• ISSN 1008-505X
  • CN 11-3996/S

接种高温嗜热菌剂加快牛粪秸秆堆肥发酵进程

李再兴, 马骏, 武肖莎, 黄亚丽, 秦学, 滕志楠, 赵凯, 张凡

李再兴, 马骏, 武肖莎, 黄亚丽, 秦学, 滕志楠, 赵凯, 张凡. 接种高温嗜热菌剂加快牛粪秸秆堆肥发酵进程[J]. 植物营养与肥料学报, 2022, 28(5): 953-960. DOI: 10.11674/zwyf.2021465
引用本文: 李再兴, 马骏, 武肖莎, 黄亚丽, 秦学, 滕志楠, 赵凯, 张凡. 接种高温嗜热菌剂加快牛粪秸秆堆肥发酵进程[J]. 植物营养与肥料学报, 2022, 28(5): 953-960. DOI: 10.11674/zwyf.2021465
LI Zai-xing, MA Jun, WU Xiao-sha, HUANG Ya-li, QIN Xue, TENG Zhi-nan, ZHAO Kai, ZHANG Fan. Inoculating thermophilic agent accelerates composting of cow manure and corn straw[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(5): 953-960. DOI: 10.11674/zwyf.2021465
Citation: LI Zai-xing, MA Jun, WU Xiao-sha, HUANG Ya-li, QIN Xue, TENG Zhi-nan, ZHAO Kai, ZHANG Fan. Inoculating thermophilic agent accelerates composting of cow manure and corn straw[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(5): 953-960. DOI: 10.11674/zwyf.2021465

接种高温嗜热菌剂加快牛粪秸秆堆肥发酵进程

基金项目: 河北省重点研发计划项目(19227306D)。
详细信息
    作者简介:

    李再兴 E-mail: 13832111831@163.com

Inoculating thermophilic agent accelerates composting of cow manure and corn straw

  • 摘要:
    目的 

    探究添加高温嗜热菌剂对牛粪堆肥的发酵效率、木质纤维素降解和堆肥品质的影响。

    方法 

    以牛粪和玉米秸秆为原料进行堆肥。添加嗜热菌剂处理(GLL)的菌剂主要由普通高温放线菌(Thermoactinomyces vulgaris)、地尿素芽孢杆菌(Ureibacillus terrenus)和嗜热脱氮芽孢杆菌(Geobacillus thermodenitrificans)组成,以分别添加两个市售有机肥发酵菌剂的处理(A、B)为对照,同时设不接种菌剂的空白对照(CK),发酵试验为期30天。在堆肥第0、3、7、12、16、23、30天取样,烘干样用于测定堆肥木质纤维素含量,鲜样用于测定含水率、pH、电导率(EC)值、种子发芽率指数(GI)和细菌群落结构。

    结果 

    GLL处理在堆肥第2天迅速升温至超高温期(85.8℃),超高温期持续5天;CK、A和B处理在堆肥第3天内进入高温期(分别为56.3℃、59.2℃和57.6℃),高温期分别持续了10、11和13天。接种GLL显著降低了堆肥水分含量,堆肥结束时含水量下降至34.3%,而CK、A和B处理的含水量分别下降至45.4%、43.8%和44.6%,未能满足产品水分标准。GLL处理半纤维素、纤维素和木质素在堆肥后比初始值分别下降81.6%、65.2%和53.7%,对木质纤维素的降解能力明显高于CK、A和B处理。在GLL处理堆肥高温期及超高温期,厚壁菌门细菌相对丰度增加到46.6%。接种GLL菌剂发酵后的堆肥产物的有机质、总养分、机械杂质质量分数及酸碱度、GI值等均满足NY/T 525—2021的要求。

    结论 

    接种高温嗜热菌剂能够显著提高堆肥温度,延长高温期持续时间,实现超高温堆肥,降低水分含量,提高木质纤维素的降解效果,快速获得满足NY/T 525—2021要求的堆肥产品。

    Abstract:
    Objectives 

    The aim was to study the effects of adding thermophilic agents on the fermentation efficiency, lignocellulose degradation and compost quality during the composting of cow manure.

    Methods 

    The fermentation was conducted using cow manure and corn stalks as raw materials. Testing thermophilic agents (GLL) were mainly composed of Thermoactinomyces vulgaris, Ureibacillus terrenus and Geobacillus thermodenitrificans, and two commercially available agents A, B for organic fertilizer fermentation set as controls while setting a blank control (CK) without inoculating agent, and the fermentation test is 30 days. The samples were obtained on 0, 3, 7, 12, 16, 23, 30 days in composting, dry samples were used for determination of lignocellulose content in composting, and fresh samples were used to determine moisture content, pH, EC value, seed germination index (GI), and bacterial community structures.

    Results 

    The GLL treatment quickly warmed up to the hyperthermophilic period (85.8℃) within the composting for 2 days, and this period lasted for 5 days; the CK, A, B treatments entered the thermophilic period (56.3℃, 59.2℃, 57.6℃) of composting on the composting for 3 days, and this period respectively lasted for 10, 11, 13 days. The inoculation of GLL significantly reduced the moisture content of the compost to 34.3% at the end of the composting, and the CK, A, B treatments dropped to 45.4%, 43.8%, 44.6%, which did not meet moisture standard of the product. The content of hemicellulose, cellulose and lignin in the GLL treatment decreased by 81.6%, 65.2% and 53.7% respectively compared to the initial value after composting, and the degradation capacity of lignocellulose significantly exceeded that of CK, A, and B treatments. During thermophilic even hyperthermophilic periods of composting, the relative abundance of Firmicutes in the bacteria increased to 46.6% in GLL treatment. The indicators of the compost i.e., the mass fraction of organic matter, total nutrients and mechanical impurities, pH and GI values, all met the requirements of NY/T 525—2021 after the hyperthermophilic fermentation by inoculating GLL agent.

