Effects of combination of nitrogen, phosphorus and potassium on the yield, quality and the related enzyme gene expression of Atractylodes chinensis
-
摘要:目的
研究氮磷钾配施对北苍术的产量、苍术素含量及乙酰辅酶A羧化酶(ACC)活性和基因表达量的影响,探讨氮磷钾配施对北苍术药材产量增加、质量形成的影响及其机制,对提高北苍术药材产量及质量有重要的现实意义。
方法以一年生北苍术为试验材料,采用 L9(34) 正交设计,设置10个不同氮、磷、钾用量处理的田间试验,在营养生长期、花期、初果期、盛果期及枯萎期测定北苍术的地上部分、根茎和须根鲜重;采用高效液相色谱法,测定北苍术中苍术素含量;采用双抗体夹心法(ELISA),测定北苍术根茎中乙酰辅酶A羧化酶(ACC)的活性;采用实时荧光定量PCR法(qRT-PCR),测定北苍术关键酶ACC基因的相对表达量;利用Spearman相关性分析,探讨苍术素合成的分子调控机制。
结果不同氮磷钾肥料配施均能够促进一年生北苍术地上部分以及地下根茎、须根鲜重的增加,其中T3 (N1P3K3)和T6 (N2P3K1)施肥方案最佳,地上部分鲜重在盛果期分别为对照组的1.52和1.47倍,地下根茎鲜重、须根鲜重在枯萎期分别为对照组的2.08和2.09倍、1.30和1.41倍。T3、T6施肥方案北苍术有效成分苍术素含量在枯萎期较对照组分别提升33%和61%,且根据不同生育期内苍术素的动态积累规律,推测北苍术枯萎期至次年出苗前是苍术素积累的最佳时期。通过相关分析表明,苍术素含量与ACC活性和ACC基因表达量之间的相关系数分别为0.66和0.583,ACC活性与ACC基因表达量相关系数达0.839,均达到极显著正相关(P < 0.01)。低、中氮水平下高磷处理提高了关键酶ACC基因的表达量,促进ACC活性提升,并进一步增加苍术素的积累,而高氮、高钾抑制了ACC基因的表达,进而降低苍术素的积累。
结论高磷有利于北苍术中 ACC 基因的表达及酶活性的提升,促进苍术素的合成和积累,有利于北苍术的提质增效。北苍术的最佳施肥方案为:氮肥90 kg/hm2、磷肥225 kg/hm2、钾肥315 kg/hm2 或氮肥180 kg/hm2、磷肥225 kg/hm2、钾肥105 kg/hm2。
-
关键词:
- 北苍术 /
- 肥料配施 /
- 苍术素 /
- 乙酰辅酶A羧化酶(ACC) /
- 基因表达
Abstract:ObjectivesThe suitable combination of nitrogen (N), phosphorus (P) and potassium (K) fertilizers was studied from the yield, atrctylodin content and the activity and gene expression of acetyl coenzyme A carboxylase (ACC) of A. chinensis, so to propose a scientific fertilizer combination for improving the productivity and quality of A. chinensis.
MethodsA field experiment including 10 combined applications of N, P and K fertilizers was set up following a L9(34) design, with one-year-old Atractylodes chinensis as experimental material. The fresh weight of aboveground part, rhizome, and fibrous root of A. chinensis were weighed at vegetative growth, flowering, early fruiting, full fruiting and withering stages. The plant samples were collected at the same time for determination of atrctylodin content by HPLC method, the ACC activity in rhizome by double antibody ELISA method, the relative expression level of ACC gene using real-time PCR. Spearman correlation analysis was used to determine the molecular regulation mechanism of atrctylodin synthesis.
ResultsAll the NPK combined applications promoted the growth of aboveground part, rhizome and fibrous root of the crop. The most significant effects were observed in T3 (N1P3K3) and T6 (N2P3K1), the fresh weight of aboveground part were respectively 1.52 and 1.47 times that from N0P0K0 at full fruiting period, the fresh weight of underground rhizome were 2.08 and 2.09 times of that from N0P0K0 at withering period, and the fresh weight of fibrous roots were 1.30 and 1.41 times of that from N0P0K0 at withering period. Compared with N0P0K0, T3 and T6 increased atrctylodin by 33% and 61% at withering period. Moreover, according to the dynamic accumulation characteristics of atrctylodin in different growth stages, it was speculated that the most important period for atrctylodin accumulation was the withering period to the next year before emergence. According to the results of correlation analysis, the correlation coefficients between atrctylodin content and ACC enzyme activity, ACC gene expression were 0.66 and 0.583, respectively. The correlation coefficient between ACC enzyme activity and ACC gene expression was 0.839, which reached extremely significant positive correlation (P<0.01). Treatment of high P with low and medium N rates improved the gene expression of ACC and enhanced the ACC activity thereby increased the accumulation of atrctylodin. While high level of N and K inhibited the gene expression of ACC, thereby decreased the accumulation of atrctylodin.
ConclusionsHigh level of P fertilizer (225 kg/hm2), combined with appropriate level of N (90 kg/hm2) and K fertilizer (315 kg/hm2) or P (225 kg/hm2), N (180 kg/hm2) and K fertilizer (105 kg/hm2) are beneficial to the yield of A. chinensis, which will stimulate the gene expression, enhance ACC activity, and promote the synthesis and accumulation of atrctylodin.
-
北苍术[Atractylodes chinensis (DC.) Koidz]为菊科多年生草本植物,入药部位为根茎,有燥湿健脾、祛风散寒、明目等功效,是2020版《中国药典》中收载的苍术药材正品来源之一[1]。苍术在临床上应用广泛,特别是在新型冠状病毒肺炎(COVID-19) [2-3]等诊疗和防治中发挥了重要作用。随着苍术药材市场需求量的激增,野生资源蕴藏量不足,人工种植发展潜力巨大[4]。我国吉林、辽宁许多地区已开始引种栽培北苍术,在种植选地及田间管理等方面积累了一定经验,但尚未达到规模化、规范化和生态化的种植水平[5]。
随着北苍术引种栽培的进一步扩大,北苍术的生长发育及药材质量形成机制逐步受到重视。中药有效成分含量受到温度、光照、水分、肥料等环境因素影响,其中土壤养分为调控其产量和品质的最有效措施之一[6-8]。适宜的大量元素和中微量元素供应能够增强药用植物的光合作用,确保药材有效成分的合成和转化。施加浓度0.30%的钼肥,能够增加关苍术中苍术酮及苍术素含量,喷施浓度0.15%锰肥可提高关苍术的产量[9]。NPK配施不仅对根茎类中药材,如三七[10]、黄连[11]、西洋参[12]等的生长和药材质量有显著影响,对其次生代谢过程的调控尤为重要[13-15]。
目前,国内外有关北苍术施肥技术的研究较少,氮磷钾配施对苍术素生物合成的调控研究暂未见报道。同时,北苍术种植区域土壤结构差异,土壤中矿质元素的种类和含量不同,根据土壤理化特征及北苍术营养特性进行配方施肥势在必行。本课题组前期研究表明,生殖生长期合理配施氮钾肥有利于促进北苍术的产量和苍术素含量增加[16]。其中,苍术素是北苍术中的主要有效成分,属于聚乙炔类物质,乙酰辅酶A羧化酶(ACC)是其生物合成途径中的关键酶[17]。在此基础上,本研究进一步对不同氮磷钾配施条件下,北苍术不同生育期内药材产量、苍术素含量、ACC活性及其基因表达进行测定,优化适宜北苍术中苍术素合成的肥料配施方案,旨在分析北苍术不同生长期的氮、磷、钾元素配比,初步阐明北苍术氮磷钾元素的需肥规律,为北苍术的优质高产和规范化种植技术提供理论参考。
