): 32–37.

    Li H W, Yu Y X, Zhai J F. Review on olfactory sense research of Leptinotarsa decemlineata [J]. Plant Quarantine, 2020, 34(5): 32-37.

    [20] 陈华才, 娄永根, 程家安. 二化螟绒茧蜂对二化螟及其寄主植物挥发物的趋性反应[J]. 昆虫学报, 2002, 45(5): 617–622. Chen H C, Lou Y G, Cheng J A. Selection responses of Cotesia chilonis, a larval parasitoid of the rice striped-stemborer Chilo suppressalis, to volatile compounds from its host and host-plants[J]. Acta Entomologica Sinica, 2002, 45(5): 617–622. DOI: 10.3321/j.issn:0454-6296.2002.05.011

    Chen H C, Lou Y G, Cheng J A. Selection responses of Cotesia chilonis, a larval parasitoid of the rice striped-stemborer Chilo suppressalis, to volatile compounds from its host and host-plants [J]. Acta Entomologica Sinica, 2002, 45(05): 617-622. DOI: 10.3321/j.issn:0454-6296.2002.05.011

    [21]

    Yamamoto T, Nakamura A, Lwai H, et al. Effect of silicon deficiency on secondary cell wall synthesis in rice leaf[J]. Journal of Plant Research, 2012, 125: 771–779. DOI: 10.1007/s10265-012-0489-3

    [22] 李洪山. 植物-小菜蛾-杀虫剂相互作用机制的研究[D]. 江苏南京: 南京农业大学博士学位论文, 2007. .

    Li H S. Mechanism of action among plant, diamoneback moth (Plutella xylostella) and insecticide[D]. Nanning, Jiangsu: PhD Dissertation of Nanjing Agricultural University, 2007.

    [23]

    Debona D, Rodrigues F A, Datnoff L E, et al. Silicon's role in abiotic and biotic plant stresses[J]. Annual Review of Phytopathology, 2017, 55(1): 85–107. DOI: 10.1146/annurev-phyto-080516-035312

    [24]

    Kvedaras O L, Keeping M G, Goebel F R, et al. Water stress augments silicon-mediated resistance of susceptible sugarcane cultivars to the stalk borer Eldana saccharina (Lepidoptera: Pyralidae)[J]. Bulletin of Entomological Research, 2007, 97(2): 175–183. DOI: 10.1017/S0007485307004853

    [25]

    Ca M J, Marcos G M, Andrade C G, et al. Feeding non-preference of the corn leaf aphid Rhopalosiphum maidis (Fitch, 1856) (Hemiptera: Aphididae) to corn plants (Zea mays L. ) treated with silicon[J]. Ciência E Agrotecnologia, 2005, 29(4): 761–766.

    [26] 杨真, 张宏瑞, 李正跃. 植物挥发物对蛾类昆虫行为影响的研究进展[J]. 南方农业学报, 2015, 46(3): 441–446. Yang Z, Zhang H R, Li Z Y. Advances in effects of plant volatiles on phalaenae behaviors[J]. Journal of Southern Agriculture, 2015, 46(3): 441–446. DOI: 10.3969/j:issn.2095-1191.2015.3.441

    Yang Z, Zhang H R, Li Z Y. Advances in effects of plant volatiles on phalaenae behaviors [J]. Journal of Southern Agriculture, 2015, 46(3): 441-446. DOI: 10.3969/j:issn.2095-1191.2015.3.441

    [27]

    Scott I M, Hatten G, Tuncer Y, et al. Proteomic analyses detect higher expression of C-Type lectins in imidacloprid-resistant colorado potato beetle Leptinotarsa decemlineata Say[J]. Insects, 2021, 12: 3.

    [28] 孙晓玲, 高宇, 陈宗懋. 虫害诱导植物挥发物(HIPVs)对植食性昆虫的行为调控[J]. 应用昆虫学报, 2012, 49(6): 1413–1422. Sun X L, Gao Y, Chen Z M. Behavior regulation of herbivores by herbivore induced plant volatiles (HIPVs)[J]. Chinese Journal of Applied Entomology, 2012, 49(6): 1413–1422. DOI: 10.7679/j.issn.2095-1353.2012.208

    Sun X L, Gao Y, Chen Z M. Behavior regulation of herbivores by herbivore induced plant volatiles (HIPVs) [J]. Chinese Journal of Applied Entomology, 2012, 49(6): 1413-1422. DOI: 10.7679/j.issn.2095-1353.2012.208