    Conclusions 

    Inoculating thermophilic agents can significantly increase the temperature during the composting, extend the duration of the thermophilic period, achieve hyperthermophilic composting, reduce the moisture content, and improve the degradation effect of lignocellulose, and quickly obtain the compost that meets the requirements of NY/T 525—2021.

  • 目前我国每年畜禽粪污总产生量已达到38亿t,其中80%以上来源于规模化养殖场[1]。由于规模化畜禽养殖场与种植业在距离和养分供需上都存在脱节,造成畜禽粪污资源化利用效率低。高温堆肥技术以稳定化、腐殖化和无害化为目标,是实现畜禽粪便资源化利用重要的手段之一[2-3]。然而,这一技术的高温堆肥工艺(50℃~60℃)存在木质纤维素降解难、发酵周期长、氮素损失大、堆肥腐熟度低、无害化不彻底等问题,这不仅降低堆肥产品的价值,还会滋生恶臭与渗滤液污染[4]。此外,传统的高温堆肥技术也已不能满足日益增长的畜禽粪污处理的需求以及堆肥产品优质的要求,因此,亟需突破传统高温堆肥的技术壁垒。

    超高温堆肥即在传统的好氧堆肥的基础上,在不依赖外源加热情况下,通过接种含有极端嗜热微生物的微生物菌剂,使堆体的温度迅速达到80℃以上并持续5~7天的好氧发酵过程[5-6]。提高堆肥温度可有效降低木质纤维素类难降解有机物的结晶度,促进有机质降解,从而加速堆肥腐殖化进程,缩短发酵周期[7-8]。研究表明,大部分难降解木质纤维素类物质是在堆肥高温期由嗜热细菌和真菌降解的。因此,接种专用于超高温堆肥的微生物菌剂是实现畜禽粪便超高温堆肥的重要手段之一。同时,较高的温度并且维持时间长,有利于杀死大部分致病菌、病毒,增强抗生素及抗性基因的去除,使得堆肥无害化程度更彻底[9]。刘晓明等[10]指出在污泥超高温堆肥过程中,水溶性有机物(DOM)的芳香化和腐殖化程度逐渐增强。廖汉鹏等[11]在污泥堆肥发酵中接种了极端嗜热微生物菌剂,使得污泥自发热,堆体温度上升至80℃以上,将堆肥周期缩短至20天左右。崔鹏等[12]研究表明,超高温堆肥技术显著提高微生物能量代谢、碳水化合物代谢等产热相关代谢通路丰度,增加有氧呼吸链相关功能基因丰度,在氧化亚氮减排、氮素保留、抗性基因去除等方面具有显著优势。Yu等[13]研究表明,相比于传统的高温堆肥,超高温堆肥可降解类蛋白质,同时增加腐殖质的生成,腐殖化更加迅速。

    超高温堆肥技术的实现需要高温嗜热菌剂的支持。基于此,本研究拟在堆肥中接种由本课题组研发的高温嗜热菌剂,通过监测堆肥的温度、含水率、pH、电导率(EC)值、种子发芽率指数(GI)、木质纤维素降解、细菌丰度等参数,探究该菌剂在牛粪+玉米秸秆堆肥发酵中的效果,以期为促进畜禽粪便快速腐熟,提升堆肥产品质量提供理论与实践依据。

    本试验所用的牛粪取自河北省石家庄市元氏康顺奶牛养殖场的新鲜粪便,玉米秸秆取自当地农户,粉碎为≤5 cm小段。牛粪和玉米秸秆的理化性质见表1。本试验所用的GLL菌剂由本课题组所筛选的在高温下可以正常生长并分泌纤维素酶的嗜热菌种进行组配,包括普通高温放线菌(Thermoactinomyces vulgaris)G1、地尿素芽孢杆菌(Ureibacillus terrenus) L2、嗜热脱氮芽孢杆菌(Geobacillus thermodenitrificans) L8,其中菌株G1∶L2∶L8混合比例为1∶4∶3。GLL菌剂的有效活菌数为3×108 CFU/mL,符合GB20287—2006[14]的规定。市售菌剂A为河南省态沐生物科技有限公司生产的有机肥发酵剂,主要菌种包括酵母菌、芽孢杆菌等;市售菌剂B为山东贝佳生物科技有限公司生产的有机肥发酵菌剂,主要菌种包括芽孢杆菌、放线菌、酵母菌、木霉菌、固氮菌、乳酸菌等。

    表  1  堆肥原料理化性质
    Table  1.  Physico-chemical properties of raw materials for composting
    原料
    Raw material
    pH含水率 (%)
    Moisture content
    NDF
    (%)
    C/NEC
    (μS/cm)
    牛粪 Cow manure8.774.439.022.74.67
    玉米秸秆 Corn stalk4.110.766.751.12.47
    注:NDF—中性洗涤纤维。
    Note: NDF—A neutral detergent fiber.
    下载: 导出CSV 
    | 显示表格

    堆肥试验装置为具有保温层的70 L发酵罐,发酵罐底部连接气体流量计的曝气装置,发酵罐的上、中、下层分别设有温度探头,连接自动记录仪对温度进行实时监控。

    堆肥试验设4个处理,不加菌剂对照(CK)、添加GLL菌剂(GLL)、添加市售菌剂A (A)、添加市售菌剂B (B),所有处理堆肥原料配比均为30 kg牛粪+8 kg玉米秸秆,除CK外,其他3个处理的菌剂添加量均为3‰。堆肥发酵过程中,控制曝气速度为7 L/min,发酵周期为30天。分别在堆肥第0、3、7、12、16、23、30天取样,样品共分为3份:一份烘干、粉碎及过筛后,测定堆肥样品的木质纤维素含量;一份鲜样4℃冷藏保存,制取堆肥水浸提液,测定含水率、pH、EC值和种子发芽率指数(GI)等;一份鲜样–80℃冷冻保存,用于测定细菌的群落结构。