1. 材料和方法
1.1 研究地概况
试验位于吉林省柳河县安口镇北苍术种植基地(东经125°36′4.94″,北纬42°12′37.65″,海拔399 m)。试验地0—30 cm土层土壤基本性状为:pH 5.65、有机质 51.73 g/kg、速效氮 41.89 mg/kg、速效磷 94.4 mg/kg、速效钾 144 mg/kg。
1.2 试验材料
选取长势基本一致的一年生健康北苍术幼苗开展田间试验,北苍术幼苗由吉林省昌农实业集团有限公司柳河北苍术栽培基地提供,经长春中医药大学中药鉴定教研室翁丽丽教授鉴定为北苍术(A. chinensis)正品。试验用肥料为尿素(N,总氮≥46%)、过磷酸钙(P2O5,总磷≥46%)以及硫酸钾(K2O,总钾≥50%)。
1.3 试验设计
本研究采用L9(34)正交试验,设氮、磷、钾3个因素,4个水平。氮磷钾肥不同配比总体施用方案见表1,一年生北苍术幼苗进行施肥处理共设置10个不同肥料配方,每个处理3次重复,每个小区面积为3 m2 (2.0 m×1.5 m),行株距为20 cm×15 cm,每小区栽种北苍术100株,小区总面积为150 m2,参考孙金等[16]的试验方法进行施肥,其他田间管理农艺措施一致。
表 1 L9 (34) 正交实验设计的施肥种类和施肥量Table 1. Fertilizer types and rates in orthogonal experimental design of L9 (34)代号
Code处理
Treatment施用量 Application rate (kg/hm2) 尿素
Urea过磷酸钙
Calcium
superphosphate硫酸钾
Potassium
sulfateT0 N0P0K0 0 0 0 T1 N1P1K1 90 75 105 T2 N1P2K2 90 150 210 T3 N1P3K3 90 225 315 T4 N2P1K2 180 75 210 T5 N2P2K3 180 150 315 T6 N2P3K1 180 225 105 T7 N3P1K3 270 75 315 T8 N3P2K1 270 150 105 T9 N3P3K2 270 225 210 基、追肥施用方案:移栽前施入基肥,氮、磷、钾施入量分别为总量的60.0%、100.0%和33.4%;磷肥作为基肥一次性施入土壤,2次追肥的氮、钾施入量分别为总量的20.0%和33.3%,分别在营养生长期(6月下旬)和果期(8月下旬)追肥。追肥方式采用根外喷施法,不同处理组氮磷钾肥料分别加入等体积自来水溶解,均匀喷施于试验小区土壤表面。
1.4 试验样品采集
北苍术幼苗于5月25日移栽,移栽成活后将长势一致的植株挂牌标记供取样用。在移栽后30天(营养生长期,第1次追肥前后)、60天(花期)、90天(初果期,第2次追肥前后)、120天(盛果期)、150天(枯萎期),按照每个平行样地6株随机取样,取样时将北苍术装入冰盒带回实验室,除去地上部分,须根清洗干净后用吸水纸吸干表面的水分,将根茎样品分装、液氮固定,储存于–80℃冰箱备用。剩余样品洗净,阴干,过3号(0.355±0.013 mm)筛备用。
1.5 不同发育期生长发育指标和根茎产量测定
主要测定北苍术地上部分鲜重、地下部分根茎和须根鲜重。分别取北苍术地上部分、地下部分根茎和须根,流水洗净后用吸水纸吸干表面水分,精确称定,测定鲜重并记录。
1.6 不同发育期苍术素含量测定
1.6.1 色谱条件
按照2020版《中国药典》Ⅰ部苍术含量测定方法,用高效液相色谱法对苍术素含量进行测定[1]。
1.6.2 对照品和供试品溶液的制备
取苍术素对照品适量,精密称定,加甲醇制成每1 mL含40 μg的溶液,作为苍术素对照品溶液。
取本品粉末0.2 g,精密称定,参照2020版《中国药典》Ⅰ部苍术含量测定方法[1],制备供试品溶液,每个样品3次重复。
1.6.3 线性回归方程
取苍术素对照品溶液(40 µg/mL),分别稀释成浓度为4、8、12、16、20、28、36和40 µg/mL的溶液,各吸取10 µL按照1.6.1的色谱条件测定相应的峰面积,以不同浓度的苍术素对照品溶液为横坐标X,相应的峰面积为纵坐标Y,绘制标准曲线,得到苍术素回归方程为Y=130776X+86970,相关系数r=0.9997。对照品在4~40 µg/mL范围内呈良好的线性关系。
1.7 苍术素合成关键酶ACC活性测定
取北苍术根茎0.2 g,加入预冷的0.01 mol/L磷酸盐缓冲溶液(pH 7.4、NaCl 8 g、Na2HPO4 1.44 g、KH2PO4 0.24 g) 1.8 mL,加入液氮研磨,4 ℃下10000 r/min离心20 min。采用双抗体夹心法(ELISA)测定不同氮磷钾配施下苍术素合成关键酶ACC的活性,关键酶ACC标准曲线为Y= 0.0128X–0.0192,r=0.9997,测定范围为0~200 U/L。
1.8 苍术素合成关键酶ACC基因表达量测定
根据Takara植物通用总RNA提取试剂盒说明书提取北苍术根茎总RNA,采用Multiskan Sky全波长酶标仪测定样品RNA浓度及纯度,并将其反转录成cDNA;以cDNA为模板,以EF-1α[18]为内参基因(表2),按照孙金等[19]的反应体系、反应程序,对不同肥料配施下苍术素合成关键酶ACC基因表达量进行测定,每个样品设置3个生物学重复。
表 2 实时荧光定量PCR引物Table 2. Real-time fluorescence quantitative PCR primer基因
Gene引物序列 Primers (5'−3') 产物长度 (bp)
Size of the products来源 Source EF-1α 正向引物 Forward primer ACCAACTGGGTTGACAACTGAAGT 64 [18] 反向引物 Reverse primer AGCCTCGGTAAGGGCTTCAT ACC 正向引物 Forward primer TCCAAGTTGGTGGCGGAAACAC 206 参考转录组测定结果
Reference transcriptome determination results (TRINITY_DN15326_c0_g3)反向引物 Reverse primer CGGTGACTGAAGCGGCATACAC 1.9 统计分析
采用2-△△Ct[17]法进行实时荧光定量PCR结果的计算,试验数据使用Excel 2010进行数据的换算和预处理,采用SPSS 21.0、GraphPad prism 6.0进行数据分析及图形绘制。
2. 结果与分析
2.1 氮磷钾不同配施处理对北苍术产量的影响
2.1.1 地上部分鲜重
由表3可知,除N1P3K3处理,北苍术地上部分鲜重整个生育期一直显著高于N0P0K0处理外,其余施肥处理多在枯萎期显著高于N0P0K0处理,且施肥处理间T1与T3、T5、T7有显著性差异(P<0.05),T2、T4与T5、T6、T7、T9有显著性差异(P<0.05),盛果期时,T3、T6处理的地上部分鲜重分别为T0处理的1.52和1.47倍(P<0.05)。综上可知,不同肥料配施下随生育期延长,北苍术地上部分鲜重总体呈先增加后平稳再下降的趋势,且果期低、中氮水平下增施磷肥有利于促进北苍术地上部分的生长,总体上T3、T6施肥方案对北苍术地上部分增长具有显著促进作用。
表 3 不同氮磷钾配施处理北苍术地上部分鲜重 (g/plant)Table 3. The fresh weight of above-ground of A. chinensis under different NPK combinations代号
Code处理
Treatment生育期(移栽后天数)Growing period (Days after transplanting, DAT) 营养生长期
Vegetative
(30 DAT)花期
Flowering
(60 DAT)初果期
Early fruiting
(90 DAT)盛果期
Fully fruiting
(120 DAT)枯萎期
Withering
(150 DAT)T0 N0P0K0 1.51±0.22 c 2.17±0.31 c 2.83±0.16 b 2.89±0.24 cd 1.71±0.25 e T1 N1P1K1 1.83±0.25 bc 3.27±0.50 b 3.50±0.42 ab 3.94±0.56 ab 2.56±0.40 bc T2 N1P2K2 2.46±0.36 abc 3.75±0.57 ab 3.84±0.73 ab 3.61±1.02 abcd 2.91±0.39 ab T3 N1P3K3 2.90±0.54 a 4.33±0.56 a 3.98±0.50 a 4.39±0.46 a 3.19±0.24 a T4 N2P1K2 2.55±0.38 ab 3.99±0.39 ab 3.67±0.30 ab 3.87±0.50 ab 2.94±0.26 ab T5 N2P2K3 1.70±0.45 bc 2.49±0.56 c 2.87±0.58 b 2.83±0.27 d 1.81±0.30 de T6 N2P3K1 2.43±0.89 abc 3.70±0.26 ab 3.53±0.63 ab 4.25±0.39 a 2.21±0.39 cd T7 N3P1K3 2.30±0.24 abc 3.37±0.36 b 3.24±0.89 ab 3.33±0.37 bcd 1.99±0.16 de T8 N3P2K1 2.45±0.95 abc 3.59±0.52 ab 3.80±0.41 ab 3.33±0.33 bcd 2.89±0.22 ab T9 N3P3K2 2.45±0.47 abc 3.36±0.53 b 2.93±0.61 b 3.70±0.46 abc 2.24±0.25 cd 注:数据为−x±Sd (n=6)。一年生北苍术移栽时基础地上部分鲜重为 (0.85±0.31) g。同列数据后不同小写字母代表处理间差异显著 (P<0.05)。
Note: The data were −x±Sd (n=6). The fresh weight of aboveground part of 1-year-old A. chinensis seedlings were (0.85±0.31) g at transplanting. Values followed by different small letters in a column mean significant difference among treatments (P<0.05).2.1.2 北苍术根茎鲜重