    [29] 张文璐, 王文强, 白树雄, 等. 亚洲玉米螟雌蛾产卵偏好寄主植物的筛选及对葎草挥发性化学成分的电生理反应[J]. 昆虫学报, 2018, 61(2): 224–231. Zhang W L, Wang W Q, Bai S X, et al. Screening of host plants preferred for oviposition by female adults of Ostrinia furnacalis (Lepidoptera: Crambidae) and their electrophysiological responses to volatile components of Humulus scandens (Cannabaceae)[J]. Acta Entomologica Sinica, 2018, 61(2): 224–231.

    Zhang W L, Wang W Q, Bai S X, et al. Screening of host plants preferred for oviposition by female adults of Ostrinia furnacalis (Lepidoptera: Crambidae) and their electrophysiological responses to volatile components of Humulus scandens (Cannabaceae) [J]. Acta Entomologica Sinica, 2018, 61(02): 224-231.

    [30] 莫圣书, 赵冬香, 陈青. 植物挥发物与昆虫行为关系研究进展[J]. 热带农业科学, 2007, 26(6): 84–89. Mo S S, Zhao D X, Chen Q. Advances on relationships between plant volatiles and insect behavior[J]. Chinese Journal of Tropical Agriculture, 2007, 26(6): 84–89.

    Mo S S, Zhao D X, Chen Q. Advances on relationships between plant volatiles and insect behavior [J]. Chinese Journal of Tropical Agriculture, 2007, 26(6): 84-89.

    [31] 李绍文. 生态生物化学[M]. 北京: 北京大学出版社. 2001.

    Li S W. Ecological biochemistry[M]. Beijing: Peking University Press, 2001.

    [32]

    Kessler A, Baldwin I T. Defensive function of herbivore-induced plant volatile emissions in nature[J]. Science, 2001, 291(5511): 2141–2144. DOI: 10.1126/science.291.5511.2141

    [33] 王琛柱, 查利文, 杨奇华. 棉铃虫的取食营养特点与棉花抗虫素分布的关系[J]. 昆虫学报, 1997, 40(1): 55–60. Wang C Z, Zha L W, Yang Q H. The relationship between the nutrient characteristics of the cotton bollworm and the distribution of insect-resistant elements in cotton[J]. Acta Entomologica Sinica, 1997, 40(1): 55–60.

    Wang C Z, Zha L W, Yang Q H. The relationship between the nutrient characteristics of the cotton bollworm and the distribution of insect-resistant elements in cotton [J]. Acta Entomologica Sinica, 1997, 40(1): 55-60.

    [34] 周强, 徐涛, 张古忍, 等. 虫害诱导的水稻挥发物对褐飞虱的驱避作用[J]. 昆虫学报, 2003, 46(6): 739–744. Zhou Q, Xu T, Zhang G R, et al. Repellent effects of herbivore-induced rice volatiles on the brown plant hopper Nilaparvata lugens (Stal)[J]. Acta Entomologica Sinica, 2003, 46(6): 739–744. DOI: 10.3321/j.issn:0454-6296.2003.06.012

    Zhou Q, Xu T, Zhang G R, et al. Repellent effects of herbivore-induced rice volatiles on the brown plant hopper Nilaparvata lugens (Stal) [J]. Acta Entomologica Sinica, 2003, (6): 739-744. DOI: 10.3321/j.issn:0454-6296.2003.06.012

  • 期刊类型引用(2)

    1. 易军,符慧娟,李星月,李其勇,张鸿. 种衣剂减量下增施菌剂和肥料对小麦光合、产量、蚜虫及白粉病防控的影响. 麦类作物学报. 2024(05): 675-684 . 百度学术
    2. 苏素苗,杨春雷,饶雄飞,李小坤. 硅对植物抗逆性影响的研究进展. 华中农业大学学报. 2022(06): 160-168 . 百度学术

    其他类型引用(1)

图(4)  /  表(2)
计量
  • 文章访问数:  1697
  • HTML全文浏览量:  544
  • PDF下载量:  45
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-07-18
  • 录用日期:  2021-10-26
  • 网络出版日期:  2022-03-27
  • 刊出日期:  2022-03-24

目录

/

返回文章
返回