    堆肥发酵期间的温度由自动记录仪实时监测。含水率采用105℃烘干法测定。pH和电导率(EC)以肥水质量比1∶5浸提,pH采用酸度计测定,EC值采用电导率测定仪进行测定。种子发芽率指数(GI)参考文献[15]的方法测定并计算,GI=(堆肥处理种子发芽率×种子根长)/(蒸馏水处理的种子发芽率×种子根长)×100%。纤维素、半纤维素、中性洗涤纤维(NDF)以及木质素的含量采用ANKOM 2000i全自动纤维测定仪进行测定。细菌丰度由生工生物工程(上海)股份有限公司进行测定。堆肥产物有机质的质量分数、总养分、水分、酸碱度、GI值以及机械杂质的质量分数的测定方法参照NY/T 525—2021[16]

    采用Excel 2017、IBM SPSS Statistics 26和Origin2018 64bit等软件对试验数据进行整理分析。

    堆肥温度的高低显著影响着发酵过程中有机质的分解和微生物群落的演替,也是检验添加GLL菌剂是否能够实现超高温堆肥以及快速杀死堆肥中有害微生物的重要指标[17]。由堆肥发酵过程温度的变化(图1)可知,CK、A、B处理在堆肥第3天进入高温期(56.3℃、59.2℃、57.6℃),CK、A、B处理的高温阶段分别持续了10、11、13天,各处理高温的平均温度和持续时间均符合畜禽粪便无害化的要求[18]。相较CK处理,A和B处理在发酵过程中的温度上升更迅速,高温期也更长,但是两者均未实现超高温堆肥。这是由于市售菌剂的微生物多为中高温菌株,当温度过高时,菌株的活性便急剧下降,导致堆体温度维持原状甚至下降。相反,GLL处理在堆肥第2天内迅速升温至85.8℃,标志着堆体进入超高温阶段(≥80℃)[5-6],超高温期持续了5天,高温期又持续到第18天。研究发现,堆肥积温提高可缩短发酵周期[19-20],由于GLL处理的堆体温度高,有机质降解反应更为剧烈,有利于缩短堆体的发酵周期,加快有机质降解。

    图  1  接种不同菌剂堆肥过程中的温度变化
    注: CK为未接种菌剂的处理;A和B为接种市售菌剂A和B的处理;GLL为接种GLL菌剂的处理。
    Figure  1.  Temperature changes during composting as affected by agent inoculation
    Note: CK is the treatment without inoculated agent; A and B are the treatments with commercially available agents A and B; GLL is the treatment with GLL agent.

    堆肥过程中物料的含水率控制在50%~70%更有利于微生物的活动[21]。由图2可知,堆肥发酵期间,CK、A、B、GLL处理的堆体最初含水率分别为65.3%、66.3%、66.0%、66.7%,随着堆肥时间的延长呈下降趋势。在堆肥第16天,GLL处理的堆体含水率为44.3%,而CK、A、B处理的堆体含水率分别为50.2%、48.7%、47.3%。GLL处理的堆体含水率下降速率明显高于CK、A、B处理,因为GLL处理的堆体温度明显高于其他处理,更有利于水分的蒸发。堆肥结束时,CK、A、B处理的含水率分别为45.4%、43.8%、44.6%,A、B处理的堆肥含水率与CK没有显著差异,而GLL处理的含水率为34.3%,显著低于CK和A、B处理,表明接种GLL高温嗜热菌剂实现的超高温堆肥也促进了堆肥含水率的下降。

    图  2  接种不同菌剂堆肥过程中含水率变化
    注: CK为未接种菌剂的处理;A和B为接种市售菌剂A和B的处理;GLL为接种GLL菌剂的处理。柱上不同小写字母表示同一天处理间在0.05水平差异显著。
    Figure  2.  Changes in moisture content during composting as affected by agent inoculation
    Note:CK is the treatment without inoculated agent; A and B are the treatments with commercially available agents A and B; GLL is the treatment with GLL agent. Different lowercase letters above the bars indicate significant difference among treatments on the same day at the 0.05 level.

    堆肥pH影响着堆肥微生物的代谢活动,也影响着堆肥过程氨的挥发[22]。从图3中可以看出,CK、A、B和GLL处理的pH在整体上呈现缓慢上升的趋势,这是由于随着堆肥的进行,堆肥原料中的蛋白质发生脱氨基作用,氨气的释放会提高pH[23]。在堆肥发酵过程中,不同处理的pH差异不明显,说明添加外源菌剂不会影响堆肥的pH。Cui等[24]研究发现超高温反而有助于氮素的保留。堆肥末期,各处理的pH趋于稳定,CK、A、B、GLL处理的pH均在8.0~9.0。

    图  3  接种不同菌剂堆肥过程中pH和EC值变化
    注: CK为未接种菌剂的处理;A和B为接种市售菌剂A和B的处理;GLL为接种GLL菌剂的处理。柱上不同小写字母表示同一天处理间在0.05水平差异显著。
    Figure  3.  Changes in pH and EC value during composting as affected by agent inoculation
    Note:CK is the treatment without inoculated agent; A and B are the treatments with commercially available agents A and B; GLL is the treatment with GLL agent. Different lowercase letters above the bars indicate significant difference among treatments on the same day at the 0.05 level.