由表4可知,花期到枯萎期,北苍术根茎鲜重除N1P3K3处理和N2P3K1处理显著高于N0P0K0处理外,其余施肥处理组仅在枯萎期显著高于N0P0K0,且枯萎期时,N1P3K3和N2P3K1处理的根茎鲜重分别为N0P0K0处理的2.08和2.09倍(P<0.05)。综上可知,不同肥料配施下随生育期延长北苍术根茎鲜重不断增大,且在花期低、中氮水平下增施磷肥有利于北苍术根茎的生长,总体上T3、T6施肥方案对北苍术地下根茎物质积累具有较大促进作用。
表 4 不同氮磷钾配施处理北苍术根茎鲜重 (g/plant)Table 4. The fresh weight of A. chinensis rhizome under different NPK combinations代号
Code处理
Treatment生育期(移栽后天数)Growing period (Days after transplanting, DAT) 营养生长期
Vegetative
(30 DAT)花期
Flowering
(60 DAT)初果期
Early fruiting
(90 DAT)盛果期
Fully fruiting
(120 DAT)枯萎期
Withering
(150 DAT)T0 N0P0K0 0.98±0.43 a 1.08±0.23 c 1.80±0.16 c 2.34±0.17 c 2.35±0.12 f T1 N1P1K1 1.07±0.14 a 1.90±0.24 b 2.80±0.81 abc 3.83±0.94 ab 4.09±0.52 bc T2 N1P2K2 1.22±0.92 a 1.66±0.48 bc 2.75±1.11 abc 3.69±1.46 ab 4.29±0.22 b T3 N1P3K3 1.28±0.78 a 2.68±0.72 a 3.32±0.21 ab 4.36±0.31 a 4.88±0.36 a T4 N2P1K2 1.51±0.63 a 1.95±0.69 b 2.77±0.74 abc 3.72±0.44 ab 4.55±0.34 ab T5 N2P2K3 0.86±0.17 a 1.68±0.73 bc 2.29±0.35 bc 3.21±0.59 bc 3.22±0.38 de T6 N2P3K1 1.68±0.60 a 2.92±0.33 a 3.53±0.45 a 4.56±0.19 a 4.90±0.29 a T7 N3P1K3 1.55±0.68 a 1.69±0.25 bc 1.93±0.29 c 2.68±0.35 bc 2.90±0.25 e T8 N3P2K1 1.51±1.28 a 1.83±0.31 bc 2.11±0.93 c 3.22±0.35 bc 3.36±0.40 de T9 N3P3K2 1.81±0.42 a 2.03±0.33 b 2.56±0.78 bc 3.04±0.50 bc 3.68±0.46 cd 注:数据为−x±Sd (n=6)。一年生北苍术移栽时基础根茎鲜重为 (0.70±0.16) g。同列数据后不同小写字母代表处理间差异显著(P<0.05)。
Note: The data were −x±Sd (n=6). The annual fresh weight of rhizome of transplanting A. chinensis was (0.70 ± 0.16) g. Values followed by different small letters in a column mean significant difference among treatments (P<0.05).2.1.3 北苍术须根鲜重
由表5可知,与对照组相比,营养生长期到初果期各施肥处理须根鲜重在1.58~4.00 g (P>0.05);在盛果期,低氮处理组随磷钾肥施用量增加,须根重量显著增大,T3须根重量可达5.10 g;中氮处理随磷肥施用量增加,须根重量先降低后升高(P<0.05),T6须根重量可达5.47 g (P<0.05);高氮处理北苍术须根重量与空白对照组无显著差异。枯萎期,各施肥处理组的须根鲜重达到最大值,其中,中氮高磷组T6须根重量最大(6.29 g),是对照组的1.41倍,低氮高磷组T3须根重量为5.80 g,是对照组的1.30倍。综上可知,不同肥料配施下随生育期延长北苍术须根鲜重增长趋势与根茎鲜重一致,且花期过后增施磷肥有利于北苍术须根的生长,总体上T3、T6施肥方案能促进北苍术地下须根生长。
表 5 不同氮磷钾配施处理北苍术须根鲜重 (g/plant)Table 5. The fresh weight of A. chinensis fibrous root under different NPK combinations代号
Code处理
Treatment生育期(移栽后天数)Growing period (Days after transplanting, DAT) 营养生长期
Vegetative
(30 DAT)花期
Flowering
(60 DAT)初果期
Early fruiting
(90 DAT)盛果期
Fully fruiting
(120 DAT)枯萎期
Withering
(150 DAT)T0 N0P0K0 1.36±0.49 a 1.94±0.35 b 2.84±0.41 ab 3.62±0.35 cd 4.46±0.68 bc T1 N1P1K1 1.65±0.72 a 2.36±0.47 ab 3.59±0.42 ab 4.34±0.19 bc 4.94±0.25 abc T2 N1P2K2 1.97±0.49 a 2.21±0.76 ab 2.84±1.18 ab 4.81±0.38 ab 5.51±0.37 ab T3 N1P3K3 2.45±0.41 a 2.59±0.18 ab 4.00±0.35 a 5.10±0.10 a 5.80±0.27 ab T4 N2P1K2 2.21±0.24 a 2.96±0.61 a 3.20±0.32 ab 4.02±0.38 bcd 5.70±0.28 ab T5 N2P2K3 1.58±0.54 a 2.22±0.53 ab 2.46±0.55 b 3.35±0.53 d 4.13±0.42 c T6 N2P3K1 2.49±1.02 a 2.63±0.19 ab 3.59±0.75 ab 5.47±0.81 a 6.29±0.39 a T7 N3P1K3 2.39±1.43 a 2.95±0.28 a 3.20±1.02 ab 3.39±0.44 d 4.59±0.30 bc T8 N3P2K1 2.07±0.82 a 2.17±0.78 ab 3.06±0.40 ab 4.28±0.88 bc 5.16±2.22 abc T9 N3P3K2 1.99±0.48 a 2.81±0.19 ab 3.31±0.31 ab 4.16±0.25 bcd 5.88±0.32 ab 注: 数据为−x±Sd (n=6)。一年生北苍术移栽时基础须根鲜重为 (0.74±0.17) g。同列数据后不同小写字母代表处理间差异显著(P<0.05)。
Note: The data were −x±Sd (n=6). The annual fresh weight of fibrous root of transplanting A. chinensis was (0.74±0.17) g. Values followed by different small letters in a column mean significant difference among treatments (P<0.05).2.2 氮磷钾不同配施处理对北苍术根茎中苍术素含量的影响
由图1可知,氮磷钾不同配比施肥处理下,营养生长期北苍术根茎中苍术素含量最大,在2.87~5.56 mg/g;其中,低氮处理苍术素含量随磷、钾肥施用量增加呈先降低后升高的趋势(P<0.05),N1P3K3处理的苍术素含量可达4.84 mg/g,为空白对照组的1.68倍;中氮处理随磷肥施用量增加,苍术素含量显著增大(P<0.05),N2P3K1处理苍术素含量可达5.56 mg/g;高氮处理组的苍术素含量为空白对照组的1.23~1.43倍,但随磷肥施用量增加,苍术素含量呈显著下降趋势。移栽150天时,高氮处理苍术素含量变化趋势与移栽30天时相似,且在此时期,N1P3K3和N2P3K1处理的苍术素含量分别较N0P0K0处理显著提升33%和61% (P<0.05)。综上可知,N1P3K3处理、N2P3K1处理有利于北苍术根茎中苍术素的积累,且根据不同生育期内苍术素的动态积累规律,推测北苍术枯萎期至次年出苗前是北苍术素积累的最佳时期。
图 1 不同氮磷钾配施处理北苍术中苍术素含量注:数据为−x±Sd (n=6)。一年生北苍术移栽时基础苍术素含量为(2.25±0.01) mg/g。柱上不同小写字母代表处理间差异显著(P<0.05)。Figure 1. The content of atrctylodin in A. chinensis under different NPK combinationsNote: The data were −x±Sd (n=6). The annual content of atrctylodin of transplanting A. chinensis was (2.25± 0.01) mg/g. Different small letters above the bars mean significant difference among treatments (P<0.05).2.3 氮磷钾不同配施处理对北苍术关键酶乙酰辅酶A羧化酶(ACC)活性的影响
由表6可知,整个生育期内苍术素合成关键酶ACC活性呈先下降后上升的趋势,与苍术素含量规律相似。营养生长期ACC活性最强,为260.54~326.04 U/L。其中,与空白对照组相比,低氮处理随磷、钾肥施用量增加,ACC活性呈先下降后上升趋势,为空白对照组1.15~1.22倍;中氮处理磷肥施用量最大时,ACC活性最强(P<0.05),T6的ACC活性可达326.04 U/L;高氮处理ACC活性为空白对照组的1.01~1.23倍,但随磷、钾肥施用量增加,ACC活性显著下降。花期到枯萎期,不同氮磷钾配施下ACC活性变化趋势与营养生长期相似。综上可知,T3、T6施肥方案有利于促进苍术素合成关键酶ACC活性的提升,且根据不同生育期内苍术素含量的动态变化规律,推测高磷处理可通过提高ACC活性促进苍术素的合成和积累。
表 6 不同氮磷钾配施处理苍术素合成关键酶ACC活性 (U/L)Table 6. The activity of ACC under different NPK combinations代号
Code处理
Treatment生育期(移栽后天数)Growing period (Days after transplanting, DAT) 营养生长期
Vegetative
(30 DAT)花期
Flowering
(60 DAT)初果期
Early fruiting
(90 DAT)盛果期
Fully fruiting
(120 DAT)枯萎期
Withering
(150 DAT)T0 N0P0K0 260.54±0.78 f 264.60±1.49 f 205.33±1.37 e 190.49±3.50 e 214.45±1.03 e T1 N1P1K1 319.92±1.70 b 269.60±3.25 e 241.32±1.53 a 186.58±1.37 e 229.55±0.59 c T2 N1P2K2 300.00±3.58 d 255.44±1.40 g 215.70±1.34 d 215.75±1.92 c 215.36±2.93 e T3 N1P3K3 306.77±4.69 c 303.34±4.17 a 245.58±2.17 a 228.77±0.98 a 220.44±3.91 d T4 N2P1K2 306.64±2.81 c 277.83±3.41 d 224.60±3.05 c 209.37±1.79 d 215.88±1.57 e T5 N2P2K3 302.47±3.50 cd 286.22±1.40 bc 227.86±4.97 c 189.19±0.90 e 245.44±1.96 a T6 N2P3K1 326.04±0.45 a 289.71±2.42 b 234.11±2.15 b 221.57±3.72 b 239.06±1.40 b T7 N3P1K3 292.31±2.15 e 271.43±2.34 e 213.80±2.60 d 189.45±5.67 e 222.91±1.96 d T8 N3P2K1 321.09±2.34 b 283.93±0.09 c 244.27±0.22 a 205.59±2.54 d 230.07±3.19 c T9 N3P3K2 262.23±3.15 f 262.89±4.20 f 189.45±3.72 f 217.57±1.03 bc 209.24±1.37 f 注: 数据为−x±Sd (n=6)。一年生北苍术移栽时基础苍术素合成关键酶ACC活性为 (207.76±1.84) U/L。同列数据后不同小写字母代表处理间差异显著(P<0.05)。
Note: The data were −x±Sd (n=6). The annual ACC activity of the key enzyme for the synthesis of atrctylodin in transplanting A. chinensis was (207.76±1.84) U/L. Values followed by different small letters in a column mean significant difference among treatments (P<0.05).2.4 氮磷钾不同配施处理对北苍术关键酶乙酰辅酶A羧化酶(ACC)基因相对表达量的影响
根据图2可知,整个生育期内ACC基因相对表达量呈先下降后上升的趋势。不同氮磷钾配施下,营养生长期ACC基因相对表达量最高,在1.71~8.16;与空白对照组相比,低、中氮处理ACC表达量随磷肥施用量增加先降后升(P<0.05),其中N1P3K3和N2P3K1处理较高,分别为空白对照组的2.29和3.19倍;高氮处理ACC表达量为空白对照组的0.86~4.10倍,特别是高氮高磷处理下ACC表达量显著下降。花期到枯萎期,N1P3K3、N2P3K1处理的ACC表达量依然较高。综上可知,N1P3K3、N2P3K1处理有利于促进北苍术根茎中关键酶ACC基因相对表达量的提升,推测低、中氮水平下高磷处理可通过提高关键酶ACC基因表达量,促进ACC活性提升,并进一步增加苍术素的积累,但高水平氮磷钾配施反而会抑制ACC基因的表达,从而影响苍术素的合成。
图 2 不同氮磷钾配施处理北苍术关键酶基因ACC的表达量注: 数据为−x±Sd (n=6);一年生北苍术移栽时基础苍术素合成关键酶ACC基因表达量为1;柱上不同小写字母代表处理间差异显著 (P<0.05)。Figure 2. The expression level of acetyl coenzyme A carboxylase in A. chinensis under different NPK combinationsNote: The data were −x±Sd (n=6); The annual gene expression of the key enzyme for the synthesis of atrctylodin in transplanting A. chinensis was 1. Different small letters above the bars mean significant difference among treatments (P<0.05).2.5 氮磷钾不同配施处理北苍术次生代谢关键酶活性、基因表达与其有效成分相关性分析
对苍术素含量、关键酶ACC活性及其基因表达量进行Spearman相关性分析(表7)可知,苍术素的含量与关键酶ACC活性和基因表达量呈极显著正相关(P<0.01),相关系数分别为0.66和0.583;ACC活性与ACC基因表达量也呈极显著正相关(P<0.01),相关系数达0.839。综上可知,苍术素的合成受到关键酶ACC的调控,ACC及其基因表达在苍术素的生物合成途径中起了重要作用。
表 7 苍术素含量与关键酶ACC活性、基因表达量相关性分析Table 7. Correlation analysis of atrctylodin content with ACC activity and gene expression level项目 Item 基因表达量 Gene expression 活性 Enzyme activity 苍术素含量 Atrctylodin content 基因表达量 Gene expression 1 活性 Enzyme activity 0.839** 1 苍术素含量 Atrctylodin content 0.583** 0.66** 1 注: *表示双侧显著相关 (P < 0.05),**表示双侧显著相关 (P < 0.01 )。
Note:*indicates significant correlation in both sides( P < 0.05); ** indicates extremely significant correlation in both sides (P < 0.01).3. 讨论
药用植物活性成分大多是其所含的次生代谢物质,其合成与积累是植物与环境互作的结果,栽培药材产量主要取决于初生代谢产物的积累,但次生代谢产物是药材质量及有效性的基础[20-23]。肥料是影响植物生长发育的关键环境因子,氮、磷、钾肥的合理配施是药用植物人工栽培研究中亟待解决的重要问题之一。
研究结果表明,氮磷钾用量和配比不仅影响北苍术的产量和品质,还可以通过影响北苍术中苍术素合成通路中的关键酶ACC及其基因表达,从而影响苍术素的合成和积累。氮磷钾肥合理配施能够促进北苍术不同发育时期地上部分和地下部分的物质积累,这与前人的研究结果[16]一致。一方面,氮磷钾合理配施能够有效提高药用植物的产量[24-25]。北苍术的药用部位是根茎,地上部分的生长直接影响地下根茎和须根的生长,根茎重量直接表现为北苍术的产量。氮磷钾肥料不同配施均有利于促进一年生北苍术地上部分以及地下根茎、须根鲜重的增加,特别在北苍术花果期时在低、中氮水平下增施磷肥更有利于促进北苍术地上部分和地下部分的生长;但当氮肥施用量过高时,花果期北苍术地上部分生长反而被抑制。高氮投入药材产量没有明显提高的现象在广佛手[8]、关苍术[26]、华重楼[27]和茅苍术[28]等药材栽培中也有体现。综合地上鲜重、地下根茎和须根鲜重对施肥量的响应,在保证一定产量的同时兼顾养分高效和保护环境的目标,本研究发现T3 (N1P3K3)、T6 (N2P3K1)施肥方案有利于显著提高北苍术根茎的产量。
另一方面,养分供应是影响药用植物次生代谢的重要因素,植物体内以碳素为基础的次生代谢物质(如酚类、萜烯类等化合物),随植物体内 C/N (碳素/营养)增加而增加[22]。北苍术的主要药效成分苍术素为聚炔类成分[29],本研究发现在低、中氮水平下随磷肥施用量增加,北苍术根茎中苍术素含量显著升高,T3 (N1P3K3)、T6 (N2P3K1)施肥方案更有利于苍术素积累。也有报道指出,施氮能显著提高三七单位面积总皂苷产量,但在低氮水平时即可获得最高总皂苷产量[10],这些均可与本研究结果相呼应。由此可见,氮磷钾肥料中磷肥对北苍术中苍术素的形成影响最大,且磷肥对如丹参[30]、麦冬[31]和黄精[32]等药用植物有效成分形成也有显著促进作用。氮磷钾肥效的发挥还受其互作的影响,本研究有待于进一步利用不同地力条件考察氮磷钾三因素之间的互作效应及其对北苍术药材质量形成的影响。
外界环境通过影响生物合成基因的表达而控制次生代谢产物的合成,与转录因子调控、转录后或翻译水平的调控等有关[22, 33]。本研究结果表明,T3 (N1P3K3)、T6 (N2P3K1)施肥方案能够显著促进北苍术根茎中苍术素合成关键酶ACC活性及其基因表达量的提升,且结合不同生长发育时期内苍术素含量的动态变化规律,推测低中氮、高磷水平可通过提高ACC活性、增加ACC基因表达量促进苍术素的合成和积累。乙酰辅酶A羧化酶(ACC)是脂肪酸类和聚炔类物质合成途径的关键酶和限速酶[22]。ACC的表达容易受到环境因素的诱导[34],环境诱导作用促使ACC基因过量表达或激活ACC活性[35],可提高其聚乙炔类挥发油的积累,进而改善北苍术药材品质,这和本课题组对干旱胁迫下北苍术中苍术素合成调控机制的研究结论[17]相近。陈家炜等[36]也发现不同肥料配比差异性地影响关键酶PAL、CHS、SS基因的表达量,进而影响黄芪药效成分在根茎部位的合成与积累,籍此进一步证实养分供应可调控中药材次生代谢物质的分子通路,最终影响药材品质。
4. 结论
较高的磷和中低水平的氮钾组合有利于提升北苍术根茎鲜重、苍术素含量,尤其是较高的磷施用量可以提升关键酶ACC的基因表达量,增加ACC活性,进而促进苍术素的积累。氮肥 90 kg/hm2、磷肥 225 kg/hm2、钾肥 315 kg/hm2或氮肥180 kg/hm2、磷肥 225 kg/hm2、钾肥 105 kg/hm2 是实现北苍术高产优质的适宜的肥料组合。
-
图 1 不同氮磷钾配施处理北苍术中苍术素含量
注:数据为−x±Sd (n=6)。一年生北苍术移栽时基础苍术素含量为(2.25±0.01) mg/g。柱上不同小写字母代表处理间差异显著(P<0.05)。
Figure 1. The content of atrctylodin in A. chinensis under different NPK combinations
Note: The data were −x±Sd (n=6). The annual content of atrctylodin of transplanting A. chinensis was (2.25± 0.01) mg/g. Different small letters above the bars mean significant difference among treatments (P<0.05).