    堆肥EC值反映着堆肥产物的植物安全性。EC值的变化与有机质的矿化和腐殖化过程相关。4个处理的EC值均呈现先上升后下降的趋势,CK、A处理EC峰值出现在堆肥第16天,B、GLL处理出现在堆肥第7天。堆肥结束后,CK、A、B、GLL处理的EC值分别为2.13、1.99、2.03、1.95 μS/cm,菌剂的添加导致堆肥EC值下降。

    种子发芽率指数(GI值)是评价堆肥腐熟度和表征安全性的一个主要生物指标,一般堆肥的GI值必需超过80%[25-26]。由堆肥过程中的GI值的变化(图4),可知,CK、A、B、GLL处理的GI值均随发酵时间呈现上升趋势,其中GLL处理GI值的上升最为迅速,在堆肥的第16天,GI值已经达到80%以上,而CK、A、B处理分别需要30、23、23天才能达到80%以上。因此,接种GLL菌剂可以加快堆肥的腐殖化进程,有效缩短发酵周期7~14天。

    图  4  接种不同菌剂堆肥过程中GI变化
    注: CK为未接种菌剂的处理;A和B为接种市售菌剂A和B的处理;GLL为接种GLL菌剂的处理。柱上不同小写字母表示同一天处理间在0.05水平差异显著。
    Figure  4.  Changes in GI during composting as affected by agent inoculation
    Note:CK is the treatment without inoculated agent; A and B are the treatments with commercially available agents A and B; GLL is the treatment with GLL agent. Different lowercase letters above the bars indicate significant difference among treatments on the same day at the 0.05 level.

    木质纤维素的降解体现了堆肥的稳定化和腐殖化进程。木质纤维素包括半纤维素、纤维素、木质素等。图5显示,在堆肥发酵过程中,各处理的牛粪+秸秆混合物料的木质纤维素含量均逐渐降低,降解率逐渐增加。纤维素、木质素的降解主要发生在堆肥高温期。在堆肥发酵第7、30天时,A、B、GLL处理的半纤维素、纤维素和木质素的降解率较CK处理显著增加,尤其是GLL处理的木质纤维素降解更为显著,这说明提高堆肥温度有助于纤维素类和木质素的降解。牛明杰等[27]研究发现,半纤维素的主要降解阶段为堆肥稳定期,堆肥结束时降低了38.8%,纤维素和木质素仅在堆肥高温期有少量降解,分别降解了11.7%和18.5%。吴耀领等[28]从丢弃酒糟中筛选到3株纤维素降解菌MM2、MM6和MX8,并按照1∶1∶1复配复合菌剂,研究发现3种不同复合菌剂接种量(0.6%、0.8%、1.0%)酒糟中的纤维素分别降解了28.6%、34.8%和37.0%,对照组纤维素仅降解了18.0%,接种复合菌剂明显促进酒糟堆肥腐熟和缩短堆肥周期。堆肥发酵后,GLL处理堆肥后的木质纤维素含量比堆肥初始值下降了70.7%,下降幅度明显高于CK、A、B处理,半纤维素、纤维素和木质素含量在堆肥后分别下降81.6%、65.2%和53.7%。高华等[29]研究发现加入微生物菌剂可明显提高堆肥过程脱氢酶的活性,有利于纤维素等有机质的氧化降解。因此,在堆肥中添加嗜热GLL菌剂可能通过提高脱氢酶的活性,从而提高了木质纤维素的降解效率。

    图  5  接种不同菌剂堆肥过程中木质纤维素的变化
    注: CK为未接种菌剂的处理;A和B为接种市售菌剂A和B的处理;GLL为接种GLL菌剂的处理。柱上不同小写字母表示同一天处理间在0.05水平差异显著。
    Figure  5.  Changes in lignocellulose during composting as affected by agent inoculation
    Note: CK is the treatment without inoculated agent; A and B are the treatments with commercially available agents A and B; GLL is the treatment with GLL agent. Different lowercase letters above the bars indicate significant difference among treatments on the same day at the 0.05 level.

    为探究在超高温堆肥过程中细菌群落的变化,对GLL处理堆肥前7天的细菌群落在门水平上相对丰度的变化进行分析。从图6可以看出,超高温堆肥过程中,在堆肥第0、3、7天的细菌群落之间有着巨大的差异。堆肥第0天,细菌群落主要有厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)以及拟杆菌门(Bacteroidetes),其中,变形菌门和厚壁菌门是主要的菌门,共占细菌总序列的68.4%。随着堆肥进入高温及超高温期,变形菌门、拟杆菌门占总序列的比例分别减少到8.5%、14.4%,厚壁菌门占总序列的比例逐渐增加到46.6%。厚壁菌门和放线菌门是降解木质纤维素的主要细菌菌群[30-31]。接种GLL处理的堆体在发酵的第2天温度就升至85.8℃,且持续5天,堆肥第3~7天厚壁菌门相对丰度的增加说明其可耐受超高温,高温期纤维素的降解主要是由厚壁菌门完成的,同时释放热量将堆体推向更高的温度,提高堆肥产物的质量。李玮琳等[32]研究发现,在堆肥早期和中期(0~10天),添加菌剂可提高堆肥中的厚壁菌门(Firmicutes)相对丰度,从而提高木质纤维素等难降解有机质的降解。李昌宁等[19]研究表明,在堆肥的高温期,未接种菌剂的传统高温堆肥中厚壁菌门的相对丰度仅为17.4%,远小于本研究接种GLL菌剂的堆肥处理在高温期厚壁菌门的相对丰度(46.6%)。因此,在堆肥过程中接种GLL菌剂可能通过提高堆肥发酵过程中厚壁菌门等优势细菌群落的丰度,促进堆体升温并延长高温时期,进而有效提高木质纤维素的降解能力,缩短堆肥的腐熟周期。

    图  6  接种GLL菌剂不同时间堆肥中门水平细菌的相对丰度
    Figure  6.  The relative abundance of bacteria at phylum in different time of composting with GLL inoculation