图 2 不同氮磷钾配施处理北苍术关键酶基因ACC的表达量
注: 数据为−x±Sd (n=6);一年生北苍术移栽时基础苍术素合成关键酶ACC基因表达量为1;柱上不同小写字母代表处理间差异显著 (P<0.05)。
Figure 2. The expression level of acetyl coenzyme A carboxylase in A. chinensis under different NPK combinations
Note: The data were −x±Sd (n=6); The annual gene expression of the key enzyme for the synthesis of atrctylodin in transplanting A. chinensis was 1. Different small letters above the bars mean significant difference among treatments (P<0.05).
表 1 L9 (34) 正交实验设计的施肥种类和施肥量
Table 1 Fertilizer types and rates in orthogonal experimental design of L9 (34)
代号
Code处理
Treatment施用量 Application rate (kg/hm2) 尿素
Urea过磷酸钙
Calcium
superphosphate硫酸钾
Potassium
sulfateT0 N0P0K0 0 0 0 T1 N1P1K1 90 75 105 T2 N1P2K2 90 150 210 T3 N1P3K3 90 225 315 T4 N2P1K2 180 75 210 T5 N2P2K3 180 150 315 T6 N2P3K1 180 225 105 T7 N3P1K3 270 75 315 T8 N3P2K1 270 150 105 T9 N3P3K2 270 225 210 表 2 实时荧光定量PCR引物
Table 2 Real-time fluorescence quantitative PCR primer
基因
Gene引物序列 Primers (5'−3') 产物长度 (bp)
Size of the products来源 Source EF-1α 正向引物 Forward primer ACCAACTGGGTTGACAACTGAAGT 64 [18] 反向引物 Reverse primer AGCCTCGGTAAGGGCTTCAT ACC 正向引物 Forward primer TCCAAGTTGGTGGCGGAAACAC 206 参考转录组测定结果
Reference transcriptome determination results (TRINITY_DN15326_c0_g3)反向引物 Reverse primer CGGTGACTGAAGCGGCATACAC 表 3 不同氮磷钾配施处理北苍术地上部分鲜重 (g/plant)
Table 3 The fresh weight of above-ground of A. chinensis under different NPK combinations
代号
Code处理
Treatment生育期(移栽后天数)Growing period (Days after transplanting, DAT) 营养生长期
Vegetative
(30 DAT)花期
Flowering
(60 DAT)初果期
Early fruiting
(90 DAT)盛果期
Fully fruiting
(120 DAT)枯萎期
Withering
(150 DAT)T0 N0P0K0 1.51±0.22 c 2.17±0.31 c 2.83±0.16 b 2.89±0.24 cd 1.71±0.25 e T1 N1P1K1 1.83±0.25 bc 3.27±0.50 b 3.50±0.42 ab 3.94±0.56 ab 2.56±0.40 bc T2 N1P2K2 2.46±0.36 abc 3.75±0.57 ab 3.84±0.73 ab 3.61±1.02 abcd 2.91±0.39 ab T3 N1P3K3 2.90±0.54 a 4.33±0.56 a 3.98±0.50 a 4.39±0.46 a 3.19±0.24 a T4 N2P1K2 2.55±0.38 ab 3.99±0.39 ab 3.67±0.30 ab 3.87±0.50 ab 2.94±0.26 ab T5 N2P2K3 1.70±0.45 bc 2.49±0.56 c 2.87±0.58 b 2.83±0.27 d 1.81±0.30 de T6 N2P3K1 2.43±0.89 abc 3.70±0.26 ab 3.53±0.63 ab 4.25±0.39 a 2.21±0.39 cd T7 N3P1K3 2.30±0.24 abc 3.37±0.36 b 3.24±0.89 ab 3.33±0.37 bcd 1.99±0.16 de T8 N3P2K1 2.45±0.95 abc 3.59±0.52 ab 3.80±0.41 ab 3.33±0.33 bcd 2.89±0.22 ab T9 N3P3K2 2.45±0.47 abc 3.36±0.53 b 2.93±0.61 b 3.70±0.46 abc 2.24±0.25 cd 注:数据为−x±Sd (n=6)。一年生北苍术移栽时基础地上部分鲜重为 (0.85±0.31) g。同列数据后不同小写字母代表处理间差异显著 (P<0.05)。
Note: The data were −x±Sd (n=6). The fresh weight of aboveground part of 1-year-old A. chinensis seedlings were (0.85±0.31) g at transplanting. Values followed by different small letters in a column mean significant difference among treatments (P<0.05).表 4 不同氮磷钾配施处理北苍术根茎鲜重 (g/plant)
Table 4 The fresh weight of A. chinensis rhizome under different NPK combinations
代号
Code处理
Treatment生育期(移栽后天数)Growing period (Days after transplanting, DAT) 营养生长期
Vegetative
(30 DAT)花期
Flowering
(60 DAT)初果期
Early fruiting
(90 DAT)盛果期
Fully fruiting
(120 DAT)枯萎期
Withering
(150 DAT)T0 N0P0K0 0.98±0.43 a 1.08±0.23 c 1.80±0.16 c 2.34±0.17 c 2.35±0.12 f T1 N1P1K1 1.07±0.14 a 1.90±0.24 b 2.80±0.81 abc 3.83±0.94 ab 4.09±0.52 bc T2 N1P2K2 1.22±0.92 a 1.66±0.48 bc 2.75±1.11 abc 3.69±1.46 ab 4.29±0.22 b T3 N1P3K3 1.28±0.78 a 2.68±0.72 a 3.32±0.21 ab 4.36±0.31 a 4.88±0.36 a T4 N2P1K2 1.51±0.63 a 1.95±0.69 b 2.77±0.74 abc 3.72±0.44 ab 4.55±0.34 ab T5 N2P2K3 0.86±0.17 a 1.68±0.73 bc 2.29±0.35 bc 3.21±0.59 bc 3.22±0.38 de T6 N2P3K1 1.68±0.60 a 2.92±0.33 a 3.53±0.45 a 4.56±0.19 a 4.90±0.29 a T7 N3P1K3 1.55±0.68 a 1.69±0.25 bc 1.93±0.29 c 2.68±0.35 bc 2.90±0.25 e T8 N3P2K1 1.51±1.28 a 1.83±0.31 bc 2.11±0.93 c 3.22±0.35 bc 3.36±0.40 de T9 N3P3K2 1.81±0.42 a 2.03±0.33 b 2.56±0.78 bc 3.04±0.50 bc 3.68±0.46 cd 注:数据为−x±Sd (n=6)。一年生北苍术移栽时基础根茎鲜重为 (0.70±0.16) g。同列数据后不同小写字母代表处理间差异显著(P<0.05)。
Note: The data were −x±Sd (n=6). The annual fresh weight of rhizome of transplanting A. chinensis was (0.70 ± 0.16) g. Values followed by different small letters in a column mean significant difference among treatments (P<0.05).表 5 不同氮磷钾配施处理北苍术须根鲜重 (g/plant)
Table 5 The fresh weight of A. chinensis fibrous root under different NPK combinations
代号
Code处理
Treatment生育期(移栽后天数)Growing period (Days after transplanting, DAT) 营养生长期
Vegetative
(30 DAT)花期
Flowering
(60 DAT)初果期
Early fruiting
(90 DAT)盛果期
Fully fruiting
(120 DAT)枯萎期
Withering
(150 DAT)T0 N0P0K0 1.36±0.49 a 1.94±0.35 b 2.84±0.41 ab 3.62±0.35 cd 4.46±0.68 bc T1 N1P1K1 1.65±0.72 a 2.36±0.47 ab 3.59±0.42 ab 4.34±0.19 bc 4.94±0.25 abc T2 N1P2K2 1.97±0.49 a 2.21±0.76 ab 2.84±1.18 ab 4.81±0.38 ab 5.51±0.37 ab T3 N1P3K3 2.45±0.41 a 2.59±0.18 ab 4.00±0.35 a 5.10±0.10 a 5.80±0.27 ab T4 N2P1K2 2.21±0.24 a 2.96±0.61 a 3.20±0.32 ab 4.02±0.38 bcd 5.70±0.28 ab T5 N2P2K3 1.58±0.54 a 2.22±0.53 ab 2.46±0.55 b 3.35±0.53 d 4.13±0.42 c T6 N2P3K1 2.49±1.02 a 2.63±0.19 ab 3.59±0.75 ab 5.47±0.81 a 6.29±0.39 a T7 N3P1K3 2.39±1.43 a 2.95±0.28 a 3.20±1.02 ab 3.39±0.44 d 4.59±0.30 bc T8 N3P2K1 2.07±0.82 a 2.17±0.78 ab 3.06±0.40 ab 4.28±0.88 bc 5.16±2.22 abc T9 N3P3K2 1.99±0.48 a 2.81±0.19 ab 3.31±0.31 ab 4.16±0.25 bcd 5.88±0.32 ab 注: 数据为−x±Sd (n=6)。一年生北苍术移栽时基础须根鲜重为 (0.74±0.17) g。同列数据后不同小写字母代表处理间差异显著(P<0.05)。
Note: The data were −x±Sd (n=6). The annual fresh weight of fibrous root of transplanting A. chinensis was (0.74±0.17) g. Values followed by different small letters in a column mean significant difference among treatments (P<0.05).表 6 不同氮磷钾配施处理苍术素合成关键酶ACC活性 (U/L)
Table 6 The activity of ACC under different NPK combinations
代号
Code处理
Treatment生育期(移栽后天数)Growing period (Days after transplanting, DAT) 营养生长期
Vegetative
(30 DAT)花期
Flowering
(60 DAT)初果期
Early fruiting