    参照NY/T 525—2021[16]农业标准中对有机肥料的要求,检测了接种GLL菌剂超高温堆肥发酵后堆肥产物的有机质、总养分、水分和机械杂质的质量分数及酸碱度、GI值(表2)。超高温堆肥后,堆肥产物的有机质、总养分和机械杂质的质量分数、酸碱度、GI值均满足NY/T 525—2021[16]的要求,含水率略高于该标准的要求。因此,超高温堆肥对畜禽废弃物的无害化效果良好,基本满足了NY/T 525—2021[16]中的要求。

    表  2  接种GLL堆肥产物检测结果
    Table  2.  Testing results of compost products inoculated with GLL
    指标
    Index
    测定值
    Measured value
    NY525—2021[16]
    有机质 (%)
    Organic matter
    39.6~41.2≥30
    N+P2O5+K2O (%)3.8~4.2≥4.0
    水分 (%)
    Moisture
    31~35≤30
    pH7.6~8.35.5~8.5
    GI (%)120~130≥70
    机械杂质 (%)
    Mechanical impurities
    <0.2≤0.5
    注:有机质和总养分 (N+P2O5+K2O) 质量分数均按照烘干基计算。
    Note: Contents of organic matter and N+P2O5+K2O are calculated according to dry weight of compost products.
    下载: 导出CSV 
    | 显示表格

    接种GLL菌剂处理可在堆肥第2天达到超高温(85.8℃),而其他菌剂只能达到高温,较传统堆肥该阶段较高的高温嗜热菌厚壁菌门(46.6%)的相对丰度十分有利于堆肥材料中纤维素、半纤维素和木质素的分解,促进了水分的蒸发以及有害微生物的消除,因而,其GI值在堆肥的第16天就超过80%,在堆肥30天产品质量达到堆肥产物质量标准NY/T 525—2021的要求,较传统堆肥和接种普通菌剂大大缩短了堆肥周期,提高堆肥发酵效率。

  • 图  1   接种不同菌剂堆肥过程中的温度变化

    注: CK为未接种菌剂的处理;A和B为接种市售菌剂A和B的处理;GLL为接种GLL菌剂的处理。

    Figure  1.   Temperature changes during composting as affected by agent inoculation

    Note: CK is the treatment without inoculated agent; A and B are the treatments with commercially available agents A and B; GLL is the treatment with GLL agent.

    图  2   接种不同菌剂堆肥过程中含水率变化

    注: CK为未接种菌剂的处理;A和B为接种市售菌剂A和B的处理;GLL为接种GLL菌剂的处理。柱上不同小写字母表示同一天处理间在0.05水平差异显著。

    Figure  2.   Changes in moisture content during composting as affected by agent inoculation

    Note:CK is the treatment without inoculated agent; A and B are the treatments with commercially available agents A and B; GLL is the treatment with GLL agent. Different lowercase letters above the bars indicate significant difference among treatments on the same day at the 0.05 level.

    图  3   接种不同菌剂堆肥过程中pH和EC值变化

    注: CK为未接种菌剂的处理;A和B为接种市售菌剂A和B的处理;GLL为接种GLL菌剂的处理。柱上不同小写字母表示同一天处理间在0.05水平差异显著。

    Figure  3.   Changes in pH and EC value during composting as affected by agent inoculation

    Note:CK is the treatment without inoculated agent; A and B are the treatments with commercially available agents A and B; GLL is the treatment with GLL agent. Different lowercase letters above the bars indicate significant difference among treatments on the same day at the 0.05 level.

    图  4   接种不同菌剂堆肥过程中GI变化

    注: CK为未接种菌剂的处理;A和B为接种市售菌剂A和B的处理;GLL为接种GLL菌剂的处理。柱上不同小写字母表示同一天处理间在0.05水平差异显著。

    Figure  4.   Changes in GI during composting as affected by agent inoculation

    Note:CK is the treatment without inoculated agent; A and B are the treatments with commercially available agents A and B; GLL is the treatment with GLL agent. Different lowercase letters above the bars indicate significant difference among treatments on the same day at the 0.05 level.

    图  5   接种不同菌剂堆肥过程中木质纤维素的变化

    注: CK为未接种菌剂的处理;A和B为接种市售菌剂A和B的处理;GLL为接种GLL菌剂的处理。柱上不同小写字母表示同一天处理间在0.05水平差异显著。

    Figure  5.   Changes in lignocellulose during composting as affected by agent inoculation

    Note: CK is the treatment without inoculated agent; A and B are the treatments with commercially available agents A and B; GLL is the treatment with GLL agent. Different lowercase letters above the bars indicate significant difference among treatments on the same day at the 0.05 level.

    图  6   接种GLL菌剂不同时间堆肥中门水平细菌的相对丰度

    Figure  6.   The relative abundance of bacteria at phylum in different time of composting with GLL inoculation

    表  1   堆肥原料理化性质

    Table  1   Physico-chemical properties of raw materials for composting

    原料
    Raw material
    pH含水率 (%)
    Moisture content
    NDF
    (%)
    C/NEC
    (μS/cm)
    牛粪 Cow manure8.774.439.022.74.67
    玉米秸秆 Corn stalk4.110.766.751.12.47
    注:NDF—中性洗涤纤维。
    Note: NDF—A neutral detergent fiber.
    下载: 导出CSV

    表  2   接种GLL堆肥产物检测结果

    Table  2   Testing results of compost products inoculated with GLL

    指标
    Index
    测定值
    Measured value
    NY525—2021[16]
    有机质 (%)
    Organic matter
    39.6~41.2≥30
    N+P2O5+K2O (%)3.8~4.2≥4.0
    水分 (%)
    Moisture
    31~35≤30
    pH7.6~8.35.5~8.5
    GI (%)120~130≥70
    机械杂质 (%)
    Mechanical impurities
    <0.2≤0.5
    注:有机质和总养分 (N+P2O5+K2O) 质量分数均按照烘干基计算。
    Note: Contents of organic matter and N+P2O5+K2O are calculated according to dry weight of compost products.
    下载: 导出CSV
  • [1] 徐万强, 孙世友, 茹淑华, 等. 我国畜禽养殖业中重金属污染状况及其治理防控[J]. 河北农业科学, 2020, 24(5): 75–81. Xu W Q, Sun S Y, Ru S H, et al. Characteristics and control of heavy metals pollution from livestock and poultry breeding industry in China[J]. Journal of Hebei Agricultural Sciences, 2020, 24(5): 75–81.