(90 DAT)盛果期
Fully fruiting
(120 DAT)枯萎期
Withering
(150 DAT)T0 N0P0K0 260.54±0.78 f 264.60±1.49 f 205.33±1.37 e 190.49±3.50 e 214.45±1.03 e T1 N1P1K1 319.92±1.70 b 269.60±3.25 e 241.32±1.53 a 186.58±1.37 e 229.55±0.59 c T2 N1P2K2 300.00±3.58 d 255.44±1.40 g 215.70±1.34 d 215.75±1.92 c 215.36±2.93 e T3 N1P3K3 306.77±4.69 c 303.34±4.17 a 245.58±2.17 a 228.77±0.98 a 220.44±3.91 d T4 N2P1K2 306.64±2.81 c 277.83±3.41 d 224.60±3.05 c 209.37±1.79 d 215.88±1.57 e T5 N2P2K3 302.47±3.50 cd 286.22±1.40 bc 227.86±4.97 c 189.19±0.90 e 245.44±1.96 a T6 N2P3K1 326.04±0.45 a 289.71±2.42 b 234.11±2.15 b 221.57±3.72 b 239.06±1.40 b T7 N3P1K3 292.31±2.15 e 271.43±2.34 e 213.80±2.60 d 189.45±5.67 e 222.91±1.96 d T8 N3P2K1 321.09±2.34 b 283.93±0.09 c 244.27±0.22 a 205.59±2.54 d 230.07±3.19 c T9 N3P3K2 262.23±3.15 f 262.89±4.20 f 189.45±3.72 f 217.57±1.03 bc 209.24±1.37 f 注: 数据为−x±Sd (n=6)。一年生北苍术移栽时基础苍术素合成关键酶ACC活性为 (207.76±1.84) U/L。同列数据后不同小写字母代表处理间差异显著(P<0.05)。
Note: The data were −x±Sd (n=6). The annual ACC activity of the key enzyme for the synthesis of atrctylodin in transplanting A. chinensis was (207.76±1.84) U/L. Values followed by different small letters in a column mean significant difference among treatments (P<0.05).表 7 苍术素含量与关键酶ACC活性、基因表达量相关性分析
Table 7 Correlation analysis of atrctylodin content with ACC activity and gene expression level
项目 Item 基因表达量 Gene expression 活性 Enzyme activity 苍术素含量 Atrctylodin content 基因表达量 Gene expression 1 活性 Enzyme activity 0.839** 1 苍术素含量 Atrctylodin content 0.583** 0.66** 1 注: *表示双侧显著相关 (P < 0.05),**表示双侧显著相关 (P < 0.01 )。
Note:*indicates significant correlation in both sides( P < 0.05); ** indicates extremely significant correlation in both sides (P < 0.01). -
[1] 国家药典委员会. 中华人民共和国药典(一部)[M]. 北京: 中国医药科技出版社, 2020. 168. State Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (volume Ⅰ) [M]. Beijing: China Medical Science and Technology Press, 2020. 168.
[2] 陈春宇, 董汉玉, 纪瑞锋, 等. 基于中医药理论的芳香类中药防治新型冠状病毒肺炎(COVID-19)的作用探讨[J]. 中草药, 2020, 51(11): 3051–3061. Chen C Y, Dong H Y, Ji R F, et al. Study on the effect of aromatic traditional Chinese medicine on COVID-19 (COVID-19)[J]. Chinese Traditional and Herbal Drugs, 2020, 51(11): 3051–3061. Chen C Y, Dong H Y, Ji R F, et al. Study on the effect of aromatic traditional Chinese medicine on COVID-19(COVID-19) [J]. Chinese Traditional and Herbal Drugs, 2020, 51(11): 3051-3061.
[3] 江毅, 夏婧, 石和元, 等. 李时珍抗疫思想对新冠肺炎防护康复的启示[J]. 时珍国医国药, 2021, 32(1): 211–215. Jiang Y, Xia J, Shi H Y, et al. Li Shizhen, Enlightenment of anti-epidemic thought on prevention and rehabilitation of COVID-19[J]. Lishizhen Medicine and Materia Medica Research, 2021, 32(1): 211–215. DOI: 10.3969/j.issn.1008-0805.2021.01.67 Jiang Y, Xia J, Shi H Y, et al. Li Shizhen, Enlightenment of anti-epidemic thought on prevention and rehabilitation of COVID-19 [J]. Lishizhen Medicine and Materia Medica Research, 2021, 32(01): 211-215. DOI: 10.3969/j.issn.1008-0805.2021.01.67
[4] 吴小强. 苍术种质资源研究[D]. 陕西西安: 陕西师范大学硕士学位论文, 2019. Wu X Q. Study on germplasm resources of Atractylodis Rhizoma[D]. Xi’an, Shaanxi: MS Thesis of Shaanxi Normal University, 2019.
[5] 孙金, 翁丽丽, 肖春萍, 等. 农田前茬农药和重金属残留对北苍术药材质量产生的影响[J]. 中药材, 2019, 42(11): 2503–2507. Sun J, Weng L L, Xiao C P, et al. Effects of pesticide and heavy metal residues on quality of Atractylodes chinensis[J]. Journal of Chinese Medicinal Materials, 2019, 42(11): 2503–2507. Sun J, Weng L L, Xiao C P, et al. Effects of pesticide and heavy metal residues on quality of Atractylodes chinensis [J]. Journal of Chinese Medicinal Materials, 2019, 42(11): 2503-2507.
[6] 刘岩, 李连泰, 计小清, 等. 土壤中无机元素对不同产地黄芩中无机元素和黄芩苷量的影响[J]. 中草药, 2017, 48(6): 1225–1228. Liu Y, Li L T, Ji X Q, et al. Effects of inorganic elements in soil on the content of inorganic elements and baicalin in Scutellaria baicalensis Georgi from different areas[J]. Chinese Traditional and Herbal Drugs, 2017, 48(6): 1225–1228. Liu Y, Li L T, Ji X Q, et al. Effects of inorganic elements in soil on the content of inorganic elements and baicalin in Scutellaria baicalensis Georgi from different areas [J]. Chinese Traditional and Herbal Drugs, 2017, 48(6): 1225-1228.
[7] 曾维军, 曹国璠, 李金玲, 等. 不同坡向太子参根部矿质元素、土壤养分变化及综合评价[J]. 中药材, 2019, 42(5): 951–959. Zeng W J, Cao G F, Li J L, et al. Changes and comprehensive evaluation of mineral elements and soil nutrients in roots of Pseudostellaria heterophylla in different slope orientation[J]. Journal of Chinese Medicinal Materials, 2019, 42(5): 951–959. Zeng W J, Cao G F, Li J L, et al. Changes and comprehensive evaluation of mineral elements and soil nutrients in roots of Pseudostellaria heterophylla in different slope orientation [J]. Journal of Chinese Medicinal Materials, 2019, 42(5): 951-959.
[8] 李克杰, 罗碧, 唐晓敏, 等. 广佛手不同套种模式下根际土壤理化性质及有效态元素的变化[J]. 热带作物学报, 2019, 40(9): 1865–1872. Li K J, Luo B, Tang X M, et al. Changes of physical and chemical properties and available elements in rhizosphere soil under different intercropping patterns of Citrus medica L. var. sarcodactylis Swingle[J]. Chinese Journal of Tropical Crops, 2019, 40(9): 1865–1872. DOI: 10.3969/j.issn.1000-2561.2019.09.027 Li K J, Luo B, Tang X M, et al. Changes of physical and chemical properties and available elements in rhizosphere soil under different intercropping patterns of Citrus medica L. var. sarcodactylis Swingle [J]. Chinese Journal of Tropical Crops, 2019, 40(9): 1865-1872. DOI: 10.3969/j.issn.1000-2561.2019.09.027
[9] 计禹. 微肥对关苍术生长发育及挥发性成分的影响[D]. 吉林延吉: 延边大学硕士学位论文, 2019. Ji Y. Effects of micro-fertilizer on growth and development and volatile components of Atractylodes japonica[D]. Yanji: MS Thesis of Yanbian University, 2019.
[10] 宋希梅, 朱永全, 卢迎春, 等. 基于“3414”的三七氮磷钾施肥量研究[J]. 农业资源与环境学报, 2019, 36(1): 16–25. Song X M, Zhu Y Q, Lu Y C, et al. Studies on application rates of nitrogen, phosphorus and potassium fertilizer in Panax notoginseng cultivation based on “3414” fertilizer experiment[J]. Journal of Agricultural Resources and Environment, 2019, 36(1): 16–25. Song X M, Zhu Y Q, Lu Y C, et al. Studies on application rates of nitrogen, phosphorus and potassium fertilizer in Panax notoginseng cultivation based on "3414" fertilizer experiment [J]. Journal of Agricultural Resources and Environment, 2019, 36(1): 16-25.
[11] 武华卫, 陈善波, 金银春, 等. 不同施肥量对黄连早期生长量的影响[J]. 四川林业科技, 2017, 38(4): 1–5. Wu H W, Chen S B, Jin Y C, et al. Effects of different fertilization amount on the growth of Coptis chinensis[J]. Journal of Sichuan Foresty Science and Technology, 2017, 38(4): 1–5. Wu H W, Chen S B, Jin Y C, et al. Effects of different fertilization amount on the growth of Coptis chinensis [J]. Journal of Sichuan Foresty Science and Technology, 2017, 38(4): 1-5.
[12] 曹欣欣, 孔凡丽, 杨粉团, 等. 不同氮素水平对西洋参皂苷积累的影响[J]. 东北农业科学, 2020, 45(6): 78–81,99. Cao X X, Kong F L, Yang F T, et al. Effects of different nitrogen levels on the accumulation of saponins in American Ginseng[J]. Journal of Northeast Agricultural Sciences, 2020, 45(6): 78–81,99. Cao X X, Kong F L, Yang F T, et al. Effects of different nitrogen levels on the accumulation of saponins in American Ginseng [J]. Journal of Northeast Agricultural Sciences, 2020, 45(6): 78-81, 99.
[13] 刘大会. 矿质营养对药用菊花生长、次生代谢和品质的影响及其作用机理研究[D]. 湖北武汉: 华中农业大学博士学位论文, 2007. Liu D H. Effects of mineral nutrition on growth, secondary metabolism and quality of Chrysanthemum morifolium and its mechanism[D]. Wuhan, Hubei: PhD Dissertation of Huazhong Agricultural University, 2007.
[14] 张丹. 不同耕作模式下三七人参皂苷生物合成的比较转录组学研究[D]. 云南昆明: 昆明理工大学博士学位论文, 2017. Zhang D. Comparative transcriptomics study on biosynthesis of Panax notoginseng Saponins under different tillage patterns[D]. Kunming, Yunnan: PhD Dissertation of Kunming University of Science and Technology, 2017.
[15] 梁新华. 微量元素对甘草中甘草酸形成与积累影响的研究[D]. 北京: 北京林业大学博士学位论文, 2010. Liang X H. Effect of trace elements on the formation and accumulation of glycyrrhizic acid in Glycyrrhiza uralensis[D]. Beijing: PhD Dissertation of Beijing Forestry University, 2010.
[16] 孙金, 翁丽丽, 肖春萍, 等. 氮磷钾配方施肥对北苍术生长及有效成分含量的影响[J]. 北方园艺, 2021, (3): 128–135. Sun J, Weng L L, Xiao C P, et al. Effects of nitrogen, phosphorus and potassium formula fertilization on growth and active ingredient content of Atractylodes chinensis[J]. Northern Horticulture, 2021, (3): 128–135. Sun J, Weng L L, Xiao C P, et al. Effects of nitrogen, phosphorus and potassium formula fertilization on growth and active ingredient content of Atractylodes chinensis [J]. Northern Horticulture, 2021, (3): 128-135.
[17] 周秀丽. 干旱胁迫对北苍术药效成分合成的影响及其调控机制研究[D]. 吉林长春: 长春中医药大学硕士学位论文, 2020. Zhou X L. Effect of drought stress on the synthesis of pharmacodynamic components of Atractylodes chinensis and its regulatory mechanism[D]. Changchun, Jilin: MS Thesis of Changchun University of Chinese Medicine, 2020.
[18] 陆奇杰, 巢建国, 谷巍, 等. 铜胁迫对茅苍术3种药效成分积累及其生物合成2种关键酶基因表达的影响[J]. 中草药, 2019, 50(3): 710–715. Lu Q J, Chao J G, Gu W, et al. Effects of copper stress on accumulation of three pharmacological components and expression of two key enzymes in biosynthesis of Atractylodes chinensis[J]. Chinese Traditional and Herbal Medicine, 2019, 50(3): 710–715. DOI: 10.7501/j.issn.0253-2670.2019.03.026 Lu Q J, Chao J G, Gu W, et al. Effects of copper stress on accumulation of three pharmacological components and expression of two key enzymes in biosynthesis of Atractylodes chinensis [J]. Chinese Traditional and Herbal Medicine, 2019, 50(3): 710-715. DOI: 10.7501/j.issn.0253-2670.2019.03.026
[19] 孙金, 翁丽丽, 肖春萍, 等. 干旱胁迫对北苍术3种倍半萜类成分积累及生物合成关键酶基因表达的影响[J]. 中药材, 2021, 44(4): 812–817. Sun J, Weng L L, Xiao C P, et al. Effects of drought stress on accumulation of three sesquiterpenes and expression of key enzymes in biosynthesis of Atractylodes chinensis[J]. Journal of Chinese Medicinal Materials, 2021, 44(4): 812–817. Sun J, Weng L L, Xiao C P, et al. Effects of drought stress on accumulation of three sesquiterpenes and expression of key enzymes in biosynthesis of Atractylodes chinensis [J]. Journal of Chinese Medicinal Materials, 2021, (4): 812-817.
[20] 阎秀峰, 王洋, 李一蒙. 植物次生代谢及其与环境的关系[J]. 生态学报, 2007, 27(6): 2554–2562. Yan X F, Wang Y, Li Y M. Plant secondary metabolism and its relationship with environment[J]. Acta Ecologica Sinica, 2007, 27(6): 2554–2562. DOI: 10.3321/j.issn:1000-0933.2007.06.050 Yan X F, Wang Y, Li Y M. Plant secondary metabolism and its relationship with environment [J]. Acta Ecologica Sinica, 2007, (6): 2554-2562. DOI: 10.3321/j.issn:1000-0933.2007.06.050
[21] 黄璐琦, 陈美兰, 肖培根. 中药材道地性研究的现代生物学基础及模式假说[J]. 中国中药杂志, 2004, (6): 5–7,121. Huang L Q, Chen M L, Xiao P G. Modern biological basis and model hypothesis for the study of the genuineness of Chinese medicinal materials[J]. China Journal of Chinese Materia Medica, 2004, (6): 5–7,121. Huang L Q, Chen M L, Xiao P G. Modern biological basis and model hypothesis for the study of the genuineness of Chinese medicinal materials[J]. China Journal of Chinese Materia Medica, 2004, (6): 5-7, 121.
[22] 苏文华, 张光飞, 李秀华, 等. 植物药材次生代谢产物的积累与环境的关系[J]. 中草药, 2005, 36(9): 1415–1418. Su W H, Zhang G F, Li X H, et al. Relationship between accumulation of secondary metabolism in medicinal plant and environmental condition[J]. Chinese Traditional and Herbal Drugs, 2005, 36(9): 1415–1418. DOI: 10.3321/j.issn:0253-2670.2005.09.052 Su W H, Zhang G F, Li X H, et al. Relationship between accumulation of secondary metabolism in medicinal plant and environmental condition[J]. Chinese Traditional and Herbal Drugs, 2005, 36(9): 1415-1418. DOI: 10.3321/j.issn:0253-2670.2005.09.052
[23] 葛阳, 康传志, 万修福, 等. 生产中氮肥施用及其对中药材产量和质量的影响[J]. 中国中药杂志, 2021, 46(8): 1883–1892. Ge Y, Kang C Z, Wan X F, et al. Application of nitrogen fertilizer in production and its effect on yield and quality of Chinese medicinal materials[J]. China Journal of Chinese Materia Medica, 2021, 46(8): 1883–1892. Ge Y, Kang C Z, Wan X F, et al. Application of nitrogen fertilizer in production and its effect on yield and quality of Chinese medicinal materials [J]. China Journal of Chinese Materia Medica, 2021, 46(8): 1883-1892.