    Xu W Q, Sun S Y, Ru S H, et al. Characteristics and Control of Heavy Metals Pollution from Livestock and Poultry Breeding Industry in China [J]. Journal of Hebei Agricultural Sciences, 2020, 24(5): 75–81.

    [2]

    Akyol C, Ince O, Ince B. Crop-based composting of lignocellulosic digestates: Focus on bacterial and fungal diversity[J]. Bioresource Technology, 2019, 288: 121549. DOI: 10.1016/j.biortech.2019.121549

    [3]

    Zang X Y, Liu M T, Wang H, et al. The distribution of active β-glucosidase-producing microbial communities in composting[J]. Canadian Journal of Microbiology, 2017, 63: 998–1008. DOI: 10.1139/cjm-2017-0368

    [4]

    Nikaeen M, Nafez A H, Bina B, et al. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting[J]. Waste Management, 2015, 39: 104–110. DOI: 10.1016/j.wasman.2015.01.028

    [5]

    Yu Z, Tang J, Liao H, et al. The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant[J]. Bioresource Technology, 2018, 265: 146–154. DOI: 10.1016/j.biortech.2018.06.011

    [6] 余震, 周顺桂. 超高温好氧发酵技术: 堆肥快速腐熟与污染控制机制[J]. 南京农业大学学报, 2020, 43(5): 781–789. Yu Z, Zhou S G. Hyperthermophilic composting of organic solid wastes: Accelerated humification and pollution control mechanisms[J]. Journal of Nanjing Agricultural University, 2020, 43(5): 781–789. DOI: 10.7685/jnau.201911030

    Yu Z, Zhou S G. Hyperthermophilic composting of organic solid wastes: accelerated humification and pollution control mechanisms [J]. Journal of Nanjing Agricultural University, 2020, 43(5): 781–789. DOI: 10.7685/jnau.201911030

    [7]

    Tortosa G, Castellano H A, Correa G D, et al. Evolution of bacterial diversity during two-phase olive mill waste ("alperujo") composting by 16s rRNA gene pyrosequencing[J]. Bioresource Technology, 2016, 224: 101–111.

    [8] 刘子乐, 白林, 胡红文. 超高温堆肥及其资源化与无害化研究进展[J]. 中国农业科技导报, 2021, 23(1): 119–127. Liu Z L, Bai L, Hu H W, et al. Research progress on hyperthermophilic composting and its resource and harmlessness[J]. Journal of Agricultural Science and Technology, 2021, 23(1): 119–127.

    Liu Z L, Bai L, Hu H W, et al. Research progress on hyperthermophilic composting and its resource and harmlessness [J]. Journal of Agricultural Science and Technology, 2021, 23(1): 119–127.

    [9]

    Liao H, Lu X, Rensing, C, et al. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge[J]. Environmental Science & Technology, 2018, 52(1): 266–276.

    [10] 刘晓明, 余震, 周普雄, 等. 污泥超高温堆肥过程中DOM结构的光谱分析[J]. 环境科学, 2018, 39(8): 3807–3815. Liu X M, Yu Z, Zhou P X, et al. Spectroscopic characterization of DOM during hyperthermophilic composting of sewage sludge[J]. Environmental Science, 2018, 39(8): 3807–3815.

    Liu X M, Yu Z, Zhou P X, et al. Spectroscopic characterization of DOM during hyperthermophilic composting of sewage sludge [J]. Environmental Science, 2018, 39(8): 3807–3815.

    [11] 廖汉鹏, 陈志, 余震, 等. 有机固体废物超高温好氧发酵技术及其工程应用[J]. 福建农林大学学报(自然科学版), 2017, 46(4): 439–444. Liao H P, Chen Z, Yu Z, et al. Development of hyperthermophinic aerobic composting and its engineering applications in organic solid wastes[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2017, 46(4): 439–444.

    Liao H P, Chen Z, Yu Z, et al. Development of hyperthermophinic aerobic composting and its engineering applications in organic solid wastes [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2017, 46(4): 439–444.

    [12] 崔鹏, 艾超凡, 廖汉鹏, 等. 超高温堆肥微生物群落强化产热功能特征分析[J/OL]. 土壤学报, (2021-08-09). http://kns.cnki.net/kcms/detail/32.1119.P.20210809.1100.002.html.

    Cui P, Ai C F, Liao H P, et al. Characteristics of enhanced microbial thermogenic functions in hyperthermophilic composting[J/OL]. Acta Pedologica Sinica, (2021-08-09). http://kns.cnki.net/kcms/detail/32.1119.P.20210809.1100.002.html.

    [13]

    Yu Z, Liu X, Zhao M, et al. Hyperthermophilic composting accelerates the humification process of sewage sludge: Molecular characterization of dissolved organic matter using eem–parafac and two-dimensional correlation spectroscopy[J]. Bioresource Technology, 2019, 274: 198–206. DOI: 10.1016/j.biortech.2018.11.084

    [14] GB 20287—2006. 农用微生物菌剂[S].

    GB 20287—2006. Microbial inoculants in agriculture[S].

    [15] 曹云, 黄红英, 钱玉婷, 等. 超高温预处理装置及其促进鸡粪稻秸好氧堆肥腐熟效果[J]. 农业工程学报, 2017, 33(13): 243–250. Cao Y, Huang H Y, Qian Y T, et al. Hyperthermophilic pretreatment device and its application on improving decomposition effect for chicken manure and rice straw aerobic composting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(13): 243–250. DOI: 10.11975/j.issn.1002-6819.2017.13.032

    Cao Y, Huang H Y, Qian Y T, et al. Hyperthermophilic pretreatment device and its application on improving decomposition effect for chicken manure and rice straw aerobic composting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(13): 243–250. DOI: 10.11975/j.issn.1002-6819.2017.13.032

    [16] NY/T 525—2021. 有机肥料[S].

    NY/T 525—2021. Organic fertilizer[S].

    [17]

    Liu W, Wang S, Zhang J, et al. Biochar influences the microbial community structure during tomato stalk composting with chicken manure[J]. Bioresource Technology, 2014, 154: 148–154. DOI: 10.1016/j.biortech.2013.12.022

    [18]

    Li H, Duan M, Gu J, et al. Effects of bamboo charcoal on antibiotic resistance genes during chicken manure composting[J]. Ecotoxicology and Environment Safety, 2017, 140: 1–6. DOI: 10.1016/j.ecoenv.2017.01.007

    [19] 李昌宁, 苏明, 姚拓, 等. 微生物菌剂对猪粪堆肥过程中堆肥理化性质和优势细菌群落的影响[J]. 植物营养与肥料学报, 2020, 26(9): 1600–1611. Li C N, Su M, Yao T, et al. Effects of microbial inoculation on compost physical and chemical properties and dominant bacterial communities during composting of pig manure[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1600–1611.

    Li C N, Su M, Yao T, et al. Effects of microbial inoculation on compost physical and chemical properties and dominant bacterial communities during composting of pig manure [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(144): 1600–1611.

    [20] 张强, 孙向阳, 任忠秀, 等. 调节C/N及添加菌剂与木酢液对园林绿化废弃物堆肥效果的影响[J]. 植物营养与肥料学报, 2012, 18(4): 990–998. Zhang Q, Sun X Y, Ren Z X, et al. Effects of regulating of C/N ratio and adding different concentrations of microbe fungus and wood vinegar on composting of landscaping waste[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(4): 990–998. DOI: 10.11674/zwyf.2012.11378

    Zhang Q, Sun X Y, Ren Z X, et al. Effects of regulating of C/N ratio and adding different concentrations of microbe fungus and wood vinegar on composting of landscaping waste [J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(4): 990–998. DOI: 10.11674/zwyf.2012.11378

    [21] 张晶, 孙照勇, 钟小忠, 等. 奶牛粪条垛式模拟堆肥腐熟度及微生物群落结构变化[J]. 应用与环境生物学报, 2016, 22(3): 423–429. Zhang J, Sun Z Y, Zhong X Z, et al. Maturity and microbial community structure dynamics during simulated windrow composting of solid fraction of dairy manure[J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(3): 423–429.

    Zhang J, Sun Z Y, Zhong X Z, et al. Maturity and microbial community structure dynamics during simulated windrow composting of solid fraction of dairy manure [J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(3): 423–429.

    [22] 许修宏, 成利军, 许本姝, 等. 基于高通量测序分析牛粪堆肥中细菌群落动态变化[J]. 东北农业大学学报, 2018, 49(3): 10–20. Xu X H, Cheng L J, Xu B S, et al. Analysis of bacterial community dynamics in cow manure composting using high throughput sequencing[J]. Journal of Northeast Agricultural University, 2018, 49(3): 10–20. DOI: 10.3969/j.issn.1005-9369.2018.03.002

    Xu X H, Cheng L J, Xu B S, et al. Analysis of bacterial community dynamics in cow manure composting using high throughput sequencing [J]. Journal of Northeast Agricultural University, 2018, 49(3): 10–20. DOI: 10.3969/j.issn.1005-9369.2018.03.002

    [23]

    Peng S, Li H, Song D, et al. Influence of zeolite and superphosphate as additives on antibiotic resistance genes and bacterial communities during factory-scale chicken manure composting[J]. Bioresource Technology, 2018, 263: 393–401. DOI: 10.1016/j.biortech.2018.04.107

    [24]

    Cui P, Liao H P, Bai Y D, et al. Hyperthermophilic composting reduces nitrogen loss via inhibiting ammonifiers and enhancing nitrogenous humic substance formation[J]. Science of the Total Environment, 2019, 692: 98–106. DOI: 10.1016/j.scitotenv.2019.07.239

    [25] 于子旋, 杨静静, 王语嫣, 等. 畜禽粪便堆肥的理化腐熟指标及其红外光谱[J]. 应用生态学报, 2016, 27(6): 2015–2023. Yu Z X, Yang J J, Wang Y Y, et al. Physical and chemical maturity indexes fourier transform infrared (FTIR) spectroscopy of animal manures during composting[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 2015–2023.

    Yu Z Y, Yang J J, Wang Y Y, et al. Physical and chemical maturity indexes fourier transform infrared (FTIR) spectroscopy of animal manures during composting [J]. Chinese Journal of Applied Ecology, 2016, (6): 2015–2023.

    [26] 张鹤, 李孟婵, 杨慧珍, 等. 不同碳氮比对牛粪好氧堆肥腐熟过程的影响[J]. 甘肃农业大学学报, 2019, 54(1): 60–67. Zhang H, Li M C, Yang H Z, et al. Effect of different carbon and nitrogen ratio on decayed process of aerobic composting of cow dung[J]. Journal of Gansu Agricultural University, 2019, 54(1): 60–67.

    Zhang H, Li M C, Yang H Z, et al. Effect of different carbon and nitrogen ratio on decayed process of aerobic composting of cow dung [J]. Journal of Gansu Agricultural University, 2019, 54(1): 60–67.