[24] 王静, 王渭玲, 徐福利, 等. 桔梗氮、磷、钾施肥效应与施肥模式研究[J]. 植物营养与肥料学报, 2012, 18(1): 196–202. Wang J, Wang W L, Xu F L, et al. Effects of N, P and K fertilization and fertilization model on Platycodon grandiflorum[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(1): 196–202. DOI: 10.11674/zwyf.2012.11237 Wang J, Wang W L, Xu F L, et al. Effects of N, P and K fertilization and fertilization model on Platycodon grandiflorum [J]. Journal of Plant Nutrition and Fertilizers, 2012, 18 (1): 196-202. DOI: 10.11674/zwyf.2012.11237
[25] 曹鲜艳, 徐福利, 王渭玲, 等. 氮磷钾对黄芩生长与有效成分累积的影响[J]. 中国土壤与肥料, 2012, (2): 56–61. Cao X Y, Xu F L, Wang W L, et al. Effects of nitrogen, phosphorus and potassium on growth and accumulation of active components in Scutellaria baicalensis Georgi[J]. Soil and Fertilizer Sciences in China, 2012, (2): 56–61. DOI: 10.3969/j.issn.1673-6257.2012.02.011 Cao X Y, Xu F L, Wang W L, et al. Effects of nitrogen, phosphorus and potassium on growth and accumulation of active components in Scutellaria baicalensis Georgi [J]. Soil and Fertilizer Sciences in China, 2012, (2): 56-61. DOI: 10.3969/j.issn.1673-6257.2012.02.011
[26] 赵虹然, 具红光, 崔馨月, 等. 关苍术氮磷钾优化施肥模式研究[J]. 中药材, 2016, 39(6): 1207–1211. Zhao H R, Ju H G, Cui X Y, et al. Study on optimal nitrogen, phosphorus and potassium fertilization mode of Atractylodes Japonica[J]. Journal of Chinese Medicinal Materials, 2016, 39(6): 1207–1211. Zhao H R, Ju H G, Cui X Y, et al. Study on optimal nitrogen, phosphorus and potassium fertilization mode of Atractylodes Japonica. [J]. Journal of Chinese Medicinal Materials, 2016, 39(6): 1207-1211.
[27] 刘哲, 钟海蓉, 威则日沙, 等. 氮、磷、钾配施对华重楼根茎的产量和有效成分含量的影响[J]. 中草药, 2019, 50(24): 6103–6113. Liu Z, Zhong H R, Wei Z R S, et al. Effects of combined application of nitrogen, phosphorus and potassium on yield and content of active components of rhizome of Paris polyphylla var. chinensis[J]. Chinese Traditional and Herbal Drugs, 2019, 50(24): 6103–6113. DOI: 10.7501/j.issn.0253-2670.2019.24.027 Liu Z, Zhong H R, Wei Z R S, et al. Effects of combined application of nitrogen, phosphorus and potassium on yield and content of active components of rhizome of Paris polyphylla var. chinensis [J]. Chinese Traditional and Herbal Drugs, 2019, 50 (24): 6103-6113. DOI: 10.7501/j.issn.0253-2670.2019.24.027
[28] 胡煜雯, 巢建国, 李孟洋. “3414”施肥方案对茅苍术产量与质量的影响[J]. 现代中药研究与实践, 2017, 31(4): 1–4. Hu Y W, Chao J G, Li M Y. Effects on the yield and quality of Atractylodes lancea by using “3414” fertilization scheme[J]. Research and Practice on Chinese Medicines, 2017, 31(4): 1–4. Hu Y W, Chao J G, Li M Y. Effects on the yield and quality of Atractylodes lancea by using “3414” fertilization scheme[J]. Research and Practice on Chinese Medicines, 2017, 31(4): 1-4.
[29] 孙金, 翁丽丽, 肖春萍. 药用植物苍术挥发油合成及积累影响因素的研究进展[J]. 中药材, 2021, 44(5): 1257–1263. Sun J, Weng L L, Xiao C P. Synthesis and accumulation of volatile oil from Atractylodis rhizome[J]. Journal of Chinese Medicinal Materials, 2021, 44(5): 1257–1263. Sun J, Weng L L, Xiao C P. Synthesis and accumulation of volatile oil from Atractylodis rhizome [J]. Journal of Chinese Medicinal Materials, 2021, (5): 1257-1263.
[30] 王帅. 不同施肥配比对铜川地区丹参生长发育及次生代谢的影响[D]. 陕西咸阳: 西北农林科技大学硕士学位论文, 2016. Wang S. Effects of different fertilizer ratio on the growth and secondary metabolism of Salvia miltiorrhiza in Tongchuan area[D]. Xianyang, Shaanxi: MS Thesis of Northwest A&F University, 2016.
[31] 李思佳, 邓秋林, 文秋姝, 等. 基于川麦冬活性成分高和重金属含量低的有机无机肥最佳配施方案[J]. 植物营养与肥料学报, 2020, 26(5): 966–974. Li S J, Deng Q L, Wen Q S, et al. Optimal application scheme of organic and inorganic fertilizer based on high active components and low heavy metal content of Ophiopogon japonicus[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 966–974. DOI: 10.11674/zwyf.19363 Li S J, Deng Q L, Wen Q S, et al. Optimal application scheme of organic and inorganic fertilizer based on high active components and low heavy metal content of Ophiopogon japonicus [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 966-974. DOI: 10.11674/zwyf.19363
[32] 吴云洁. 凤县花椒林下黄精栽培技术研究[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2018. Wu Y J. Study on cultivation technology of Polyginati rhizoma under forest in Fengxian County[D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2018.
[33] 巢牡香, 叶波平. 环境非生物因子对植物次生代谢产物合成的影响[J]. 药物生物技术, 2013, 20(4): 365–368. Chao M X, Ye B P. Influence of environmental abiotic factors on plant secondary metabolite biosynthesis[J]. Pharmaceutical Biotechnology, 2013, 20(4): 365–368. Chao M X, Ye B P. Influence of environmental abiotic factors on plant secondary metabolite biosynthesis [J]. Pharmaceutical Biotechnology, 2013, 20(4): 365-368.
[34] Figueroa-Balderas R E, Garcia-Ponce B, Rocha-Sosa M. Hormonal and stress induction of the gene encoding common bean acetyl-coenzyme a carboxylase[J]. Plant Physiology, 2006, 142(2): 609–619. DOI: 10.1104/pp.106.085597
[35] 陶金华, 汪冬庚, 濮雪莲, 等. 一氧化氮和水杨酸依次介导内生真菌诱导子促进苍术细胞中苍术素生物合成的信号转导[J]. 中草药, 2014, 45(5): 701–708. Tao J H, Wang D G, Pu X L, et al. Nitric oxide and salicylic acid in turn mediates endophytic fungi inducers to promote signal transduction of atractylodin biosynthesis in A. chinensis cells[J]. Chinese Traditional and Herbal Drugs, 2014, 45(5): 701–708. Tao J H, Wang D G, Pu X L, et al. Nitric oxide and salicylic acid in turn mediates endophytic fungi inducers to promote signal transduction of atractylodin biosynthesis in A. chinensis cells [J]. Chinese Traditional and Herbal Drugs, 2014, 45(5): 701-708.
[36] 陈家炜, 梁华, 李文倩, 等. 不同肥料配比对黄芪有效成分合成关键酶基因表达的影响[J]. 山西农业科学, 2019, 47(10): 1751–1755. Chen J W, Liang H, Li W Q, et al. Effects of different fertilizer ratio on the expression of key enzyme genes for the synthesis of active components in Astragalus membranaceus[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(10): 1751–1755. DOI: 10.3969/j.issn.1002-2481.2019.10.15 Chen J W, Liang H, Li W Q, et al. Effects of different fertilizer ratio on the expression of key enzyme genes for the synthesis of active components in Astragalus membranaceus [J]. Journal of Shanxi Agricultural Sciences, 2019, 47(10): 1751-1755. DOI: 10.3969/j.issn.1002-2481.2019.10.15
-
期刊类型引用(7)
1. 苗慧锋,黄高鉴,王科,郭军玲,杨治平. 不同施肥水平对三年生黄芩产量和品质的影响及肥料效应研究. 核农学报. 2024(09): 1790-1797 . 百度学术
2. 王新月,高旦,杨泽敏,付邵兵,李西文,陈士林. 氮磷钾配施对川贝母产量和品质及养分吸收的影响. 中国土壤与肥料. 2024(05): 54-62 . 百度学术
3. 袁秀平,陈胜发. 林下苍术“拟境栽培”技术. 陕西林业科技. 2024(05): 115-117 . 百度学术
4. 冯禹壮,鞠艳娟,肖春萍,邹有福,李玉祺. 不同产地加工方式对北苍术中主要挥发油成分含量的影响. 时珍国医国药. 2023(03): 601-605 . 百度学术
5. 邵战功. 机收夏玉米施肥方案对收获指数的影响. 热带农业工程. 2023(02): 88-90 . 百度学术
6. 杨志会,任冬雪,张洪伟,尹鑫,薛乾鑫,项福星,王平,李嘉琪,郝梓博,周志杰. 植物源农药对北苍术蚜虫的田间防治效果研究. 园艺与种苗. 2023(11): 33-35+46 . 百度学术
7. 李文静,齐飞宇,霍晓乾,卢雪明,张志强,张燕玲,乔延江,徐冰. 基于化学成分群加和性分子描述符的中药浸膏粉溶化性预测研究. 中草药. 2022(22): 7029-7038 . 百度学术
其他类型引用(5)