    [27] 牛明杰, 郑国砥, 朱彦莉, 等. 城市污泥与调理剂混合堆肥过程中有机质组分的变化[J]. 植物营养与肥料学报, 2016, 22(4): 1016–1023. Niu M J, Zheng G D, Zhu Y L, et al. Dynamic of organic matter fractions during sewage sludge and bulking agent composting[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 1016–1023. DOI: 10.11674/zwyf.15463

    Niu M J, Zheng G D, Zhu Y L, et al. Dynamic of organic matter fractions during sewage sludge and bulking agent composting [J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 1016–1023. DOI: 10.11674/zwyf.15463

    [28] 吴耀领, 席晓黎, 曾祥炼, 等. 酒糟纤维素降解菌的分离及其堆肥应用[J]. 河南农业科学, 2022, 51(1): 79–88. Wu Y L, Xi X L, Zeng X L, et al. Isolation and compost application of high-activity cellulose -degrading strains from distiller’s grains[J]. Journal of Henan Agricultural Sciences, 2022, 51(1): 79–88.

    Wu Y L, Xi X L, Zeng X L, et al. Isolation and compost application of high-activity cellulose -degrading strains from distiller’s grains [J]. Journal of Henan Agricultural Sciences, 2022, 51(1): 79–88.

    [29] 高华, 谷洁, 秦清军, 等. 加入外源菌剂后脱氢酶活性在农业废弃物静态高温堆腐过程的变化[J]. 植物营养与肥料学报, 2008, 14(4): 786–791. Gao H, Gu J, Qin Q J, et al. Variation of dehydrogenaze activities of agriculture waste composting with microorganism agent in high temperature and static state[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(4): 786–791. DOI: 10.11674/zwyf.2008.0426

    Gao H, Gu J, Qin Q J, et al. Variation of dehydrogenaze activities of agriculture waste composting with microorganism agent in high temperature and static state [J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(4): 786–791. DOI: 10.11674/zwyf.2008.0426

    [30] 王建才, 朱荣生, 刘兴华, 等. 微生物菌剂对猪粪堆肥中细菌群落结构的影响[J]. 应用生态学报, 2020, 31(7): 2449–2456. Wang J C, Zhu R S, Liu X H, et al. Effects of microbial agents on bacterial community composition during swine manure composting[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2449–2456.

    Wang J C, Zhu R S, Liu X H, et al. Effects of microbial agents on bacterial community composition during swine manure composting [J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2449–2456.

    [31] 王秀红, 李欣欣, 史向远, 等. 玉米秸秆不同发酵时期理化性状和细菌群落多样性[J]. 华北东农学报, 2018, 33(3): 144–152. Wang X H, Li X X, Shi X Y, et al. Physicochemical properties and bacterial community diversity during different fermentation periods of corn straw[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(3): 144–152.

    Wang X H, Li X X, Shi X Y, et al. Physicochemical properties and bacterial community diversity during different fermentation periods of corn straw [J]. Acta Agriculturae Boreali-Sinica, 2018, 33(3): 144–152.

    [32] 李玮琳, 张昕, 马军伟, 等. 抗生素降解菌剂对猪粪堆肥腐熟和细菌群落演替的影响[J/OL]. 环境科学, (2022-03-15). DOI: 10.13227/j.hjkx.202111253.

    Li W L, Zhang X, Ma J W, et al. Effect of antibiotic-degrading bacteria on maturity and bacterial community succession during pig manure composting[J]. Environmental Science, (2022-03-15). DOI: 10.13227/j.hjkx.202111253.

  • 期刊类型引用(9)

    1. 陆晓林,张起强,谭正准,曾令湖,潘玉红,李治培,李群良,覃广胜. 花生壳作为填充剂在堆肥过程中影响腐殖化特性并改善堆肥质量. 环境卫生工程. 2025(01): 67-77 . 百度学术
    2. 王聪,尹苗,易浩楠,邓永涛,张莉萍,陈希文. 畜禽粪便堆肥添加剂及其应用效果的研究进展. 现代畜牧兽医. 2024(03): 77-81 . 百度学术
    3. 冯亮,施爱平. 农业废弃物好氧发酵高温阶段工艺. 湖北农业科学. 2024(05): 17-21 . 百度学术
    4. 胡军有,李义勇,杜建军. 畜禽粪便超高温堆肥技术研究进展. 中国农学通报. 2024(29): 131-137 . 百度学术
    5. 谢小林,陈猛,李燕旋,周莲,王勇,李成江,刘玉敏,姚青,朱红惠. 耐高温半乳糖地质杆菌BWTGW1-1液体发酵工艺优化及中试生产. 现代食品科技. 2024(09): 87-95 . 百度学术
    6. 孙乐,景媛媛,蒋恒,王娇,王思仪,高凤芹. 农作物秸秆还田研究现状与展望. 中国草地学报. 2024(11): 130-140 . 百度学术
    7. 陈倩倩,车建美,刘国红,刘波,王阶平,阮传清,连亨平. 嗜热复合菌对堆肥品质及微生物群落演替的影响. 植物营养与肥料学报. 2023(04): 745-755 . 本站查看
    8. 王聪,冀红柳,尹苗,易浩楠,张莉萍,邓永涛,陈希文. 猪粪堆肥复合菌剂培养条件优化及其对好氧堆肥的影响. 安徽农业科学. 2023(17): 51-58 . 百度学术
    9. 巴德日胡,申玉贤,李艳,于志远,宝雅丽. 呼伦贝尔地区家庭牧场牛粪粗处理施肥对草场质量影响分析. 智慧农业导刊. 2023(24): 19-25 . 百度学术

    其他类型引用(3)

图(6)  /  表(2)
计量
  • 文章访问数:  2047
  • HTML全文浏览量:  723
  • PDF下载量:  71
  • 被引次数: 12
出版历程
  • 收稿日期:  2021-09-15
  • 录用日期:  2022-04-14
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-05-24

目录

/

返回文章
返回